

Getting started with DS-MDK
Create applications for heterogeneous

Arm® Cortex®-A/Cortex-M devices

This version of the guide has been written specifically for the Arrow Meerkat i.MX7 board

2 Preface

Information in this document is subject to change without notice and does not represent a

commitment on the part of the manufacturer. The software described in this document is

furnished under license agreement or nondisclosure agreement and may be used or copied

only in accordance with the terms of the agreement. It is against the law to copy the software

on any medium except as specifically allowed in the license or nondisclosure agreement. The

purchaser may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or information storage and retrieval systems, for any

purpose other than for the purchaser’s personal use, without written permission.

Copyright © 1997-2018 Arm Germany GmbH

All rights reserved.

Arm, Keil, µVision, Cortex, and ULINK are trademarks or registered trademarks of Arm

Germany GmbH and Arm Ltd.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Eclipse is a registered trademark of the Eclipse Foundation, Inc.

NOTE

We assume you are familiar with Microsoft Windows, the hardware, and the instruction set of

the Arm® Cortex®-A and Cortex-M processors.

Every effort was made to ensure accuracy in this manual and to give appropriate credit to

persons, companies, and trademarks referenced herein.

Getting Started with DS-MDK
 3

Preface
Thank you for using the DS-MDK Development Studio available from Arm. To provide you

with the very best software tools for developing Arm based embedded applications we design

our tools to make software engineering easy and productive. Arm also offers therefore

complementary products such as the ULINK™ debug and trace adapters and a range of

evaluation boards. DS-MDK is expandable with various third party tools, starter kits, and

debug adapters.

Chapter overview

The book starts with the installation of DS-MDK and describes the software components

along with complete workflow from starting a project up to debugging on hardware. It

contains the following chapters:

DS-MDK introduction provides an overview about the DS-MDK, the software packs, and

describes the product installation.

Working with example projects explains how to get started with supported development

boards using pre-built projects to verify hardware and software functionality.

Creating projects from scratch guides you through the process of creating and modifying

projects using CMSIS and device-related software components for the Cortex-M

microcontroller. It also shows you how to develop applications for the Cortex-A processor

running Linux.

Debug applications describes the process of how to connect to the target hardware and

explains debugging applications on the target.

Store Cortex-M image gives further details on how to store the application image on the

target and how to run it at start up time.

The Appendix contains further information, for example about the basic concepts of the

Eclipse IDE and the most frequently used perspectives.

4 Preface

Contents

Table of Contents

Preface .. 3

DS-MDK introduction .. 5
Solution for heterogeneous systems .. 5

DS-MDK licensing ... 6
Software and hardware requirements ... 6

Documentation and support ... 8

Working with example projects ... 9
Install the Linux image .. 9
Hardware connection ... 10
Verify installation with example projects .. 11
Cortex-M application ... 13
Cortex-A Linux application ... 18

Creating projects from scratch .. 22
Create Cortex-M applications ... 22

Blinky with CMSIS-RTOS RTX ... 22
Create Linux applications ... 31

Setup the project .. 31
Build the application image ... 32

Debug applications .. 33
Debug Cortex-M application .. 34
Debug Linux application .. 37
Debug the Linux Kernel ... 37

Create a Linux Kernel debug project ... 39
Debug the Kernel: Pre-MMU stage ... 42
Debug the Kernel: post-MMU stage .. 42

Debug a Linux Kernel module ... 45
Create a Linux Kernel module debug project .. 45
Debug the Kernel module .. 46

Arm Streamline ... 47

Store Cortex-M image ... 48
Create a Cortex-M binary image (BIN) ... 48
Store Cortex-M BIN file on SD Card .. 49

Appendix .. 50
Perspectives ... 50

Additional links .. 54

 NOTE

This user’s guide describes how to create applications with the Eclipse-based

DS-MDK IDE and Debugger for Arm Cortex-A/Cortex-M based devices.

Refer to the Getting Started with MDK user’s guide for information how to create projects for

Arm Cortex-M microcontrollers with the µVision® IDE/Debugger.

Getting Started with DS-MDK
 5

DS-MDK introduction
DS-MDK combines the Eclipse-based DS-5 IDE and Debugger with CMSIS-Pack technology

and uses software packs to extend device support for devices based on 32-bit Arm Cortex-A

processors or heterogeneous systems based on 32-bit Arm Cortex-A and Arm Cortex-M

processors.

Currently NXP i.MX 6, i.MX7 and VFxxx series devices are supported. These devices

combine computing power for application-rich systems with real-time responsiveness: the DS-

5 Debugger gives visibility to multi-processor execution and allows optimization of the

overall software architecture.

Solution for heterogeneous systems

Heterogeneous systems usually consist of a powerful Arm Cortex-A class application

processor and a deterministic Arm Cortex-M based microcontroller. These systems combine

the best of both worlds: the Cortex-A class processor can run a feature-rich operating system

such as Linux and enables the user to program complex applications with sophisticated

human-machine interfaces (HMI). The Cortex-M class controller offers low I/O latency,

superior power efficiency and a fast system start-up time for embedded systems.

Usually, both processors have access to a set of communication peripherals and shared

memory. The biggest challenge with heterogeneous systems is the synchronization and inter-

processor communication.

DS-MDK offers a complete software development solution for such systems:

• Manage Cortex-A Linux and Cortex-M RTOS projects in the same development

environment.

• Use the Cortex Microcontroller Software Interface Standard (CMSIS) development

flow for efficient Cortex-M programming. Add software packs any time to DS-MDK

to make new device support and middleware updates independent from the toolchain.

The IDE manages the provided software components that are available for the

application as building blocks.

• Debug multicore software development projects with the full visibility offered by the

DS-5 Debugger.

6 DS-MDK introduction

DS-MDK licensing
DS-MDK is part of the Keil® MDK and the product requires a valid license in order to use

it.

For information on how to obtain and set-up the license, please refer to the following page:

http://www.keil.com/mdk5/ds-mdk/licensing/

Software and hardware requirements
DS-MDK has the following minimum hardware and software requirements:

▪ A workstation running Microsoft Windows, Red Hat Enterprise Linux or Ubuntu Desktop

Edition (only 64-bit OS/platforms are supported)

▪ Dual-Core Processor with > 2 GHz

▪ 4 GB RAM and 8 GB hard-disk space

1280 x 800 or higher screen resolution.

Install DS-MDK

Download the DS-MDK installer for your host platform (Windows or Linux) from

www.keil.com/mdk5/ds-mdk/install .

The installation procedures for Windows and Linux are different and are both described

below.

Windows installation

Decompress the zip archive and run the installer setup.exe. Follow the instructions on the screen

and make sure you install the device drivers for the debug probes.

To start DS-MDK, use Eclipse for DS-MDK from the Start menu (Windows 10: All apps 

Arm DS-MDK  Eclipse for DS-MDK).

Linux installation

Extract the installer from the downloaded archive file, run (not source) install.sh and follow the

on-screen instructions. The installer unpacks DS-MDK into your chosen directory, and

optionally installs device drivers and desktop shortcuts.

Note: The installer includes device drivers that require you to run with root privileges.

To start DS-MDK, from your desktop, select Eclipse for DS-MDK. Alternatively, launch [DS-

MDK install directory]/bin/eclipse from the command line.

http://www2.keil.com/mdk5
http://www.keil.com/mdk5/ds-mdk/licensing/
http://www.keil.com/mdk5/ds-mdk/install

Getting Started with DS-MDK
 7

Run DS-MDK

The first time you run DS-MDK, a window would appear asking to specify a directory for

your workspace (the area where your projects will be stored). For most users, the default

suggested directory is the best option.

The Eclipse-based IDE opens in the CMSIS Pack Manager perspective and a warning message

is shown if the default CMSIS Pack directory is empty.

Click on the highlighted click here text to start populating the CMSIS Index: this operation

requires an Internet connection to download the index files.

DS-MDK shows a progress bar during the download.

At the end of the process, the CMSIS Pack Manager view should be populated with the

CMSIS Packs available.

8 DS-MDK introduction

NOTE

Currently, software packs for the NXP i.MX 6, i.MX 7 and VFxxx series are qualified for

DS-MDK.

The Console window shows information about the Internet connection and the installation

progress.

The device database (www.keil.com/dd2) lists all available devices and provides download

access to the related software packs. If the Pack Manager cannot access the Internet, you use

the Import existing packs icon or double-click on *.PACK files to manually install

software packs.

Documentation and support

DS-MDK provides online manuals and context-sensitive help. The Help menu opens the main

help system that includes the CMSIS C/C++ Development User’s Guide, the Arm DS-MDK

Documentation, the RSE User Guide, and other reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation and explain

dialog options and settings.

If you have suggestions or you have discovered an issue with the software, please report them

to us. Support and information channels are accessible at www.keil.com/support.

http://www.keil.com/dd2
http://www.keil.com/support

Getting Started with DS-MDK
 9

Working with example projects

Install the Linux image

For every supported development board, a pre-configured Linux image with DS-MDK

specific debug settings is available. This web page lists all supported development boards:

www.keil.com/mdk5/ds-mdk/install#boards

 Download the compressed Linux kernel for your development board and unzip it.

Copy the Linux image to an SD-Card (Windows)

 Download and install the open source tool Win32 Disk Imager from

http://win32diskimager.sourceforge.net/ to flash the Linux kernel image onto an SD-

Card.

Run the program. To write the image to the memory card, specify the location of the

image file, select the Device letter of the SD card and press the Write button:

Copy the Linux image to an SD-Card (Linux)

 To write the image on the memory card on Linux it’s sufficient to use the dd command

where /dev/sdx is the device for your memory card.

NOTE

Make sure you select the right /dev/sdx device to avoid corruption of your data on your

drives.

sudo dd if=image_file_name of=/dev/sdx bs=1M`

http://www.keil.com/mdk5/ds-mdk/install#boards
http://win32diskimager.sourceforge.net/

10 Working with example projects

Hardware connection

In order to fully debug the target device you need to use a JTAG debugger such as

DSTREAM or ULINKpro. The debugger needs to be connected to the host PC via USB

(DSTREAM/ULINKpro) or Ethernet (DSTREAM only) and the target board via JTAG

connector.

For the debug of Linux applications via gdbserver an Wireless connection from the host PC to

the board is required.

Another required connection during debug is the UART port used to interact with the Linux

console: some boards have an RS232 connector whereas others have an USB interface that the

operating system recognizes as virtual COM ports.

The picture below shows an example (96Boards Meerkat) connected with: JTAG connector,

USB UART connection and power.

If you are not sure how to connect your board, please follow the instructions on the

development board’s support page.

When connecting the UART/Console, please make sure the wires are positioned as Figure:

Getting Started with DS-MDK
 11

Verify installation with example projects

Once you have selected, downloaded, and installed a software pack for your device, you can

verify your installation using one of the examples provided in the software pack. For more

information about the example used in this section, please refer to Remote Processor

Messaging protocol example on page 50 in the Appendix.

Prepare terminal views

Many applications use a serial device to display messages. A Terminal window shows these

messages from serial ports.

The 96Boards Meerkat board for example contains a single USB serial port device. The

configuration of the serial port is slightly different between Windows and Linux platforms.

Windows

Connect the board to your computer. Windows installs the drivers automatically and adds a

new USB Serial Port to your system.

Check the exact numbers in the Windows Device Manager (to open it, type “device

manager” in the Windows search bar):

NOTE

If you are using Windows 10 and the USB Serial port is showing an error, you might

need to replace the Prolific driver with an older version (e.g. 3.2.0.0). Install the older

driver and then select “Update Driver…” in the device properties. Select “Browse my

computer for driver software”, then “Let me pick from a list of available drivers on my

computer”. Select driver version 3.2.0.0 from the list of all versions available.

12 Working with example projects

Linux

Connect the board to your computer. Linux should recognize the peripheral and you should be

able to find ttyUSB0 in your /dev/ directory.

Please make you set the right read/write permission to the device. For example, to give

read/write permissions to all users on your machine type the following command:

root@imv7dsabresd:~# sudo chmod 666 /dev/ttyUSB*

The tty device (e.g. /dev/ttyUSB0) is the serial port for the output of the Linux kernel.

Windows and Linux

 On DS-MDK, go to Window  Show View  Other… to open a Terminal view.

Select Terminal  Terminal and click OK.

Open the settings dialog from the toolbar of the Terminal 1 window:

 Set the following and click OK:

▪ View Title: Terminal Linux

▪ Connection Type: Serial

▪ Port: Use the first of the new serial ports (e.g. COM7 or /dev/ttyUSB0)

▪ Baud Rate: 115200

NOTE

For the correct terminal settings and hardware connections of your development board

refer to the board support pages.

 Power off and back on the development board to observe the boot process in the

Terminal window. Press any keyboard key to interrupt the boot process:

NOTE - IMPORTANT

You must halt the boot loader at this point to be able to connect the ULINKpro debug

adapter to the Cortex-M processor and run RPMsg successfully.

Getting Started with DS-MDK
 13

Cortex-M application

Copy the RPMSG TTY CMSIS-RTOS example project

Select the device

 In the CMSIS Pack Manager () perspective, select the board (iMX7-Meerkat-

96Boards) from the Boards tab on the left and click on Examples tab on the right-hand

side of the window. Use filters in the toolbar to narrow the list of examples.

Click Install next to the RPMSG TTY CMSIS-RTOS example if the packs are not installed

(this might take a few minutes based on your internet connection).

At the end of the installation the CMSIS Packs for the selected board should be installed

locally and the examples are ready to be copied in your workspace.

Click Copy next to the RPMSG TTY CMSIS-RTOS example (make sure the corresponding

pack is installed).

Confirm your selection by clicking on the Copy button.

CMSIS Pack Manager copies the example into your workspace and switches to the C/C++

perspective:

14 Working with example projects

Build the application

 Build the project from the context menu in the Project Explorer:

The Console window shows information about the build process:

Configure CMSIS DS-5 debugger

 Right-click the RPMSG_TTY_RTX_M4 project and select Debug As  CMSIS DS-5

Debugger to launch the debug configurations dialog:

Getting Started with DS-MDK
 15

Verify the Connection Settings and ensure that ULINKpro is correctly detected. If in

doubt, use Browse… to list available debug adapters.

 Click on Target Configuration… to setup the Debug and Trace Services Layer (DTSL).

▪ On the Cortex-A7 tab, disable all trace options to avoid buffer overflows.

▪ On the Cortex-M4 tab, check Enable Cortex-M4 core trace.

 In the OS Awareness tab select the real-time operating system used in your application

from the drop-down menu.

Click Debug.

16 Working with example projects

NOTE

The error message “Failed to launch debug server” most likely indicates that an

incorrect ULINKpro connection address is selected.

Getting Started with DS-MDK
 17

Run Cortex-M application

DS-MDK switches to the DS-5 Debug perspective. The application loads and runs until main.

 To start the Cortex-M4 application click Run in the Debug Control view.

Observe the output of the application in the Terminal M4 window.

NOTE

You can add another Terminal view to the debug perspective by using Window  Show

View  Terminal.

18 Working with example projects

Cortex-A Linux application

Boot Linux

NOTE

If you are debugging a microcontroller application simultaneously, you need to run the

Cortex-M application, otherwise the prompt in the Terminal Linux is not accessible.

 In the Terminal Linux enter “boot” to start the Linux system if it hasn’t started yet:

When the boot process has finished, log in as root (no password required).

Configure Linux network

The Linux image ships with a network configuration unlike to match your wireless network

configuration. To proceed with the configuration of the network, you will need to provide the

credentials.

This is accomplished from the Linux terminal with the “wpa_passphrase” tool as follows:

wpa_passphrase YOURNET yourpassphrase >> /etc/wpa_supplicant.conf

which will append an entry similar to the following to your /etc/wpa_supplicant.conf file:

network={

 ssid="YOURNET"

 #psk="yourpassphrase"

 psk=0d0992b62e7ce466b47aef8ea26fcd77421f6498f225419b40364c1b4441d08d

}

Remember to replace YOURNET and yourpassphrase with the information specific to

your network.

If your wireless network has an active DHCP, the wireless network will automatically get an

IP address. You can check the IP address by using ifconfig

ifconfig wlan0

wlan0 Link encap:Ethernet HWaddr 00:25:CA:07:71:93

 inet addr:172.27.249.126 Bcast:172.27.249.255 Mask:255.255.254.0

 inet6 addr: fe80::225:caff:fe07:7193/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:13648 errors:0 dropped:13585 overruns:0 frame:0

 TX packets:17 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2459797 (2.3 MiB) TX bytes:3234 (3.1 KiB)

In this case the IP address is 172.27.249.126. If you don’t have a DHCP server you would

need to configure the IP address manually always using ifconfig: for example, in order to set

172.27.249.254 you would need to use:

ifconfig wlan0 172.27.249.254

Copy and build the Linux Application TTY

 Switch back to the CMSIS Pack Manager perspective and copy the

Linux Application TTY example project to your workspace.

Build the project from the context menu in the Project Explorer in the same way we

have done for the Cortex-M RPMSG TTY CMSIS-RTOS example.

Getting Started with DS-MDK
 19

The Console should show an error-free build:

Setup RSE connection

 Go to Window  Open Perspective  Other..., then select Remote System Explorer.

Use the button to create a new connection. Select SSH Only and click Next.

RSE communicates with the target using TCP/IP. Enter the target's IP address into the

Host Name field. Enter a meaningful name in the Connection name box:

Cick Finish to show your connection in the Remote Systems window.

Configure DS-5 debugger

 Right-click on the project Linux Application TTY and select Debug As  Debug

Configurations… In the Debug Configurations window, select DS-5 Debugger and then

press the icon to create a new debug configuration. Name it GDB Debug and select in

the Connection tab Linux Application Debug  Application Debug  Connections

via gdbserver  Download and debug application. The RSE connection from the

previous step shows up:

20 Working with example projects

 On the Files tab, in Target Configuration, select the workspace build target for

Application on host to download. Select an existing directory on the target file system,

e.g. /home/root/tmp as the Target download directory.

Select an existing directory on the target file system, e.g. /home/root/tmp as the

Target working directory (use the same directory as for Target download directory).

On the Debugger tab, under Run Control select Debug from symbol “main”. Click

Debug.

If asked for login, please insert the credential for the Linux target. If you are using one of

the images downloaded from www.keil.com please use root as username and leave the

password field empty. Make sure you do not run the application by pressing Continue

 after the symbol “main” has been reached before you completed the steps below.

Run the Linux application

 If the Cortex-M4 application was already running before booting Linux, the following

sentence is printed among the boot messages. Otherwise run the Cortex-M4 application

now by following the steps in the “Run Cortex-M application” chapter.

virtio_rpmsg_bus virtio0: creating channel rpmsg-openamp-demo-channel addr 0x0

To print again the driver messages the following command can be used in the Terminal Linux:

dmesg

The Terminal M4 window shows the output of the microcontroller application:

http://www.keil.com/

Getting Started with DS-MDK
 21

 In the Terminal Linux, load the kernel module that communicates with the Cortex-M4

application with this command:

modprobe -v imx_rpmsg_tty

The kernel module will be loaded:

imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x0!

Install rpmsg tty driver!

Check the TTY device is created:

ls /dev/ttyRPMSG

And the Terminal M4 shows the output of the microcontroller application:

 Use the Continue button to run the Linux application. The App Console shows the

application’s messages:

Similarly, the Terminal M4 shows the output of the microcontroller application:

NOTE

You can add another Terminal view to the Debug perspective by using Window  Show

View  Terminal.

You have verified that your development environment can connect to both the Cortex-M and

the Cortex-A processor. The following chapters will explain how to create projects for both

from scratch and how to debug these applications.

22 Creating projects from scratch

Creating projects from scratch

Create Cortex-M applications
This chapter guides you through the steps required to create and modify projects for the

Cortex-M target in a heterogeneous system.

Blinky with CMSIS-RTOS RTX

Follow these steps to create a project called Blinky using the real-time operating system

CMSIS-RTOS RTX:

▪ Setup the Project: create a project and select the microcontroller device along with the

relevant CMSIS components.

▪ Select Software Components: choose the required software components for the

application.

▪ Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.

▪ Create the Source Code Files: add and create the application files.

▪ Build the Application Image: compile and link the application.

For the Blinky project, you will create and modify the main.c source file which contains the

main() function that initializes the RTOS kernel, the peripherals, and starts thread execution.

In addition, you will configure the system clock and the CMSIS-RTOS RTX.

Getting Started with DS-MDK
 23

Setup the project

 From the Eclipse menu bar, choose

File  New  C Project:

 Select CMSIS RTE C/C++

Project, enter a project name (for example Blinky) and click Next.

 Select your target device from the list: in this example we would continue using

MCIMX7D7:Cortex-M4. Make sure the selection on FPU is none so that we can avoid

initializing it for our example.

24 Creating projects from scratch

 Select the NXP  i.MX 7 Series  i.MX Dual  MCIMX7D7 

MCIMX7D:Cortex-M4 device and click Finish.

The C/C++ Perspective opens and shows the project:

Select software components

 For the Blinky project based on CMSIS-RTOS RTX, you need to select the following

components:

▪ Board Support:iMX7D-Meerkat-96Boards:HW INIT

▪ CMSIS:CORE

▪ CMSIS:RTOS (API):Keil RTX

▪ Device:i.MX7D HAL:CCM

▪ Device:i.MX7D HAL:RDC

▪ Device:Startup

Use the Resolve button in case of warnings to add other required components

automatically.

Finally, save your selection:

Getting Started with DS-MDK
 25

NOTE

Saving the RTE configuration triggers a project update and the selected software components

become instantly visible in the Project Explorer.

Configure CMSIS-RTOS RTX kernel

 In the project, expand the group RTE:CMSIS, right-click on the file RTX_Conf_CM.c,

and select Open With  CMSIS Configuration Wizard. Change the following

settings:

▪ Default Thread stack size [bytes] 512

▪ Main Thread stack size [bytes] 512

▪ RTOS Kernel Timer input clock frequency [Hz] 240000000

26 Creating projects from scratch

 Save the file using or CTRL+S.

NOTE

If you have opened a file with the CMSIS Configuration Wizard once, your choice is stored

and the file will be opened in this view automatically next time.

Create the source code files

Pre-configured user code templates contain routines that resemble the functionality of a

software component.

 Right-click on the project and select New  Files from CMSIS Template.

Expand the software component CMSIS and select the template CMSIS-RTOS 'main'

function. Click Finish. Replace the content of main.c with the following application

specific code:

/*--

Getting Started with DS-MDK
 27

 * CMSIS-RTOS 'main' function template

 --/

#define osObjectsPublic // define objects in main module

#include "osObjects.h" // RTOS object definitions

#ifdef _RTE_

 #include "RTE_Components.h" // Component selection

#endif

#ifdef RTE_CMSIS_RTOS // when RTE component CMSIS RTOS is used

 #include "cmsis_os.h" // CMSIS RTOS header file

#endif

#include "system_iMX7D_M4.h"

//#include "retarget_io_user.h"

#include "board.h"

#include <stdio.h>

osThreadId tid_threadA; /* Thread id of thread A */

/*--

 * Thread A

 --/

void threadA (void const *argument) {

 volatile int a = 0;

 for (;;) {

 osDelay(750);

 printf("Blinky threadA: Hello World!\n");

 }

}

osThreadDef(threadA, osPriorityNormal, 1, 0);

/*

 * main: initialize and start the system

 */

int main (void) {

 /* Board specific RDC settings */

 BOARD_RdcInit();

 /* Board specific clock settings */

 BOARD_ClockInit();

 SystemCoreClockUpdate();

 //InitRetargetIOUSART();

 tid_threadA = osThreadCreate(osThread(threadA), NULL);

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelInitialize (); // initialize CMSIS-RTOS

#endif

 /* Initialize device HAL here */

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelStart (); // start thread execution

#endif

 /* Infinite loop */

 while (1)

 {

 /* Add application code here */

 osDelay(1000);

 printf("Blinky main loop: Hello World!\n");

 // initialize peripherals here

 // create 'thread' functions that start executing,

 // example: tid_name = osThreadCreate (osThread(name), NULL);

 osKernelStart (); // start thread execution

 }

}

Save the file using or CTRL+S

28 Creating projects from scratch

Adapt the scatter file

On the i.MX 7 devices, several types of memory are available. For deterministic, real-time

behavior, the Cortex-M4 should use the local Tightly Coupled Memory (TCM), which

provides low-latency access. Multiple on-chip RAM areas (OCRAM) are available, which are

larger, but not as fast.

The following table shows the memories and their load addresses for the different processors:

Region Size Cortex-A7 Cortex-M4 (Code Bus)

OCRAM 128 KB 0x00900000-0x0091FFFF 0x00900000-0x0091FFFF

TCMU 32 KB 0x00800000-0x00807FFF

TCML 32 KB 0x007F8000-0x007FFFFF 0x1FFF8000-0x1FFFFFFF

OCRAM_S 32 KB 0x00180000-0x00187FFF 0x00000000-0x00007FFF/

0x00180000-0x00187FFF

By default, the scatter file template uses the start address 0x0 for the load region command.

 To put the Cortex-M4 code into the TCM of the i.MX 7, open the file

MCIMX7D_Cortex-M4.sct and change the address of the load region to 0x1FFF8000:

; ***

; ** Scatter-Loading Description File generated by RTE CMSIS Plug-in **

; ***

LR_IROM1 0x1FFF8000 0x00008000 { ; load region size_region

 ER_IROM1 0x1FFF8000 0x00008000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 }

 RW_IRAM1 0x20000000 0x00008000 {

 .ANY (+RW +ZI)

 }

}

 Save the file using or CTRL+S.

Configure build options

 Right-click on the project name and select Properties.

Select C/C++ Build > Settings. In the tab Tool Settings select All Tools Settings > Target.

In Target FPU, select No FPU.

Getting Started with DS-MDK
 29

Select Arm Linker 5 > Image Layout. In Image entry point (--entry), enter

Reset_Handler

Build the Cortex-M image

 Right-click on the project name and select Build Project to build the application.

This step compiles and links all related source files. The Console shows information about the

build process. An error-free build displays program size information:

30 Creating projects from scratch

Debug Cortex-M application on page 34 guides you through the required steps to connect

your evaluation board to the workstation and to debug the application on the target hardware.

Getting Started with DS-MDK
 31

Create Linux applications
This chapter guides you through the steps required to create and modify projects for an Arm

Cortex-A class device running Linux:

▪ Setup the project: create a project.

▪ Build the application image: compile and link the application.

Setup the project

 From the Eclipse menu bar, choose File  New  C Project. Select the Hello World

ANSI C Project:

 Enter a project name (for example Hello_World) and make sure that the GCC [...]

(built-in) toolchain is selected before clicking Finish.

The C/C++ Perspective opens and shows the current project:

32 Creating projects from scratch

Build the application image

 Right-click on the project name and select Build Project.

This step compiles and links all related source files. The Console shows information about the build

process:

The chapter Debug Linux application on page 37 guides you through the required steps to connect

your evaluation board to the workstation and to download the application to the target hardware.

Getting Started with DS-MDK 33

Debug applications
The DS-5 Debugger can verify all software applications that execute on a heterogeneous computer

system. It enables complete system visibility using multiple simultaneous debug connections:

▪ The Cortex-M application is debugged using a ULINKpro debug unit (refer to

www.keil.com/ulink for more information). Users can analyze the microcontroller application

with RTOS aware-debugging and peripheral views.

▪ The Linux kernel and bare metal applications running on the Cortex-A are also debugged using

a ULINKpro debug unit. The debugger lists kernel threads and processes.

▪ A Linux application is debugged via gdbserver across a TCP/IP network link. The debugger

supports multi-threaded application debugging and shows pending breakpoints on loadable

modules and shared libraries.

http://www.keil.com/ulink
https://en.wikipedia.org/wiki/Gdbserver

34 Debug applications

Debug Cortex-M application
This section explains how to debug the microcontroller application running on the Cortex-M

microcontroller. Once configured the debug configuration as shown in section Configure CMSIS DS-5

debugger at page 14, you can start the debugging session by clicking “Run” in the Debug Control

view.

If specified in the configuration window, the debugger will run till the beginning of the function

main().

DS-MDK should automatically switch to the Debug Perspective, specifically designed to be used

during the debug session on your device.

Let’s look at some of the Views available in DS-MDK.

Variables

The Variables view shows the contents of local, file static, and global variables in your program. By

default, the Variables view displays all the local variables. It also displays the file static and global

variable folder nodes.

If you know the name of the specific variable you want to view, enter the variable name in the Add

Variable field. This lists the variables that match the text you entered. Double-click the variable to add

it to the Variables view.

Registers

The Registers view displays the contents of processor and peripheral registers available on your

target and allows modifying them.

Getting Started with DS-MDK 35

The search button at the top of the View allows searching for register by name to speed up debugging

in targets with hundreds or thousands of different registers.

Disassembly

The Disassembly view gives you a glimpse over the assembly code running on the device. When the

target is stopped, DS-MDK automatically highlights the next instruction to be executed (content of the

Program Counter).

The view shows the address, the OpCode and the decoded version of each instruction and can be used,

as an example, to debug issues related to invalid addresses.

Memory view

In order to display and to modify the contents of memory it’s possible to use the Memory view. You

can specify the start address of the memory range, either as an absolute address or as an expression,

for example $pc+256. The size of the memory range to display, in bytes, is the offset value from the

start address.

The memory view allows specifying both the address and the size as a formula. A few examples:

- &(“main.c”::tid_threadA) refers to the address of variable tid_threadA in file main.c

- $PC refers to the value contained by the register PC

- sizeof(float) refers to the size of the type “float”

Please refer to the online manual for further options.

Breakpoints

Breakpoints can be set either directly on the source code editor or in the Breakpoints view. In the

source code editor, right-click on the left side on the line you would like the execution to stop and

click on Toggle Breakpoint.

36 Debug applications

The breakpoint will appear in the list in the Breakpoints view where it can edited, disabled or

removed.

It is possible to access to the properties of the breakpoint by right-click on the breakpoint and then

select Properties. The Properties window, showed below, allows using some of the advanced

functionalities of the DS-MDK debugger such as Thread specific breakpoint, advanced Stop

conditions and the ability to run scripts when the program stops.

Getting Started with DS-MDK 37

Please refer to the online help for a detailed explanation of all the functionalities accessible from the

Properties window.

Debug Linux application
This section explains how to debug a Linux application running on the Cortex-A7.

The DS-5 Debugger uses gdbserver for debugging Linux on the target hardware. Before connecting,

you must:

▪ Set up the target with Linux installed and booted. Refer to Install the Linux image on page 9.

▪ Obtain the target IP address or name for the connection between the debugger and the debug

hardware adapter. If the target is in your local subnet, click Browse and select your target.

Next, set up a Remote Systems Explorer (RSE) connection to the target to download the application

onto the target’s file system. Refer to Setup RSE connection on page 19for more information.

Configure the debugger as described in Configure DS-5 debugger at page 19 and launch the

application.

DS-MDK uses the same debug perspective as for bare metal when debugging Linux application so

you do not need to learn a new environment or set of Views in order to start debugging.

Debug the Linux Kernel
The DS-5 Debugger configuration dialog makes it easy to configure a debugging session to a specific

target. The Linux kernel debug configuration type is primarily designed for post-MMU debug to

provide full kernel awareness but – with some extra controls – can also be used for pre-MMU debug.

This makes it possible to debug the Linux kernel, all the way from its entry point, through the pre-

MMU stages, and then seamlessly through the MMU enable stage to post-MMU debug with full

38 Debug applications

kernel awareness. You can do this all with source-level symbols, and without the need for tedious

disconnecting, reconfiguring and reconnecting!

The Linux kernel, already built with debug info and a complete vmlinux symbol file, file system, and

full source code, is available from the respective board support pages (see www.keil.com/mdk5/ds-

mdk/install#boards).

Unpack the Linux kernel sources (kernel-source.tar.gz) into your currently active DS-MDK Eclipse

workspace. Be aware that on a Windows system you will not be able to fully unpack the sources.

Some symbolic links and case-sensitive source files will not be created. Usually, this is not critical for

Linux kernel debug.

http://www.keil.com/mdk5/ds-mdk/install#boards
http://www.keil.com/mdk5/ds-mdk/install#boards

Getting Started with DS-MDK 39

Create a Linux Kernel debug project

 Create a new CMSIS C/C++ Project named Linux Kernel Debug and select NXP i.MX7Dual

device MCIMX7D7:Cortex-A7.

Add the vmlinux file to the project folder using Windows Explorer. This file must match the

kernel in the SD card on the board.

NOTE

The debug symbols in the vmlinux file have virtual addresses, so the usage of vmlinux file by the

debugger assumes that the OS is up and running with the MMU enabled. It still can be used to debug

pre MMU at source-level if there is no offset between physical and virtual addresses at the entry

point.

 Add a debugger script to the project (right-click the project and select New  Other…  DS-5

Debugger  DS 5 Debugger Script) called stop.ds containing:

stop

set os enabled off

When OS awareness is enabled and kernel symbols are loaded from the vmlinux file, DS-5 Debugger

will try to read some kernel structures. If the MMU is not yet on, the debugger may try to access

invalid addresses, leading to data aborts, which is undesirable. This OS awareness support feature can

be temporarily disabled during the pre-MMU debug stage with the CLI command set os enabled

off, and later (post-MMU) re-enabled with the CLI command set os enabled on.

 Restart the board and make sure you stop the boot of the Linux kernel by pressing a button when

U-Boot is initializing in the Terminal view.

40 Debug applications

 Right-click on the project, select Debug As…, then select CMSIS DS-5 Debugger… to open the

Debug Configurations dialog.

In the Connection tab, select CPU Instance = SMP.

In the Advanced tab, tick Run target initialization debugger script, and select the stop.ds script

in the workspace:

 Click Debug. The Commands view will show:

 In the Command (CLI) entry box, set a temporary hardware breakpoint (thbreak) on the entry

point into the kernel, by typing in:

thbreak 0x80008000

Press the Submit button or the Enter key. 0x80008000 is the entry point for the kernel. This is the

address to which U-Boot will pass control to boot Linux once it has completed its setup tasks.

 Run the target by pressing the Continue button () in the Debug Control view, or press F8.

 In the Terminal view, tell U-Boot to boot the kernel, by typing in:

boot

Code execution will stop at the breakpoint, and the Disassembly view will show the assembly code at

the entry point (labeled stext). If you have unpacked your kernel source code into the workspace, the

Editor view will show the content of head.S.

Getting Started with DS-MDK 41

If not, no source code is shown, because the path to the source code has not yet been configured. DS-5

Debugger will try to open .../arch/arm/kernel/head.S in its Editor view. If it does not find the

kernel sources using the source paths within the vmlinux file, you can resolve this by setting a

substitute source path, to re-direct paths from where the kernel was built, for example, from:

/home/munlin01/fsl-community-bsp-platform/build-core-image-base/tmp/work-

shared/imx7dsabresd/kernel-source

to a local copy of the kernel sources at:

C:\path\to\linux-imx\4.1.15-r0\git

Make sure that the "Image Path" and "Host Path" both end with a corresponding directory.

head.S will now open in the Editor view, and the Disassembly view will show the symbol stext, at

the entry point for the kernel. If it doesn't, choose the Path Substitution… command from the Debug

Control view's drop-down menu () and check that the final directory in the Image Path and Host

Path correspond. Then right-click on an instruction in the Disassembly view, and select "Show in

Source".

42 Debug applications

Debug the Kernel: Pre-MMU stage

You can now set breakpoints and watchpoints, view registers, view memory, single-step, and other

usual debug operations at this pre-MMU stage, all with source level symbols.

 At the kernel entry point, you can check the Core

and CP15 system registers in the Registers view

to check that they are set as recommended

by kernel.org. Observe that:

a. the CPU is in SVC (supervisor) mode; check

Core  CPSR  M  SVC

b. R0 is 0

c. R2 contains a pointer to the device tree. Right-

click R2 and select Show Memory Pointed To By

R2. Change the size of the memory displayed to

200 bytes for example by entering 200 in the text

entry box in the top right of the Memory view.

d. the MMU is off; check CP15  SecureBanked

 S_SCTLR  M

e. the Data cache is off; check CP15 

SecureBanked  S_SCTLR  C

f. the Instruction cache is either on or off; check

CP15  SecureBanked  S_SCTLR  I

 To see when the MMU will be turned on, set a

breakpoint:

thbreak __turn_mmu_on

then continue running (or press F8). When __turn_mmu_on is reached, note the value of SP. This

contains the virtual address of __mmap_switched and is the place the code will jump to after the

MMU is enabled.

 In general, it is not possible to single-step through __turn_mmu_on, so place a hardware

breakpoint on the virtual address of __mmap_switched:

thbreak *$SP

then continue running (press F8). When the breakpoint at __mmap_switched is hit, the MMU is

on.

 Check that the MMU is now on, by looking in the Registers view at CP15  SecureBanked 

S_SCTLR  M (should show Enable).

Debug the Kernel: post-MMU stage

The main C code entry into the kernel, after all the architecture-specific setup has been done, is

start_kernel() in \source\init\main.c.

 Set a breakpoint on it:

thbreak start_kernel

and then run to it.

 You can now safely enable OS support in DS-5 Debugger:

set os enabled on

Getting Started with DS-MDK 43

 Check that the following appears in the Command view, to confirm Linux kernel support is

enabled:

Enabled Linux kernel support for version "Linux 4.1.15-1.1.0+ga4d2a08 #2 SMP

PREEMPT Tue Jul 5 09:51:28 CEST 2016 arm"

 The same Linux version information can be reported manually using:

info os-version

which will show for example:

Operating system on: Linux 4.1.15-1.1.0+ga4d2a08 #2 SMP PREEMPT Tue Jul 5

09:51:28 CEST 2016 arm

This is similar to:

output init_nsproxy.uts_ns->name

which will show for example:

{sysname = "Linux", nodename = "(none)", release = "4.1.15-1.1.0+ga4d2a08",

version = "#2 SMP PREEMPT Tue Jul 5 09:51:28 CEST 2016", machine = "armv7l",

domainname = "(none)"}

This may take a few moments to display, because DS-5 Debugger has to process the debug

symbols.

When OS awareness is enabled and kernel symbols are loaded from the vmlinux file, DS-5 Debugger

will try to access some locations in the kernel. For example, it will try to read

init_nsproxy.uts_ns->name to get the kernel name and version. It will also set breakpoints

automatically on SyS_init_module() and SyS_delete_module() to trap when kernel modules are

inserted (insmod) and removed (rmmod). You will see these breakpoints appearing in the Breakpoints

view:

 Set a breakpoint with:

thbreak kernel_init

then run to it.

So far, CPU 0 has been doing all the work. Note that CPU 1 is still powered down:

A very useful feature during kernel bring-up is to display early printk output in DS-5 Debugger's

command window.

 Before the console has been enabled there will be no output from the serial port. You can view

the entire log so far with:

info os-log

44 Debug applications

 To view the log output line by line, as it happens, use:

set os log-capture on

 kernel_init() tries to start the init process. To see this, set a breakpoint at the end of

kernel_init() then run to it (set the breakpoint in the main.c file available in the Editor view).

The init process now appears as an active thread. CPU 1 is now powered up.

Many of the above steps can be automated, either with a script file, or by filling-in the Debug

Configuration's fields before launching (refer

to the Appendix).

 Delete all user breakpoints and continue

(F8). Let the kernel run all the way to the

Login prompt. Login as root.

Interrupt (/F9). Stop the target by pressing

In the Debug Control view, expand "Active

Threads" and "All Threads". In "All Threads", you will see a large number of threads/processes

have been created. Only two were actually running, one on each of the two cores. You can see

these in "Active Threads".

Right-click on the connection and select Display Cores to see the state of both CPUs. You can

view the state of the cores, threads and processes on the command-line with:

info cores

info threads

info processes

 It is possible to single-step a core or a thread/process. To do so, select either the core or the

thread/process in the Debug Control view, then press Step (/F5). Note that when single-

stepping though a process, it might get migrated to another core. If a breakpoint is set on a

process, the debugger is able to track the migration of process-specific breakpoints to the other

core.

 You can check the virtual-to-physical address map for Linux by using the MMU view. Continue

to run the target (F8). Go to Window  Show View  MMU. Switch to the Memory Map tab

and press the Show Memory Map button to refresh the values.

 Let's take a look at the kernel's thread_info structure. Stop the target, then check the kernel's

stack size with:

show os kernel-stack-size

For this Armv7 kernel, the kernel stack size is 8K.

In the Expressions view, add a new expression into the field (type in the field at the bottom on

the view):

Getting Started with DS-MDK 45

(struct thread_info*)($sp_svc & ~0x1FFF)

0x1FFF is 8K minus 1. Expand the tree structure to explore its contents. The list of threads in the

Debug Control view is created from the same information, so they should match. For example,

the thread name is held in task.comm.

 To get a simple view into the workings of the scheduler, set a breakpoint on __schedule() with:

hbreak __schedule

NOTE

This time use hbreak to have a persistent hardware breakpoint instead of a temporary one.

Then continue running (press F8). At the breakpoint, continue running (press F8) again and

again, and see the names of the active threads changing in "Active Threads", and different

threads are scheduled-in.

 Alternatively, instead of setting a breakpoint on __schedule(), try to set a breakpoint on

do_fork(). If nothing forks, force a fork by typing e.g. 'ls'.

In summary, we have looked at how DS-MDK can be used to debug the Linux SMP kernel, both in

pre-MMU enabled and post-MMU enabled stages, and looked at a few of the kernel's internal

features.

Debug a Linux Kernel module
Only a few things are required to make kernel module debugging work. This sections explains how to

do this for the imx_rpmsg_tty module that is used in the example projects that are explained in detail

on page Error! Bookmark not defined..

Create a Linux Kernel module debug project

 Create a new CMSIS C/C++ Project named Linux Kernel Module Debug

As with the Linux kernel debug, add the vmlinux file to the project folder using Windows

Explorer.

 Add a debugger script to the project (right-click the project and select New  Other…  DS-5

Debugger  DS 5 Debugger Script) called stop.ds containing:

stop

 Add another debugger script to the project (right-click the project and select New  Other… 

DS-5 Debugger  DS 5 Debugger Script) called load_ko.ds containing:

add-symbol-file imx_rpmsg_tty.ko

NOTE

Make sure that the file imx_rpmsg_tty.ko is stored in the workspace so that DS-MDK can find it.

Otherwise, specify the fully qualified path to it. You can download the file and the source code

file from the board support page of your development board.

The stop command in the first script will halt the processor before loading the kernel symbols and

the add-symbol-file command will load the kernel module object file.

 Right-click the project and select Debug As  CMSIS DS-5 Debugger...

On the Connections tab, set the CPU Instance to either 0 or SMP. Go to the Advanced tab and specify

the path to the vmlinux file and enable Load symbols only. Also, set the initialization debugger

scripts as shown here:

46 Debug applications

Apply the settings and press Close (do not press Debug yet!).

Debug the Kernel module

The following steps are required to come to a point where you can debug the kernel module:

 Restart your target and halt in U-Boot.

Debug and run the Cortex-M4 application RPMSG TTY RTX.

Boot Linux.

At the Linux prompt, issue the following command to install the driver for the kernel module:
modprobe imx_rpmsg_tty

Debug and run the Kernel_Debug project.

Now, you can open the imx_rpmsg_tty.c and set breakpoints.

Finally, debug the Linux Application TTY as well (make sure that the RSE connection is still

live). When you run the application, the debugger will stop at the breakpoint you have set in the

previous step.

Getting Started with DS-MDK 47

Arm Streamline
Arm Streamline performance analyzer gives you the ability to collect performance metrics, software

tracing and statistical profiling from your Linux system and show that in its innovative user interface.

Streamline helps you to identify code hotspots, system bottlenecks and other unintended effects of your

code or the system architecture.

DS-MDK includes Arm Streamline in the MDK Professional edition: you can launch Streamline from

the Arm DS-MDK Start menu.

Once launched, Streamline allows connecting via TCP/IP to a running Linux target. A target agent

(gator) is required to run on the Arm Linux target for Arm Streamline to operate. If you downloaded

the Linux image from http://www2.keil.com/mdk5/ds-mdk/install#boards, then gator is already

installed so you do not need to rebuild the image.

To start collecting data, you can type the target hostname or IP address in the field box on the top-left

side of the window and press the Start Capture button.

The interface would then show the acquired data in graphs which can be used to understand which

parts of the code require optimizations or affect the performance of the system considerably.

For extra information on the capabilities of the product, please refer to the user guide available online

at https://developer.arm.com/docs/100769/latest/.

http://www2.keil.com/mdk5/ds-mdk/install#boards
https://developer.arm.com/docs/100769/latest/

48 Store Cortex-M image

Store Cortex-M image
To store the Cortex-M image for execution at start up use the following steps:

1. Create a binary image (BIN) with the fromelf utility application.

2. Store this BIN image on SD card in the boot partition

3. Setup the U-Boot environment to start-up the BIN image file.

Create a Cortex-M binary image (BIN)

 Right-click the project and select Properties  C/C++ Build  Settings. In the the Build

Steps enter under Post-build steps the Command:

fromelf --bin --output "Blinky.bin" "Blinky.axf"

NOTE

This example built in section Blinky with CMSIS-RTOS RTX at page 22 is not adequate to run

standalone as it makes use of semihosting to print messages thus requires a debug adapter

connected. A possible alternative is to use the Blinky example included in the CMSIS Pack

Click OK and rebuild the project to get the BIN file generated.

Getting Started with DS-MDK 49

Store Cortex-M BIN file on SD Card

The SD Card has two partitions:

▪ The Linux file system partition.

▪ The FAT32 boot partition.

 List the partitions with the fdisk command:

~# fdisk –l

…

Device Boot Start End Sectors Size Id Type

/dev/mmcblk0p1 8192 24575 16384 8M c W95 FAT32 (LBA)

/dev/mmcblk0p2 24576 1236991 1212416 592M 83 Linux

 Store the Cortex-M binary image in the FAT32 boot partition to be able to execute it at system

startup:

1. Create a sub-directory on the Linux file system, for example:

~# mkdir /media/sd0

2. Mount the Linux file system partition for access with RSE.

~# mount –t vfat /dev/mmcblk0p1 /media/sd0

3. Use RSE to copy the BIN file from your workspace to the /media/sd0 directory.

4. Unmount the partition to ensure that the file is written correctly:

~# umount /media/sd0

5. Reboot the system and halt in U-Boot.

Cortex-M BIN file from U-Boot

At this point, the Cortex-M BIN file is stored in the boot partition.

 Use the setenv command to change the boot image to the new BIN file:

=> setenv m4image Blinky.bin; save

The printenv command shows the boot setup:

=> printenv

…

setenv loadm4image=fatload mmc ${mmcdev}:${mmcpart} 0x007F8000 ${m4image}

setenv m4boot=run loadm4image; bootaux 0x007F8000

setenv m4image=Blinky.bin

Run m4boot to start the Blinky application:

=> run m4boot

NOTE

For more information refer to the U-Boot Command Line Interface in the U-Boot user's manual

(www.denx.de/wiki/DULG/UBoot).

http://www.denx.de/wiki/DULG/UBoot

50 Appendix

Appendix

Remote Processor Messaging protocol example

The device family packs for NXP’s i.MX devices contain two example projects that show how the

two processors communicate with each other using the remote processor messaging protocol

(RPMSG) via a TTY serial device.

The Linux Application TTY runs on the Cortex-A processor and writes a message to a TTY device.

The terminal of the RPMSG TTY RTX application running on the Cortex-M processor shows this

message. The application itself responds on the TTY device. The Linux application reads this

message and shows it in its App Console.

Eclipse IDE

DS-MDK is an Integrated Development Environment (IDE) that combines the Eclipse IDE with the

compilation and debug technology of Arm.

Use DS-MDK as a project manager to create, build, debug, monitor, and manage projects for Arm

targets. It uses a single folder called a workspace to store files and folders related to specific projects.

Users can extend its abilities by installing plug-ins written for the Eclipse platform, such as the

CMSIS Pack Manager and Remote System Explorer, included in DS-MDK.

Perspectives

DS-MDK have multiple perspectives: each perspective contains an initial set and layout of views that

help you to create, build and debug projects. While working with DS-MDK, you will switch

perspectives frequently. It is always possible to change a perspective layout and to add new views to

it.

DS-MDK uses mainly these perspectives:

▪ C/C++ Perspective

▪ CMSIS Pack Manager Perspective

▪ Remote System Explorer Perspective

▪ DS-5 Debug Perspective

Getting Started with DS-MDK 51

C/C++ perspective

By default, this perspective consists of the Project Explorer, an editor area and views for tasks,

properties, and a message console.

The editor area shows C/C++ source code as well as graphical representations of various

configuration files such as the Run-Time Environment configuration file, the AXF file, the scatter file,

and files with CMSIS configuration wizard annotations.

Project Explorer Manage Run-Time EnvironmentDependency Check Console

For more information, refer to the C/C++ Development User’s Guide and the CMSIS C/C++

Development User’s Guide available from the Eclipse help system (Help  Help Contents).

ELF file viewer

An ELF file is the executable image generated by the Arm linker that contains object code and debug

information. Open it from the Project Explorer to inspect the contents of the image.

52 Appendix

CMSIS Configuration Wizard

Right-click on a file in the Project Explorer and select Open With  CMSIS Configuration Wizard

to modify files with CMSIS configuration wizard annotations in a graphical editor. Verify and adapt

the contents directly in the graphical representation of the text file.

Scatter File Viewer

Scatter files (*.sct) are used to specify the memory map of an image to the linker. The Scatter File

Viewer lets you inspect this text file in a graphical representation. Use the filename.sct tab to edit the

scatter file contents (refer to Save the file using or CTRL+S

Adapt the scatter file on page 27).

If you want to learn more about the scatter loading mechanism, look for the documentation at

https://developer.arm.com.

CMSIS Pack Manager perspective

The Pack Manager perspective offers the following functionality:

▪ Install or update software packs.

▪ List devices and boards supported by software packs.

▪ List example projects from software packs.

https://developer.arm.com/

Getting Started with DS-MDK 53

Use the icon and select CMSIS Pack Manager, to open this perspective.

Device Database Available Packs/Examples Pack Properties

For more information, refer to the CMSIS C/C++ Development User’s Guide available from the

Eclipse help system (Help  Help Contents).

Remote System Explorer perspective

The Remote System Explorer (RSE) is a workbench perspective that allows you to connect and

work with a variety of remote systems. With predefined plug-ins, you can look at remote file systems,

transfer files between hosts, do remote search, execute commands and work with processes.

File/System Properties Source Code EditorRemote Systems Remote System Details

For more information, refer to the RSE User Guide in the Eclipse help system (Help  Help

Contents).

54 Appendix

DS-5 Debug perspective

The DS-5 Debugger allows you to debug bare-metal, RTOS, and Linux applications with

comprehensive and intuitive views, including synchronized source and disassembly, call stack,

memory, registers, expressions, variables, threads, breakpoints, and trace.

VariablesTarget ConnectionDebug Control DisassemblySource Code Editor

For more information, refer to the Arm DS-5 Debugger Documentation in the Arm DS-MDK

Documentation available from the Eclipse help system (Help  Help Contents).

Additional links
Kernel.org: http://www.kernel.org/doc/Documentation/arm/Booting

Debugging with scripts: https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts

Debug configurations: https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-

and-views/debug-configurations-debugger-tab

http://www.kernel.org/doc/Documentation/arm/Booting
https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab

