ArmekeEeliL

Getting started with DS-MDK

Create applications for heterogeneous
Arm® Cortex®-A/Cortex-M devices

novtech
11 Wonw moviech.com

& ©/C+ - Blinky/Blinky.rteconfig - Eclipse Platform - o x

File Edit Source Refactor Navigate Search Project Run Window Help

[IR - R ST E T [R B AL s I AT N FR S SR e (v eces | 9

[Project Explorer £2 = B | ¢ Blinky.rteconfig 53 RTX_Conf CM.c =8 om ™ =08
H% T ¢ Components (] il o)

v (5 Blinky An outline is not
» & Includes Software Components Sel. Variant Vendor Version Description available.
> (= Debug B MCIMXTD:Cortex-h4 NXP ARM Cortex-M4, 64 kB RAM, 32 kB ROM
~ & RTE 3 € Board Support MCIMX7D-SABRE Keil 100 , IMXTD SABRE Board

v (& Board Support v & omsis Cortex Microcontroller Software Interface Component:
+ [R board.c (el MCIVICTI @ CORE ARM , CMSIS-CORE for Cortex-h, 5C000, and 5C300
> [g dlock freq.c [Keil MCIl @ DsP ARM CMSIS-DSP Library for Cortex-M, SC000, and 5C300
> [gh pin_muc [Keil MCIM v & RTOS (APl) . CMSIS-RTOS APl for Cortex-M, SC000, and SC300
Y @ retarget_io.c [Keil MCI @ Keil RTX ARM CMSIS-RTOS RTX. for Cortex-M, SC000, and SC300
v @ CMSIS 5 4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver
» [c) RTX_Conf CM.c[ARM > € Compiler ARM Compiler Software Extensions
RTX_CM3.ib [4RM=CP | | > 4 Deviee Startup, System Setup
> (& Compiler > & File System MDK-Plus , Keil 670 , File Access on various storage devices
> (= Device € Graphics MDK-Plus , Seqger 5322 , User Interface on graphical LCD displays
> [RTE_Components.h > 4 Network MDK-Plus Keil 710 IPv4 Networking using Ethernet or Serial protocols
> € maine > € OpenAMP
> (8 osObjects.h 5 & use MDK-Plus Keil 67.0 usB C with various device classes
& Blinky.rteconfig < >
@ MOMKID CorterMdsct Validstion Output Description
v (5 Hello_World
~ (3 src
v g Hello World.c

B stdioh

B stdiib.h <

© main(void) : int Components | Device| Packs

5 (5 RPMSG PingPong BM # ‘ |

& Console 5 b
CMSIS RTE console [RPMSG PingPong BM] _—
10:@6:33 **** Updating project RPMSG PingPong BM ~
Loading RTE configuration =1
Updating resources N«.
Updating build settings X
Project updated successfully - s g

This version of the guide has been written specifically for the Arrow Meerkat i.MX7 board

Preface

Information in this document is subject to change without notice and does not represent a
commitment on the part of the manufacturer. The software described in this document is
furnished under license agreement or nondisclosure agreement and may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy the software
on any medium except as specifically allowed in the license or nondisclosure agreement. The
purchaser may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems, for any
purpose other than for the purchaser’s personal use, without written permission.

Copyright © 1997-2018 Arm Germany GmbH
All rights reserved.

Arm, Keil, pVision, Cortex, and ULINK are trademarks or registered trademarks of Arm
Germany GmbH and Arm Ltd.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Eclipse is a registered trademark of the Eclipse Foundation, Inc.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the instruction set of
the Arm® Cortex®-A and Cortex-M processors.

Every effort was made to ensure accuracy in this manual and to give appropriate credit to
persons, companies, and trademarks referenced herein.

Getting Started with DS-MDK

Preface

Thank you for using the DS-MDK Development Studio available from Arm. To provide you
with the very best software tools for developing Arm based embedded applications we design
our tools to make software engineering easy and productive. Arm also offers therefore
complementary products such as the ULINK™ debug and trace adapters and a range of
evaluation boards. DS-MDK is expandable with various third party tools, starter kits, and
debug adapters.

Chapter overview

The book starts with the installation of DS-MDK and describes the software components
along with complete workflow from starting a project up to debugging on hardware. It
contains the following chapters:

DS-MDK introduction provides an overview about the DS-MDK, the software packs, and
describes the product installation.

Working with example projects explains how to get started with supported development
boards using pre-built projects to verify hardware and software functionality.

Creating projects from scratch guides you through the process of creating and modifying
projects using CMSIS and device-related software components for the Cortex-M
microcontroller. It also shows you how to develop applications for the Cortex-A processor
running Linux.

Debug applications describes the process of how to connect to the target hardware and
explains debugging applications on the target.

Store Cortex-M image gives further details on how to store the application image on the
target and how to run it at start up time.

The Appendix contains further information, for example about the basic concepts of the
Eclipse IDE and the most frequently used perspectives.

Preface

Contents

Table of Contents

PrETACE . e 3
DS-MDK INtrOAUCTIONovieiieieiiiesieeie e e 5
Solution for heterogeneous SYSLEMScccveveveeeerie i e 5
DRV] S T=Y ST 1o o SRS 6
Software and hardware reQUITEMENTSccooviiiiieriier e 6
Documentation and SUPPOIT.........cceveiereereieeie e eeesie e ee e 8
Working with example Projects........cccoiieieiie i 9
Install the LiNUX IMAJEcooiiiiiriieieise e 9
Hardware CONNECLIONcoirieieieiiisere e 10
Verify installation with example projects.........cccceveviveieevievie e 11
Cortex-M apPlICALION.coiiiiieeee e 13
Cortex-A Linux appliCation...........ccoeiiiririieieseseeees e 18
Creating projects from scratChccccveviiiiiicie e 22
Create CorteX-M apPlICALIONS..........coiieieieieise e 22
Blinky with CMSIS-RTOS RTX.....ocoiiiiiiiiienieieieeee e 22
Create LinUX apPPliCAtIONSccveiiiiiie sttt st sre et sbeers et s e resre s e e sreanes 31
SEUP the PrOJECT ... 31
Build the application iIMageccovvviiriiiieeeee e 32
Debug appliCatioNnsS...........covieiiiciece e 33
Debug CorteX-M apPlCALIONocveiiiiieiiisee s 34
Debug LinuX apPliCALIONccueiiiiiiecic et st st re e nre s 37
Debug the LiNUX KEIMELcviiece e sttt re et sre s 37
Create a Linux Kernel debug project.........c.coovvvieiiiciiiiinine e 39
Debug the Kernel: Pre-MMU Stage.........ccoovvenerieieieiieinese e 42
Debug the Kernel: post-MMU Stage.........ccccoveveieeveieiiic e 42
Debug a Linux Kernel MOAUIEcooiiiiec et st sre s 45
Create a Linux Kernel module debug project..........cccccovevviinineiencienas 45
Debug the Kernel module...........ccooviveiiiie i 46
AT SEEAMIINE. ...ttt bt e e s r e be st et sae e e e e enes 47
Store COrteX-IM IMAGE.......ccerviiiiirieiieiee s 48
Create a Cortex-M binary image (BIN)ccccccoveveiiiiiiciiiece e 48
Store Cortex-M BIN file 0n SD Card.........ccoovvvvenenieiniesinese e 49
APPENIX .. 50
PEISPECTIVES ...ttt st re e 50
7o [0 LT] = LN T] &SR 54
NOTE

This user’s guide describes how t0 create applications with the Eclipse-based
DS-MDK IDE and Debugger for Arm Cortex-A/Cortex-M based devices.

Refer to the Getting Started with MDK user’s guide for information how to create projects for
Arm Cortex-M microcontrollers with the pVision® IDE/Debugger.

Getting Started with DS-MDK

DS-MDK introduction

DS-MDK combines the Eclipse-based DS-5 IDE and Debugger with CMSIS-Pack technology
and uses software packs to extend device support for devices based on 32-bit Arm Cortex-A
processors or heterogeneous systems based on 32-bit Arm Cortex-A and Arm Cortex-M
processors.

Currently NXP i.MX 6, i.MX7 and VFxxx series devices are supported. These devices
combine computing power for application-rich systems with real-time responsiveness: the DS-
5 Debugger gives visibility to multi-processor execution and allows optimization of the
overall software architecture.

Solution for heterogeneous systems

ARM Cortex-A ARM Cortex-M

Common Peripherals

Shared Memory

Linux Application < — > RTOS System
Inter-Processor Communication

Heterogeneous systems usually consist of a powerful Arm Cortex-A class application
processor and a deterministic Arm Cortex-M based microcontroller. These systems combine
the best of both worlds: the Cortex-A class processor can run a feature-rich operating system
such as Linux and enables the user to program complex applications with sophisticated
human-machine interfaces (HMI). The Cortex-M class controller offers low I/O latency,
superior power efficiency and a fast system start-up time for embedded systems.

Usually, both processors have access to a set of communication peripherals and shared
memory. The biggest challenge with heterogeneous systems is the synchronization and inter-
processor communication.

DS-MDK offers a complete software development solution for such systems:

¢ Manage Cortex-A Linux and Cortex-M RTOS projects in the same development
environment.

e Use the Cortex Microcontroller Software Interface Standard (CMSIS) development
flow for efficient Cortex-M programming. Add software packs any time to DS-MDK
to make new device support and middleware updates independent from the toolchain.
The IDE manages the provided software components that are available for the
application as building blocks.

o Debug multicore software development projects with the full visibility offered by the
DS-5 Debugger.

DS-MDK introduction

DS-MDK licensing

DS-MDK is part of the Keil® MDK and the product requires a valid license in order to use
it.

For information on how to obtain and set-up the license, please refer to the following page:
http://www.keil.com/mdk5/ds-mdk/licensing/

Software and hardware requirements

DS-MDK has the following minimum hardware and software requirements:

= A workstation running Microsoft Windows, Red Hat Enterprise Linux or Ubuntu Desktop
Edition (only 64-bit OS/platforms are supported)

= Dual-Core Processor with > 2 GHz
= 4 GB RAM and 8 GB hard-disk space
1280 x 800 or higher screen resolution.

Install DS-MDK

Download the DS-MDK installer for your host platform (Windows or Linux) from
www.keil.com/mdk5/ds-mdk/install .

The installation procedures for Windows and Linux are different and are both described
below.

Windows installation

Decompress the zip archive and run the installer setup.exe. Follow the instructions on the screen
and make sure you install the device drivers for the debug probes.

To start DS-MDK, use Eclipse for DS-MDK from the Start menu (Windows 10: All apps 2>
Arm DS-MDK -> Eclipse for DS-MDK).

Linux installation

Extract the installer from the downloaded archive file, run (not source) install.sh and follow the
on-screen instructions. The installer unpacks DS-MDK into your chosen directory, and
optionally installs device drivers and desktop shortcuts.

Note: The installer includes device drivers that require you to run with root privileges.

To start DS-MDK, from your desktop, select Eclipse for DS-MDK. Alternatively, launch [DS-
MDK install directory]/bin/eclipse from the command line.

http://www2.keil.com/mdk5
http://www.keil.com/mdk5/ds-mdk/licensing/
http://www.keil.com/mdk5/ds-mdk/install

Getting Started with DS-MDK

Run DS-MDK

The first time you run DS-MDK, a window would appear asking to specify a directory for
your workspace (the area where your projects will be stored). For most users, the default
suggested directory is the best option.

& Workspace Launcher X

Select a workspace

Eclipse Platform stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

VU G NI Users\ USER\ Documents'DS-MDK Workspace| ~ Browse...

[[] Use this as the default and do not ask again

The Eclipse-based IDE opens in the CMSIS Pack Manager perspective and a warning message
is shown if the default CMSIS Pack directory is empty.

File Edit Navigate Search Project Run Window Help
o~ RO =T 5 H R R R A R

2 | Bl Boards HE|%|® =8

The CMSIS Pack root folder "C:/Users/stecad01/AppData/Roaming/ARM/CMSIS-Packs” is empty.
Please click here to download the index (requires Internet connection).

Click on the highlighted click here text to start populating the CMSIS Index: this operation
requires an Internet connection to download the index files.

DS-MDK shows a iroiress bar durini the download.

‘@ Refresh all packs from all repositories.

Updating Keil. EFM32Gxoc_DFP.pdsc from
http://www.keil.com/pack/

Cancel Details > >

At the end of the process, the CMSIS Pack Manager view should be populated with the
CMSIS Packs available.

DS-MDK introduction

file Edit Navigate Search Project Run Window Help

- SElE TR B S S Wi, i

M Devices ¢ B Boards : % @ 770 gapacks

ype filter text S P

Device Summary Pack Action Description

~ % All Devices 3894 Devices * Device Specific
¢ ABOV 10 Devices v * Generic 18Packs Software Packs with generic content not specific to a devi.
¢ Ambiq Micro 6 Devices B ARM.CMSIS [Einstall | CMSIS (Cortex Microcontroller Software Interface Standar
¢ Analog Devices 21 Devices B ARM.CMSIS-Driver_Validaticizlnstallu CMSIS-Driver Validation
¢ ARM 40 Devices % ARM.CMSIS-FreeRTOS % Installs.. Bundle of FreeRTOS for Cortex-M and Cortex-A
? Atmel 271 Devices % ARM.CMSIS-RTOS Validationi install CMSIS-RTOS Validation
 Cypress 425 Devices * ARM.mbedClient K. unstall . ARM mbed Client for Cortex-M devices
“ GigaDevice 70 Devices % ARM.mbedTLS {@lnstall.| ARM mbed Cryptographic and SSL/TLS library for Cortex-.
¢ Holtek 22 Devices % ARM.minar { nstall . mbed O Scheduler for Cortex-M devices
¢ Infineon 166 Devices % HuaweiliteOs [dnstall_| Huawei LiteOS kemel Software Pack
¢ Maxim 4 Devices % Keil ARM_Compiler {@install | Keil ARM Compiler extensions for ARM Compiler 5 and A-
¢ Mediatek 2 Devices % KeilJansson Kulnstall., Jansson is 3 C library for encoding, decoding and manipul
¢ Microsemi 6 Devices % Keil MDK-Middleware [nstalls... Middieware for Keil MDK-Professional and MDK-Plus
¢ MindMotion 2 Devices 5 IwIPIwIP ¥ Install IwlP is a light-weight implementation of the TCP/IP proto.
¢ Nordic Semiconduct 10 Devices % MicriumRTOS [install, | Micrium software components
¢ Nuvoton 436 Devices % Oy & Inst Package (CycloneTCP, CycloneSSL and Cyclon.
¢ Nxp 576 Devices % RealTimeLogic.SharksSL-Litd@ Install..., SharkSSL-Lite is a super small and super fast pre-compile...
¢ Renesas 3 Devices % RealTimeLogicSMQ & lnstall,| Simple Message Queues (SMQ) is an easy to use loT publi
¢ silicon Labs 397 Devices % YOGITECH.fRSTL_ARMCMx_{8% Dispescats !!! DEPRECATED Product !l YOGITECH fRSTL Functional Sa
¢ SONiX 35 Devices % YOGITECH.RSTL_STM32Fx_EiS2 Dispiegali ! DEPRECATED Product 1!l YOGITECH fRSTL Functional Sa

¢ STMicroelectronics 953 Devices
¢ Texas Instruments 342 Devices
¢ Toshiba 90 Devices
¢ Zilog 7 Devices

NOTE
Currently, software packs for the NXP i.MX 6, i.MX 7 and VFxxx series are qualified for
DS-MDK.

The Console window shows information about the Internet connection and the installation
progress.

The device database (www.keil.com/dd?2) lists all available devices and provides download
access to the related software packs. If the Pack Manager cannot access the Internet, you use
the Import existing packs icon ¢ or double-click on *. PACK files to manually install
software packs.

Documentation and support

DS-MDK provides online manuals and context-sensitive help. The Help menu opens the main
help system that includes the CMSIS C/C++ Development User’s Guide, the Arm DS-MDK
Documentation, the RSE User Guide, and other reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation and explain
dialog options and settings.

If you have suggestions or you have discovered an issue with the software, please report them
to us. Support and information channels are accessible at www.keil.com/support.

http://www.keil.com/dd2
http://www.keil.com/support

Getting Started with DS-MDK

Working with example projects

Install the Linux image

For every supported development board, a pre-configured Linux image with DS-MDK
specific debug settings is available. This web page lists all supported development boards:
www.keil.com/mdk5/ds-mdk/install#boards

(> Download the compressed Linux kernel for your development board and unzip it.

Copy the Linux image to an SD-Card (Windows)

& Download and install the open source tool Win32 Disk Imager from
http://win32diskimager.sourceforge.net/ to flash the Linux kernel image onto an SD-
Card.

Run the program. To write the image to the memory card, specify the location of the
image file, select the Device letter of the SD card and press the Write button:

Image File Device
| .._console_image.img| [E\] -

Hash

None ~ | | Generate Copy

[] rRead only Allocated Partitions

Progress
L o

Cancel Read Write Verify Only Exit

9.98004MB/s 06:02/06:40

Copy the Linux image to an SD-Card (Linux)

(% To write the image on the memory card on Linux it’s sufficient to use the dd command
where /dev/sdx is the device for your memory card.

NOTE
Make sure you select the right /dev/sdx device to avoid corruption of your data on your
drives.

sudo dd if=image file name of=/dev/sdx bs=1M"

http://www.keil.com/mdk5/ds-mdk/install#boards
http://win32diskimager.sourceforge.net/

10 Working with example projects

Hardware connection

In order to fully debug the target device you need to use a JTAG debugger such as
DSTREAM or ULINKpro. The debugger needs to be connected to the host PC via USB
(DSTREAM/ULINKQpro) or Ethernet (DSTREAM only) and the target board via JTAG
connector.

For the debug of Linux applications via gdbserver an Wireless connection from the host PC to
the board is required.

Another required connection during debug is the UART port used to interact with the Linux
console: some boards have an RS232 connector whereas others have an USB interface that the
operating system recognizes as virtual COM ports.

The picture below shows an example (96Boards Meerkat) connected with: JTAG connector,
USB UART connection and power.
HDMI

POWER [
SWITCH

g JTAG
& 14}}ita
8-18V DC
POWER IN HIGH SPEED LOW SPEED

CONSOLE EXPANSION PORT EXPANSION PORT

If you are not sure how to connect your board, please follow the instructions on the
development board’s support page.

When connecting the UART/Console, please make sure the wires are positioned as Figure:

Getting Started with DS-MDK
11

Verify installation with example projects

Once you have selected, downloaded, and installed a software pack for your device, you can
verify your installation using one of the examples provided in the software pack. For more
information about the example used in this section, please refer to Remote Processor
Messaging protocol example on page 50 in the Appendix.

Prepare terminal views

Many applications use a serial device to display messages. A Terminal window shows these
messages from serial ports.

The 96Boards Meerkat board for example contains a single USB serial port device. The
configuration of the serial port is slightly different between Windows and Linux platforms.

Windows

Connect the board to your computer. Windows installs the drivers automatically and adds a
new USB Serial Port to your system.

Check the exact numbers in the Windows Device Manager (to open it, type “device
manager” in the Windows search bar):

:

File Action View Help
e&s | HE BE B RX®
> ‘ Monitors A
> @ Network adapters
v == Ports (COM & LPT)
=¥ Intel(R) Active Management Technology - SOL (COM3)
=% Prolific USB-to-Serial Comm Port (COMT7)

> = Print queues
5w Processors

NOTE

If you are using Windows 10 and the USB Serial port is showing an error, you might
need to replace the Prolific driver with an older version (e.g. 3.2.0.0). Install the older
driver and then select “Update Driver...” in the device properties. Select “Browse my
computer for driver software”, then “Let me pick from a list of available drivers on my
computer”. Select driver version 3.2.0.0 from the list of all versions available.

Select the device driver you want to install for this hardware.

Select the manufacturer and model of your hardware device and then click Next. If you
have a disk that contains the driver that you want to install, click Have Disk.

e 2

Show compatible hardware

Model
[="|Prolific USB-to-Serial Comm Port Version: 3.2.0.0 [31/07/2007]
w Prolific USB-to-Serial Comm Port Version: 3.8.12.0 [03/03/2017]

[E] This driver is digitally signed. Have Disk...

Tell me why driver signing is important

Next Cancel

12 Working with example projects

Linux

Connect the board to your computer. Linux should recognize the peripheral and you should be
able to find ttyUSBO in your /dev/ directory.

Please make you set the right read/write permission to the device. For example, to give
read/write permissions to all users on your machine type the following command:
root@imv7dsabresd:~# sudo chmod 666 /dev/ttyUSB*

:~$ 1s /dev/ -oa | grep USB
CrW-TW-rw- 1 root 188, © Apr 21 15:36 ttyUSBO
CrW-rW-rwW- 1 root 188, 1 Apr 21 15:32 ttyUuSB1

1~$ iudo chmed 666 [dev/ttyUSB*
~$

The tty device (e.g. /dev/ttyUSBO) is the serial port for the output of the Linux kernel.

Windows and Linux

(& On DS-MDK, go to Window = Show View - Other... to open a Terminal view.
Select Terminal - Terminal and click OK.

Open the settings dialog from the toolbar of the Terminal 1 window:

|2 Problems J=| Tasks B Console [Properties Terminall &2 M E if uu| - B - = 0

| settings |

(& Set the following and click OK:
» View Title: Terminal Linux
= Connection Type: Serial
= Port: Use the first of the new serial ports (e.g. COM7 or /dev/ttyUSBO0)
» Baud Rate: 115200

NOTE
For the correct terminal settings and hardware connections of your development board
refer to the board support pages.

(& Power off and back on the development board to observe the boot process in the
Terminal window. Press any keyboard key to interrupt the boot process:

|2 Problems J=| Tasks & Console [T Properties /& Terminal Linux &2 B EIT l_,E| - B~ = 8
Serial: (COM14, 115200, 8, 1, None, None - CONMECTED) - Encoding: (150-8859-1)

Warning: FEC® MAC addresses don't match: -
Address in SROM is 00:04:97:04:49:38

Address in environment is @@:04:97:84:01:d3

Normal Boot
Hit any key to stop autcboot: @
=

4 [m

NOTE - IMPORTANT
You must halt the boot loader at this point to be able to connect the ULINKpro debug
adapter to the Cortex-M processor and run RPMsg successfully.

Getting Started with DS-MDK
13

Cortex-M application

Copy the RPMSG TTY CMSIS-RTOS example project
Select the device

(& Inthe CMSIS Pack Manager (&) perspective, select the board (iMX7-Meerkat-
96Boards) from the Boards tab on the left and click on Examples tab on the right-hand
side of the window. Use filters in the toolbar to narrow the list of examples.

B Devices B Boards 2 El%|® ~ =0 gpacks I Examples O Only show examples from installed packs

meerkat Search Example

Board Summary Example Action Description

~ % All Boards 247 Boards CMSIS-RTOS Blinky M4 (iMX7-Meerkat-36Boards) & Copy CMSIS-RTOS RTX Blinky example for Cortex-M4

« Bl iMX7-Meerkat-96Boards MCIMX7D7 CMSIS-RTOS2 Blinky M4 (iMX7-Meerkat-96Boards) @ Copy CMSIS-RTOS2 RTXS Blinky example for Cortex-M4
“% Mounted Devices 1 Device Linux Application TTY (iMX7-Meerkat-96Boards) % Copy Linux Application TTY example
“ Compatible Devices 6 Devices RPMSG TTY CMSIS-RTOS (iMX7-Meerkat-96Boards) & Copy CMSIS-RTOS RTX TTY example for Cortex-M4
RPMSG TTY CMSIS-RTOS2 (IMX7-Meerkat-96Boards) [@ Copy CMSIS-RTOS2 RTX5 TTY example for Cortex-M4

Click Install next to the RPMSG TTY CMSIS-RTOS example if the packs are not installed
(this might take a few minutes based on your internet connection).

|@ Operation in progress...

Downloading KeliIMX7D_DFP.1.7.2.pack from
http://www.keil.com/pack/Keil.iIMX7D_DFP.1.7.2.pack

[CTiAlways run in background:

Run in Background Cancel Details >>

At the end of the installation the CMSIS Packs for the selected board should be installed
locally and the examples are ready to be copied in your workspace.

@8 Packs | % Examples i3 [Only show examples from installed packs | & o (3 n\u‘ @ Y= O

Search Example

Example Action Description
CMSIS-RTOS Blinky M4 (iMX7-Meerkat-96Boards) @ Copy CMSIS-RTOS RTX Blinky example for Cortex-M4
CMSIS-RTOS2 Blinky M4 (iMX7-Meerkat-96Boards) ® Copy CMSIS-RTOS2 RTX5 Blinky example for Cortex-M4
Linux Application TTY (iMX7-Meerkat-96Boards) @ Copy Linux Application TTY example
RPMSG TTY CMSIS-RTOS (IMX7-Meerkat-96Boards) & Copy CMSIS-RTOS RTX TTY example for Cortex-M4
RPMSG TTY CMSIS-RTOS2 (iMX7-Meerkat-96Boards) 03 Copy CMSIS-RTOS2 RTX5 TTY example for Cortex-M4

Click Copy next to the RPMSG TTY CMSIS-RTOS example (make sure the corresponding
pack is installed).

Confirm your selection bi clickini on the Coii button.

Example: RPMSG TTY CMSIS-RTOS

Pack: Keil.iMX7D_DFP.1.5.1

Project Name: RPMSG_TTY_CMSIS-RTOS_M4

Project Location: C:\Users\Documents\DS-MDK Workspace\RPMSG_TTY_CMSIS-RTOS_M4

CMSIS Pack Manager copies the example into your workspace and switches to the C/C++
perspective:

14

Working with example projects

[&5 Project Explorer 2
v (5 [iMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4

&) Includes

& Debug

& RTE

[hardware_init.c

ty_rbec

[€) [iIMX7-Meerkat-96Boards] MCIMX7D_Cortex-M4.sct

£ [iMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4.Jaunci
% [IMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4rtecor

Build the application

BEE =1

& [IMXT-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_Md.rteconfig &2

< Components (]

Software Components
B MCOMXTDT:Cortex-M4
& AMP
€ Board Support
@ cMsIs
@ CMSIS Driver
% Compiler
@ Device
@ File System
€ Graphics
@ Network
% RTOS

> ®USB

Sel.

Variant

IMXT7-Meerkat-

ARM Compiler

MDK-Plus
MDK-Plus
MDK-Plus
FreeRTOS

MDK-Plus

Vendor
NXP

96Boards , Keil

Keil

| Keil
_, Seager
| Keil
ARM
 Keil

Version

69.8
5366
750
9.00
6.11.0

¥ Build the project from the context menu in the Project Explorer:

[Project Explorer 22

5% =0

~ P [IMX7-Meerkat-96Boards] RPMSG_TTY (MSIS-RTOS M4

¥ Includes

= Debug

& RTE

[€ hardware_init.c
1€ tty_rbec

[El [IMX7-Meerkat-96Boards] MCIMX
2 [IMX7-Meerkat-96Boards] RPMSG
4 [IMX7-Meerkat-96Boards] RPMSG

The Console window shows information about the build process:

New
Go Into

Open in New Window

5 Copy

5 Paste

® Delete
Move..
Rename...

i Import...

g Export..

€ CMSIS C/C++ Project
Build Project
Clean Project

&1 Refresh

Close Project

4 [IMX7-Meerkat-96Boards] RPh

A P,

[2! Problems | Tasks & Console 2 [Properties & Terminal 1
CDT Build Console [[iIMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4]

_____ e

>

F5

Description
ARM Cortex-M4, 64 kB RAM, 32 kB ROM
Asymmetric Multiprocessing
, IMX7 Meerkat 96Boards
Cortex Microcontroller Software Interface Components
Unified Device Drivers compliant to CMSIS-Driver Specifica
_, Compiler Extensions for ARM Compiler 5 and ARM Compile
Startup, System Setup
File Access on various storage devices
User Interface on graphical LCD displays
IPv4 Networking using Ethernet or Serial protacols
FreeRTOS Real Time Kerne
USB Communication with various device classes

4
4
4
4
4

Total RO Size (Code + RO Data)
Total RW Size (RW Data + ZI Data)
Total ROM Size (Code + RO Data + RW Data)

24912 (24.33kB)
31896 (31.15kB)
25040 (24.45kB)

@8:51:86 Build Finished (took 26s5.523ms)

Configure CMSIS DS-5 debugger

(¥ Right-click the RPMSG_TTY_RTX_M4 project and select Debug As = CMSIS DS-5
Debugger to launch the debug configurations dialog:

Getting Started with DS-MDK

Create, and run confi i ﬁ
Launch a DS-5 debugging session using a CMSIS DS-5 Debugger project.
S EIEES MName: | [IMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4 |
‘ & C i & Advanced| & Flash| & OS Awareness|
[€] C/C++ Postmortem Debugger ~ Project Selecti
[C/C++ Remote Application i —
~ & CMSIS DS-5 Debugger & [IMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4
[IMX7-Meerkat-96Boards] RPMSG_TTY
#5 DS-5 Debugger
& IronPython Run
&' IronPython unittest
E5 Java Applet Connection Settings
[T Java Application
Ju JUnit Connection Type ULINKpro ~ | Platform Information: iMX7D_DFP_MCIMX7D7 (SWD)
 Jython run Connection Address | P1018205Keil ULINK; BE |
& Jython unittest onnection Address ei pro rowse...
b Launch Group
B3 pyDev Django
& e
& Python Run Target Configuration...
& Python unittest
&, Remote Java Application v
< >
Filter matched 20 of 20 items LG Apply
® | Debug | ‘ Close ‘

Verify the Connection Settings and ensure that ULINKpro is correctly detected. If in
doubt, use Browse... to list available debug adapters.

& Click on Target Configuration... to setup the Debug and Trace Services Layer (DTSL).

£ Debug and Trace Services Layer (DTSL) Cenfiguration for ULINKpro O X

Debug and Trace Services Layer (DTSL) Configuration for ULINKpro
Add, edit or choose a DT5L configuration

L] ® oy e Mame of configuration: default
Trace Capture | Cortex-AT | Cortex-M4 I:—I'R\l ITMW CTl Synchromzat\onw

Enable Cortex-M4 core trace

Enable Cortex-M4 trace
Enable ETM Timestamps

= Onthe Cortex-A7 tab, disable all trace options to avoid buffer overflows.
= On the Cortex-M4 tab, check Enable Cortex-M4 core trace.

(7 Inthe OS Awareness tab select the real-time operating system used in your application
from the drop-down menu.

Create, and run fi i ﬁ_
Launch a DS-5 debugging session using a CMSIS DS-5 Debugger project.
Cexax- Name: \ [iMX7-Meerkat-96Boards] RPMSG_TTY_CMSIS-RTOS_M4 |
[1ype fiter text ||| (@ Connection [Advanced [Fiash [#,05 Awareness
[E] C/C++ Postmortem Debugger ~
€/C++ Remote Application Select OS awareness:|Keil CMSIS-RTOS RTX ~
« 4 CMSIS DS-5 Debugger None
. o9 FreeRTOS
W [IMX7-Meerkat-96Boards] RPMSG_TTY
DS-5 Debugger Tools by A Nucleus
@' IronPython Run RTXC
& IronPython unittest The Keil® RTX Real|Threadx XTOS) is the ideal choice for small footprint,
4 Java Applet ::gesrminislii apfpli eFarce UC3 Compact ?nexZ—AQtur Ccfl:e?(—w: seges pic(;ss:rrs Thletl:TX
1 Java Application A ,e;f.f;:;j;::emhos , making it an efficient and cost-effective platform
Ju Wit ”ggg'::l
LC/0S-
& Jython run For more informatio oM RTX RTOS @R DS=5™ toolchain:
& Jython unittest https://developer.arm.com/products/software-development-tools/ds-5-development-studio/soluti
& Launch Group ons/real-time-systems
B PyDev Django
43 PyDev Google App Run
@ Python Run
& Python unittest
[, Remote Java Application v
< >
Filter matched 20 of 20 ftems =l GeElt
@ Debug || Close

Click Debug.

16

Working with example projects

NOTE
The error message “Failed to launch debug server” most likely indicates that an
incorrect ULINKpro connection address is selected.

Getting Started with DS-MDK
17

Run Cortex-M application
DS-MDK switches to the DS-5 Debug perspective. The application loads and runs until main.
(& To start the Cortex-M4 application click Run in the Debug Control view.

#% Debug Control 52 | [Project Explorer 4§ Remote Systems = O

R IER R MM O LEE-NN v
4 t\k RPMSG_TTY_RTX_M4 connected
ﬁ Cortex-M4 #1 stopped on breakpoint

Status: connected OS Support: Enabled

Observe the output of the application in the Terminal M4 window.
B App Console B Target Console & Terminal 1 4@ Terminal 1 & @] Error Log = B
HEEE 2
Serial: (COMS, 115200, &, 1, None, None - CONNECTED) - Encoding: (ISC-8859-1)

RPMSG TTY RTX Demo. ..
RPMSG Init as Remote

NOTE
You can add another Terminal view to the debug perspective by using Window = Show

View = Terminal.

18 Working with example projects

Cortex-A Linux application

Boot Linux

NOTE
If you are debugging a microcontroller application simultaneously, you need to run the
Cortex-M application, otherwise the prompt in the Terminal Linux is not accessible.

¥ In the Terminal Linux enter “boot” to start the Linux system if it hasn’t started yet:

B App Console [Target Console @ ErrorLog ™ Terminal Linux 52 HEIL ,_,:| - % = 08

Serial: (COM14, 115200, 8, 1, Mone, None - CONNECTED) - Encoding: (I150-8859-1)

Warning: FEC® MAC addresses don't match: -
Address in SROM is 80:04:9f:04:49:88

Address in environment is @8:84:9f:84:81:d3

Normal Boot
Hit any key to stop autcboot: @
=» boo

4 [m

When the boot process has finished, log in as root (no password required).

Configure Linux network

The Linux image ships with a network configuration unlike to match your wireless network
configuration. To proceed with the configuration of the network, you will need to provide the
credentials.

This is accomplished from the Linux terminal with the “wpa_passphrase” tool as follows:

wpa_passphrase YOURNET yourpassphrase >> /etc/wpa_supplicant.conf

which will append an entry similar to the following to your /etc/wpa_supplicant.conf file:

network={
ssid="YOURNET"
#psk="yourpassphrase"
psk=0d0992b62e7ced66bd7aef8ea26£fcd77421£6498£225419b40364c1b4441d08d

}

Remember to replace YOURNET and yourpassphrase with the information specific to
your network.

If your wireless network has an active DHCP, the wireless network will automatically get an
IP address. You can check the IP address by using ifconfig

ifconfig wlanO
wlanO Link encap:Ethernet HWaddr 00:25:CA:07:71:93
inet addr:172.27.249.126 Bcast:172.27.249.255 Mask:255.255.254.0
inet6 addr: fe80::225:caff:fe07:7193/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:13648 errors:0 dropped:13585 overruns:0 frame:0
TX packets:17 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2459797 (2.3 MiB) TX bytes:3234 (3.1 KiB)

In this case the IP address is 172.27.249.126. If you don’t have a DHCP server you would
need to configure the IP address manually always using ifconfig: for example, in order to set
172.27.249.254 you would need to use:

ifconfig wlan0O 172.27.249.254

Copy and build the Linux Application TTY

& Switch back to the CMSIS Pack Manager perspective and copy the
Linux Application TTY example project to your workspace.

Build the project from the context menu in the Project Explorer in the same way we
have done for the Cortex-M RPMSG TTY CMSIS-RTOS example.

Getting Started with DS-MDK
19

The Console should show an error-free build:
& Console £ @ﬁﬁ)‘ E &8 -%‘|="E'.=J'='E|
CDT Build Console [Linux Application TTY]
Cemmmmrg T Eme e o g ST
"Invoking: GCC C Compiler 4 [arm-linux-gnueabihf]’ ~
arm-linux-gnueabihf-gcc -08 -g -Wall -c -fmessage-length=8 -MMD -MP -MF"src/LinuxTTy.d" -M
"Finished building: ../src/LinuxTTY.c
*Building target: Linux Application TTY'
"Invoking: GCC C Linker 4 [arm-linux-gnueabihf]’

arm-linux-gnueabihf-gec -o "Linux Application TTY" ./src/LinuxTTY.o
*Finished building target: Linux Application TTY'

15:56:20@ Build Finished (took 1s.39@ms)

< >

Setup RSE connection

(& Go to Window = Open Perspective = Other..., then select Remote System Explorer.
Use the == button to create a new connection. Select SSH Only and click Next.

RSE communicates with the target using TCP/IP. Enter the target's IP address into the
Host Name field. Enter a meaningful name in the Connection hame box:

& New Connection | X

Remeote SSH Only System Cennection

Define connection information

8 Remote Systems 37 |Gz Team = O

Parent profile: w
£ | lels ~
Host name: . vl ry=] Local]
F - : *’fn Local Files
Connection name: iMXT 3 Local Shells
Description: [| =} 1.MX7_SABRE
; i . ¥, Sftp Files
#5 Ssh Shells

[Verify host name %8 Ssh Terminals

Configure proxy settings

7 < Back Mext > Cancel

Cick Finish to show your connection in the Remote Systems window.

Configure DS-5 debugger

(= Right-click on the project Linux Application TTY and select Debug As - Debug
Configurations... In the Debug Configurations window, select DS-5 Debugger and then

press the -/ icon to create a new debug configuration. Name it GbB Debug and select in
the Connection tab Linux Application Debug - Application Debug - Connections
via gdbserver - Download and debug application. The RSE connection from the
previous step shows up:

20

Working with example projects

MName: GDB Debug
0= Connection . [} Files| %% Debugger ‘& OS Awareness | (9= Arguments | I Environment

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Linux Application Debug / Application Debug / Connections via gdbserver / Download and debug application

Filter platforms

Connect to already running application -
Download and debug application
Start gdbserver and debug target-resident application

DS-5 Debugger will download your application to the target system and then start a new gdbserver session to debug the application. This
configuration requires ssh and gdbserver on the target platform.

Connections

RSE connection |1.MX7_SABRE -

Address: | Use RSE Host

gdbserver (TCP) | port; 5000
7] Use Extended Mode

On the Files tab, in Target Configuration, select the workspace build target for
Application on host to download. Select an existing directory on the target file system,
e.0. /home/root/tmp as the Target download directory.

Select an existing directory on the target file system, €.9. /home/root/tmp as the
Target working directory (use the same directory as for Target download directory).

MName: GDB Debug

4= Connection ||{ni} Files . &5 Debugger 2 05 Awareness | 69 Arguments & Environment

Target Configuration

Application on host to download:

Sworkspace_loc/Linux Application TTY/Debug/Linux Application TTY}

File System... | |Workspace... /| Load symbols

Target download directory:

Jhome/root/tmp

Target working directory:

Shomelroot/tmp

On the Debugger tab, under Run Control select Debug from symbol “main”. Click
Debug.

If asked for login, please insert the credential for the Linux target. If you are using one of
the images downloaded from www.keil.com please use root as username and leave the
password field empty. Make sure you do not run the application by pressing Continue
B after the symbol “main” has been reached before you completed the steps below.

Run the Linux application

&

If the Cortex-M4 application was already running before booting Linux, the following
sentence is printed among the boot messages. Otherwise run the Cortex-M4 application
now by following the steps in the “Run Cortex-M application” chapter.

virtio_rpmsg bus virtio0: creating channel rpmsg-openamp-demo-channel addr 0x0

To print again the driver messages the following command can be used in the Terminal Linux:

dmesg

The Terminal M4 window shows the output of the microcontroller application:

http://www.keil.com/

Getting Started with DS-MDK
21

B App Console M Target Console & Terminal 1 & Terminal 1 2 €] Error Log = g
P EIERE 2

Serial: (COMS5, 115200, 8, 1, None, None - CONNECTED) - Encoding: (ISO-8859-1)

RPMSG TTY RTX Demo. ..
RPMSG Init as Remote

(&7 Inthe Terminal Linux, load the kernel module that communicates with the Cortex-M4
application with this command:

modprobe -v imx rpmsg_ tty

The kernel module will be loaded:

imx rpmsg_ tty rpmsg0: new channel: 0x400 -> 0xO0!
Install rpmsg tty driver!

Check the TTY device is created:
1s /dev/ttyRPMSG

And the Terminal M4 shows the output of the microcontroller application:

=

14} Disassembly ‘5 Memory = Stack ¥¢ Trace | Events 5= Outline (™ Terminal M4 i3 8
MO @ &
Serial: (COML15, 115200, 8, 1, None, None - CONNECTED) - Encoding: (I50-8859-1)

RPMSG TTY RTX Demo...
RPMSG Init as Remote
Name service handshake is done, M4 has setup a rpmsg channel [@ ---> 1824]

(7 Use the Continue B button to run the Linux application. The App Console shows the
application’s messages:

E App Console 2 @ e g Bl ¥ 7 O
‘G, Linked: GDB Debug +
Preparing the debug session

cd "/home/root/tmp"

export LD_LIBRARY_PATH=".:/home/root/tmp:$LD_LIBRARY_PATH"

gdbserver :5888 "/home/roct/tmp/Linux Application TTY"
Process /home/root/tmp/Linux Application TTY created; pid = 385
Listening on port 5eee

Debug session has been started, connecting to gdbserver

Remote debugging from host 18.41.5.21

Get Message From Remote Side: Hello from M4!

Child exited with status @

Similarly, the Terminal M4 shows the output of the microcontroller application:

19} Disassembly ‘F Memory = Stack ¢ Trace - Events o= Outline ® Terminal M4 &2 = 0

M EEHE & E-
Serial: (COM15, 115200, 8, 1, None, None - CONMNECTED) - Encoding: (I50-8858-1)

RPM5G TTY RTX Demo...

RPMSG Init as Remote

Name service handshake is done, M4 has setup a rpmsg channel [@ ---> 1824]
Get Message From Master Side: “Hello from A7!™ [len : 14]

NOTE
You can add another Terminal view to the Debug perspective by using Window -2 Show

View = Terminal.

You have verified that your development environment can connect to both the Cortex-M and
the Cortex-A processor. The following chapters will explain how to create projects for both
from scratch and how to debug these applications.

22 Creating projects from scratch

Creating projects from scratch

Create Cortex-M applications

This chapter guides you through the steps required to create and modify projects for the
Cortex-M target in a heterogeneous system.

Blinky with CMSIS-RTOS RTX

Follow these steps to create a project called Blinky using the real-time operating system
CMSIS-RTOS RTX:

= Setup the Project: create a project and select the microcontroller device along with the
relevant CMSIS components.

= Select Software Components: choose the required software components for the
application.

= Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.
= Create the Source Code Files: add and create the application files.
= Build the Application Image: compile and link the application.

For the Blinky project, you will create and modify the main.c source file which contains the
main() function that initializes the RTOS kernel, the peripherals, and starts thread execution.
In addition, you will configure the system clock and the CMSIS-RTOS RTX.

Getting Started with DS-MDK

23

Setup the project

(&> From the Eclipse menu bar, choose
File > New = C Project:

& C Project

[m]

C Project

Create C project of selected type

r—

Project name: | Blinkﬂ

Use default location

Location: | ChUsers\USER\Documents\DS-MDK\Blinky Browse...

Choose file systern: | default

Project type: Toolchains:

v = Executable
@& Empty Project
@ Hello World ANSI C Project
@ CMSIS C/C++ Project

» [Shared Library

» [= Static Library

> [= Makefile project

ARM Compiler 5
ARM Compiler &
GCC 4.8.3 [arm-linux-gnueabihf]

Show project types and toclchains only if they are supported on the platform

& Select CMSIS RTE C/C++

@

< Back Mext > Finish Cancel

Project, enter a project name (for example Blinky) and click Next.

CMSIS C/C++ Project

<%

[S—

Selected project type: Executable
Output: exe
Toolchain Adapter
Toolchain: ARM Compiler 5

Adapter:

Adapter for ARM C/C++ 5x and b.x toolchains

Family: ARMCC

{passed model via Tcompiler filter attribute)
Toolchain adapter for ARMCC 5.x and 6.x compilers

@ Next > Finish Cancel

(> Select your target device from the list: in this example we would continue using

MCIMX7D7:Cortex-M4. Make sure the selection on FPU is none so that we can avoid
initializing it for our example.

Select Device

Device: MCIMX7D7:Cortex-M4

CPU: ARM Cortex-M4
Vendor. NXP Max. Clock:
Pack: Keil.iMX7D_DFP.1.7.2-dev0 Memory: 64
URL: bttp://www.keil.com/dd2/nxp/ U: none A
Search: ‘ ‘ Endian: Little-endian E

~ % iMX 7 Series
~ i iMX 7Dual
> % MCIMX7D2
> % MCIMX7D3
> % MCIMX7D5
~ % MCIMX7D7
B MCIMX7D7:Cortex-A7
H MCIMX7D7:Cortex-M4
> i IMX TSolo
> % LMX TULP
> 4 LPC54000 Series
> 4 Voo

~ | | The i.MX 7Dual family of processors features

an advanced implementation of the ARM
Cortex-A7 core, which operates at speeds of
up to 1 GHz, as well as the ARM Cortex-M4
core.

=[rl s Multicore Pr
Architecture, up to Dual Cortex-A7 and
Cortex-M4 configuration

- External Memory Support:
DDR3/DDR3L/LPDDR2/LPDDR3

- Flash Memory Support: NAND (60-bit
ECC), Managed NAND (eMMC, eSD)

- Eletrophoretic Display (EPD) Controller

~

< Back

Next >

Cancel

24 Creating projects from scratch

(& Select the NXP = i.MX 7 Series = i.MX Dual & MCIMX7D7 =
MCIMX7D:Cortex-M4 device and click Finish.
The C/C++ Perspective opens and shows the project:

4 Blinky_M4.rieconfig & =8
<% Components [@
Software Components Sel. Variant Vendor Version Description

B MOIMX7D7:Cortex-M4 NXP ARM Cortex-M4, 64 kB RAM, 32 kB ROM
€ AMP Asymmetric Multiprocessing
v % Board Support IMX7-Meerkat-96Boards Keil 1.0.0 _ IMX7 Meerkat 96Boards
“ HW INIT Board specific settings for hardware initialization
@ LED (API) 100, LED Interface
@ CMSIS Cortex Microcontroller Software Interface Components
% CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specific
& Compiler ARM Compiler Keil 120 Compiler Extensions for ARM Compiler 5 and ARM Comp
€ Device Startup, System Setup
@ File System MDK-Plus _ Keil 6.9.8 _, File Access on various storage devices
@ Graphics MDK-Plus , Seaqger 5366 , User Interface on graphical LCD displays
€ Network MDK-Plus Keil 750 . |Pv4 Networking using Ethernet or Serial pratocols
@ RTOS FreeRTOS ARM 9.00 , FreeRTOS Real Time Kerne
@ UsB MDK-Plus _ Keil 6.11.0 , USE Communication with various device classes
< >
Validation Output Description

Components | Device | Packs

Select software components

(> For the Blinky project based on CMSIS-RTOS RTX, you need to select the following
components:

= Board Support:iMX7D-Meerkat-96Boards:HW INIT
= CMSIS:CORE

= CMSIS:RTOS (API):Keil RTX

= Device:i.MX7D HAL:CCM

= Device:i.MX7D HAL:RDC

= Device:Startup

Use the Resolve button in case of warnings to add other required components
automatically.

4 *Blinky.rteconfig

¢ Components{ (- Resolve

Software Componeni Select components to resolve unambiguous dependencies h Description

B MCIMX7D7:Cortex-M4 NXP ARM Cortex-
@ AMP Asymmetric
« % Board Support IMX7-Meerkat-96Boards, Keil 1.0.0 L IMXT Meerke
“ HW INIT Board specif
@ LED (API) 1.00 , LED Interface
« & CMSIS Cortex Micro
¥ CORE ARM 502 . CMSIS-CORE
¥ DSP O ARM 1.5.2 4 CEMSIS-DSP L
~ % RTOS (API) 1.0.0 . CMSIS-RTOS
¥ FreeRTOS O ARM 9.0.0 , CMSIS-RTOS
¥ Keil RTX ARM 4811 , CMSIS-RTOS
¥ Keil RTX5 O ARM 521 , CMSIS-RTOS

Finally, save your selection:

Getting Started with DS-MDK

25
4 Blinky.rteconfig 2 =
4 Components (| @
Software Components Sel. Variant Vendor Version Description =
B MCIMX7D7:Cortex-M4 NXP ARM Cortex-M4, 64 kB RAM, 32 kB ROM
& AMP Asymmetric Multiprocessing
~ % Board Support IMX7-Meerkat-{, Keil 1.00 IMX7 Meerkat 96Boards
Y HW INIT Board specific settings for hardware initialization
¢ LED (API) 1.00 4 LED Interface
v & CMsIs Cortex Microcontroller Software Interface Components
“ CORE ARM 5.02 2 CMSIS-CORE for Cortex-M, SC000, SC300, ARMvE-M
“ DSP O ARM 1.5.2 , CMSIS-DSP Library for Cortex-M, SC000, and SC300
~ % RIOS (API) 1.00 2 CMSIS-RTOS API for Cortex-M, SC000, and SC300
“ FreeRTOS O ARM 9.0.0 , CMSIS-RTOS implementation for Cortex-M based on FreeRT
“ Keil RTX ARM 4811 , CMSIS-RTOS RTX implementation for Cortex-M, SC000, and
“ Keil RTX5 O ARM 5.2.1 , CMSIS-RTOS RTX5 implementation for Cortex-M, SC000, anc
¥ RTOS2 (API) 2.1.1 2 CMSIS-RTOS API for Cortex-M, SC000, and SC300
& CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifica
& Compiler ARM Compiler Keil 1.21 . Compiler Extensions for ARM Compiler 5 and ARM Compile
~ % Device Startup, System Setup
~ % iMX7D HAL
“ ADC O Keil 1.00 , Analog to Digital Converter
“ oM Keil 100 , Clock Control Module
“ GPIO O Keil 1.00 , General Purpose Input/Output
“ MU O Keil 100 , Messaging Unit
“ RDC Keil 1.00 , Resource Domain Controller
¥ UART O Keil 1.0.0 , Universal Asynchronous Receiver/Transmitter
¥ Startup Keil 100, NXPIMX7D CM4 devices
@ file System MDK-Plus , Keil 69.8 File Access on various storage devices
& Graphics MDK-Plus . Segger 5366 , User Interface on graphical LCD displays
@ Network MDK-Plus Keil 750 ,IPv4 Networking using Ethernet or Serial protocals
 RIOS FreeRTOS ARM 900 ,FreeRTOS Real Time Kerne
% usB MDK-Plus _ Keil 6.11.0 , USB Communication with various device classes v
Validation Qutnut Descrintion

Components | Device | Packs

NOTE
Saving the RTE configuration triggers a project update and the selected software components
become instantly visible in the Project Explorer.

Configure CMSIS-RTOS RTX kernel

¥ In the project, expand the group RTE:CMSIS, right-click on the file RTX_Conf_CM.c,
and select Open With = CMSIS Configuration Wizard. Change the following

settings:
= Default Thread stack size [bytes] 512
= Main Thread stack size [bytes] 512

= RTOS Kernel Timer input clock frequency [Hz] 240000000

26 Creating projects from scratch

i= *RTX_Conf_CM.c i3 = 8
i= CMSIS Configuration Wizard ER=NG)
Option Value
w Thread Configuration
Murnber of concurrent running user threads 6
Default Thread stack size [bytes] 512 y
Main Thread stack size [bytes] 512 y
Mumber of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-providec 0 y
Stack overflow checking
Stack usage watermark O
Processor mode for thread execution Privileged mode |

w RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer

RTOS Kernel Timer input clock frequency [Hz] 240000[)0[1
RTX Timer tick interval value [us] 1000
w System Configuration
Round-Robin Thread switching
User Tirers
ISR FIFO Queue size 16 entries

RTOS Kernel Timer input clock frequency [Hz]

Defines the input frequency of the RTOS Kernel Timer.
When the Cortex-M SysTick timer is used, the input clock
is on most systems identical with the core clock.

Source Editor | CM5IS Configuration Wizard

(> Save the file using L5l or CTRL+S.

NOTE

If you have opened a file with the CMSIS Configuration Wizard once, your choice is stored
and the file will be opened in this view automatically next time.

Create the source code files

Pre-configured user code templates contain routines that resemble the functionality of a
software component.

(& Right-click on the project and select New = Files from CMSIS Template.

& Mew Files from CMSIS Template O >
CMSIS User Code Template
This wizard creates new files from CMSIS user code template.
k =
Project: | Blinky Browse...
Component MName
w4 CMSIS
4 RTOS.Keil RTX CMSIS-RTOS 'main’ function
4 RTOS.Keil RTX CMSI5-RTOS Mail Queue
#p RTOS.Keil RTX CMSIS-RTOS Memory Pool
4p RTOS.Keil RTX CMSIS-RTOS Message Queue
#p RTOS.Keil RTX CMSI5-RTOS Mutex
4p RTOS.Keil RTX CMSI5-RTOS Semaphore
#p RTOS.Keil RTX CMSI5-RTOS Thread
@ RTOS.Keil RTX CMSIS-RTOS Tirmer
 RTOS.Keil RTX CMSIS-RTOS User SVC
Location: | /Blinky | Browse...

File name: | osObjects.h main.c |

Expand the software component CMSIS and select the template CMSIS-RTOS ‘main’
function. Click Finish. Replace the content of main.c with the following application
specific code:

Getting Started with DS-MDK

27
* CMSIS-RTOS 'main' function template
ey gy g e gy gy ey Sy Sy Sy ey Sy Sy Sy Sy g S ey Sy Sy Ay U Uy Sy Sy S U * /
#define osObjectsPublic // define objects in main module
#include "osObjects.h" // RTOS object definitions
#ifdef RTE
#include "RTE Components.h" // Component selection
#endif
#ifdef RTE CMSIS RTOS // when RTE component CMSIS RTOS is used
#include "cmsis os.h" // CMSIS RTOS header file
#endif

#include "system iMX7D M4.h"
//#include "retarget io_user.h"
#include "board.h"

#include <stdio.h>

osThreadId tid threadA; /* Thread id of thread A */
o e
* Thread A
B e e - e */

void threadA (void const *argument) {
volatile int a = 0;
for (;;) {
osDelay (750) ;
printf ("Blinky threadA: Hello World!\n");
}
}

osThreadDef (threadA, osPriorityNormal, 1, 0);

/*
* main: initialize and start the system
*/
int main (void) {
/* Board specific RDC settings */
BOARD RdcInit() ;

/* Board specific clock settings */
BOARD ClockInit();

SystemCoreClockUpdate () ;
//InitRetargetIOUSART () ;

tid threadA = osThreadCreate (osThread(threadA), NULL);

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS
osKernellInitialize (); // initialize CMSIS-RTOS
#endif

/* Initialize device HAL here */

#ifdef RTE CMSIS RTOS // when using CMSIS RTOS
osKernelStart () // start thread execution
#fendif

/* Infinite loop */
while (1)
{
/* Add application code here */
osDelay (1000) ;
printf ("Blinky main loop: Hello World!\n") ;

// initialize peripherals here

// create 'thread' functions that start executing,
// example: tid name = osThreadCreate (osThread(name), NULL);

osKernelStart () // start thread execution
}
}

Save the file using L&l or CTRL+S

28 Creating projects from scratch

Adapt the scatter file

On the i.MX 7 devices, several types of memory are available. For deterministic, real-time
behavior, the Cortex-M4 should use the local Tightly Coupled Memory (TCM), which
provides low-latency access. Multiple on-chip RAM areas (OCRAM) are available, which are
larger, but not as fast.

The following table shows the memories and their load addresses for the different processors:

Region Size Cortex-A7 Cortex-M4 (Code Bus)

OCRAM 128 KB | 0x00900000-0x0091FFFF | 0x00900000-0x0091FFFF

TCMU 32 KB 0x00800000-0x00807FFF

TCML 32 KB 0x007F8000-0x007FFFFF | Ox1FFF8000-0x1FFFFFFF

OCRAM_S | 32KB 0x00180000-0x00187FFF | 0x00000000-0x00007FFF/
0x00180000-0x00187FFF

By default, the scatter file template uses the start address 0x0 for the load region command.

& To put the Cortex-M4 code into the TCM of the i.MX 7, open the file
MCIMX7D_Cortex-M4.sct and change the address of the load region to Ox1FFF8000:

; Khkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkhhkhkkhkkhhkkkhkkkkhkkkkkkkkkkhkkkkkkkkkkk

; ** Scatter-Loading Description File generated by RTE CMSIS Plug-in **
3 khkkkkkkkkhkhkhkhkkkkkkhkhkhkhkkkhkkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkkhkhkhkhkhkhkhkkkhkkhkhkhkhkkkkkkhkhkhkkkkx

LR IROM1 Ox1FFF8000 0x00008000 { ; load region size region
ER _IROM1 O0x1FFF8000 0x00008000 { ; load address = execution address
*.o0 (RESET, +First)
* (InRoot$$Sections)
.ANY (+RO)
}
RW_IRAM1 0x20000000 0x00008000 {
.ANY (+RW +2ZI)
}
}

(& Save the file using L&l or CTRL+S.

Configure build options
(& Right-click on the project name and select Properties.

Select C/C++ Build > Settings. In the tab Tool Settings select All Tools Settings > Target.
In Target FPU, select No FPU.

Getting Started with DS-MDK

Settings R
» Resource R
Builders
~ C/C++ Build Configuration: |Debug [Active] \" ‘Manage Conﬂgurationsm|
Build Variables
Environment
Logaing ® Tool Settings # Build Steps Build Artifact Binary Parsers @ Error Parsers
el . . ~ & All Tools Settings Target CPU |Corte)(-M4 V‘
Tool Chain Editor (2 Target
« C/Ca+ General & Debugging Target FPU |NoFPU v|
» Code Analysis (2 Libraries Floating-point PCS |Default V‘
E::ec-ur;r;:tatlon v® ':;RM C Compiler 5 Floating-point mode |Defau|t V‘
(2 Target
Formatter (% Preprocessor Instruction set |Thumb v ‘
:.[:jzt:ge Mappings %: Includes Byte order |Litt|e—end|an v ‘
(2 Source Language
Paths and Symbols 2 Optimizations Wide character size |Defau|t V‘
Preprocessor Include Patt & Debugging [Interworking
Project Referenc_es (2 Warnings and Errors [[] Disable unaligned accesses
Run/Debug Settings (2 Miscellaneous [[] Generate enumerations as integers
~ & ARM Assembler 5
(& Target
(22 Preprocessor
< > % Includes v

@ [e 1

Cancel

Select Arm Linker 5 > Image Layout. In Image entry point (--entry), enter
Reset_Handler

type filter text i v ww

» Resource N
Builders

« C/Ce+ Build Configuration: Debug [Active]

~ || Manage Configurations...

Build Variables
Environment

Logging ® Tool Settings # Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings « B All Tools Settings Image entry point (--entry) | Reset_Handler |
Tool Chain Editor =
& Target RO base address (~r0_base) | |
~ C/C++ General & Debugging

» Code Analysis & Libraries RW base address (--rw_base) ‘ ‘
Documentation ~ % ARM C Compiler 5 71 base address (--zi_base) | |
File Types 5 Target ‘ I ‘

Scatter file (--scatter] workspace_loc:/${ProjName]}/MCIMX7DT_Cortex-M4.sct Browse.

Formatter & Preprocessor 5) 3t pace_loc/${Proj 1/ i
Indexer (2 Includes Predefine (--pd) a0 |y
Language Mappings

(& Source Language
(& Optimizations
(& Debugging
(& Wamings and Errors
(2 Miscellaneous

~ & ARM Assembler 5
(& Target

Paths and Symbols

Prepracessor Include Patt
Project References
Run/Debug Settings

(& Preprocessor
2 Includes
(2 Debugging
(& Warnings and Errors
(5 Miscellaneous
~ & ARM Linker 3
(2 Target
(2 Image Layout

E Libraries
< > = v

®

Build the Cortex-M image
(& Right-click on the project name and select Build Project to build the application.

This step compiles and links all related source files. The Console shows information about the
build process. An error-free build displays program size information:

[2l Problems ¥ Tasks & Console % [Properties &2 Terminal 1
CDT Build Consale [Blinky]

Total RO Size (Code + RO Data) 11396 (11.13kB)
Total RW Size (RW Data + ZI Data) 7272 (7.10kB)
Total ROM Size (Code + RO Data + RW Data) 11480 (11.21kB)

"Finished building target: Blinky.axf'

09:21:29 Build Finished (took 19s5.39@ms)

30 Creating projects from scratch

Debug Cortex-M application on page 34 guides you through the required steps to connect
your evaluation board to the workstation and to debug the application on the target hardware.

Getting Started with DS-MDK
31

Create Linux applications

This chapter guides you through the steps required to create and modify projects for an Arm
Cortex-A class device running Linux:

= Setup the project: create a project.
= Build the application image: compile and link the application.

Setup the project

¥ From the Eclipse menu bar, choose File & New = C Project. Select the Hello World
ANSI C Project:

C Project p—

Create C project of selected type

Project name: | Hello_World

Use default location

C\Users\stecad01\Documents\DS-MDK Workspace_new\Hello_Worl Browse...
default
Project type: Toolchains:
v (= Executable ARM Compiler 5
& Empty Project ARM Compiler &
& Hello World ANSI C Project GCC 4 [arm-linux-gnueabinhf]

® CMSIS C/C++ Project
(= Shared Library
(= Static Library
(= Makefile project

Show project types and toolchains anly if they are supported on the platform

¥ Enter a project name (for example Hello_World) and make sure that the GCC [...]
(built-in) toolchain is selected before clicking Finish.

The C/C++ Perspective opens and shows the current project:

& C/C++ - Hello_World/src/Hello_World.c - Eclipse Platform — O x
File Edit Source Refactor Mavigate Search Project Run Window Help
- SRR S SRR S GRS SERACESE R A EATR Sl RoT SR
aoA e o [oucercees 1| 2 |18 50 0
{5 ProjectExplorer 52 (5] 5. ¥ = O | [g Hello Worldc 53 =0 oz ™ =0
5 Blinky i+ Name : Hello_World.c[] 2R e
(% Hello_World 1@ Lod tioh -
~ 11 #include <stdio.h>
(5 RPMSG PingPong BM 12 #include <stdlib.h> = stdioh
3 5 stdlibh
145 int main(void) { o stdl _
15 puts(”!!1Hello World!11"); /* prints || @ mainfvaid): i
16 return EXIT_SUCCESS;
17 }
18
< > < >
& Console &3 Tasks Problems Properties = 0
oG AR B
COT Build Console [Helle_World]
< >
=% Hello_World

32 Creating projects from scratch

Build the application image
(& Right-click on the project name and select Build Project.

This step compiles and links all related source files. The Console shows information about the build
process:

B Console 51 | J=| Tasks (| Problems [T Properties L qp <§|)| q mH '-Ex| = EBE~C~= 0
CDT Build Console [Hello_World]

=== =======—=s=oosos-sooooooooosoooooooooooooooooo 2

Total RO S5ize (Code + RO Data) 4848 (4.73kB)
Total RW Size (RW Data + ZI Data) 364 [@.36kB)
Total ROM Size (Code + RO Data + RW Data) 4856 (4.74kB)

‘Finished building target: Hello_World.axf’

15:@3:41 Build Finished (tock 1s.116ms)

£ >

The chapter Debug Linux application on page 37 guides you through the required steps to connect
your evaluation board to the workstation and to download the application to the target hardware.

Getting Started with DS-MDK 33

Debug applications

The DS-5 Debugger can verify all software applications that execute on a heterogeneous computer
system. It enables complete system visibility using multiple simultaneous debug connections:

P
UsB I

JTAG

ARMKE| ULINKpro

St a1 el CoreSight™

e : |

Cortex®-A Cortex®-M

- S Linux Kernel

gdbserver RTOS System

TCP/IP

Linux Microcontroller

Application Application

DS-5 Debugger Heterogeneous System

= The Cortex-M application is debugged using a ULINKpro debug unit (refer to
www.keil.com/ulink for more information). Users can analyze the microcontroller application
with RTOS aware-debugging and peripheral views.

= The Linux kernel and bare metal applications running on the Cortex-A are also debugged using
a ULINKpro debug unit. The debugger lists kernel threads and processes.

= A Linux application is debugged via gdbserver across a TCP/IP network link. The debugger
supports multi-threaded application debugging and shows pending breakpoints on loadable
modules and shared libraries.

http://www.keil.com/ulink
https://en.wikipedia.org/wiki/Gdbserver

34 Debug applications

Debug Cortex-M application

This section explains how to debug the microcontroller application running on the Cortex-M
microcontroller. Once configured the debug configuration as shown in section Configure CMSIS DS-5
debugger at page 14, you can start the debugging session by clicking “Run” in the Debug Control
view.

If specified in the configuration window, the debugger will run till the beginning of the function
main().

DS-MDK should automatically switch to the Debug Perspective, specifically designed to be used
during the debug session on your device.

Let’s look at some of the Views available in DS-MDK.

Variables

The Variables view shows the contents of local, file static, and global variables in your program. By
default, the Variables view displays all the local variables. It also displays the file static and global
variable folder nodes.

)= Variables % oo =7
ox §$ -
0, Linked: Blinky_M4 -

MName Value Type Count | Size | Location Access

= = Locals 3wvariables
e a 11 int 32 SR2 RAW
Gl 12 int 32 SR RAW
@ c @ int 32 5RO R/W

=== File Static Variables 0 of 6 variables

= = Globals 1 of 47 variables

+ @ tid_threadA Bx@BBEEEBE osThreadld 1 32 0x20000018 R/W
Add Variable Browse...

If you know the name of the specific variable you want to view, enter the variable name in the Add
Variable field. This lists the variables that match the text you entered. Double-click the variable to add
it to the Variables view.

Registers

The Registers view displays the contents of processor and peripheral registers available on your
target and allows modifying them.

(9= Variables oo Registers 7 XY Expressions f0) Functions = O
= A o T
“T Linked: Blinky_hd -

Register Set: | All registers <
Name Value Size | Access
== Core 23 of 23 registers -

@ RO exapaseeal 32 RW
@ R ex3e3bezes 32 RW E
@ R2 exapaseRen 32 RW
@ R3 ex@oeoopen 32 RW
@ R# exapaseRen 32 RW
@ RS ex@oeoopen 32 RW
@ R6 exBRaseReR 32 RW
@ R7 ex@oeoopen 32 RW
@ R8 exBBEREREE 32 RW
@ R9 exgopoopeD 32 RW
@ R0 exBBEREREE 32 RW
@ Ri1 expoeoobeD 32 RW
@ Ri2 exepeoooRe 32 RW
@ 5P @x282818E3 32 RW
@ SP_MAIN @x20081E43 32 RW
@ SP_PROCESS 2x200818E3 32 RW
@ LR @x1FFFI4AD 32 RW
@ PC @x1FFFa4AC 32 RW
@ xPSR exglepeees 32 R/W
@ PRIMASK exepaeaeee 32 R/W
i@ BASEPRI exgepeeeel 32 R/W
@ FAULTMASK [peelelettclelc) 32 RW 2

Getting Started with DS-MDK 35

The search button at the top of the View allows searching for register by name to speed up debugging
in targets with hundreds or thousands of different registers.

Disassembly

The Disassembly view gives you a glimpse over the assembly code running on the device. When the
target is stopped, DS-MDK automatically highlights the next instruction to be executed (content of the
Program Counter).

The view shows the address, the OpCode and the decoded version of each instruction and can be used,
as an example, to debug issues related to invalid addresses.

191 Disassembly 52 5 Memory = Stack ¢ Trace [-| Events = Outline $ ¥ =0
g, Linked: Blinky_M4 -
@ :D * <MNextInstruction> 100
Address Opcode Disassembly
Bx1FFF949C BL osDelay ; @x1FFFAS54 o
BX1FFFO4AQ ADR re, {pcl+exsa ; exifffoden
Bx1FFFO4A2 BL __2printf ; @x1FFFO534
B 1FFFO4AG B threadA+8 ; @x1FFF9498
main
B} 1FFFI4A8 BL BOARD_RdcInit ; Bx1FFF857C -
& Bx1FFF94AC BL BOARD ClockInit ; @x1FFF344@ =
Bx1FFF94B@ BL SystemCoreClockUpdate ; @x1FFFEF34
@x1FFF94B4 BL InitRetargetTOUSART ; @x1FFF8ASS
@x1FFFO4B8 MOVS rl,#@
Bx1FFFO4BA LDR r@, [pc,#68] ; [@x1FFFI508] = Bx1FFFE7SS
Bx1FFF94BC BL osThreadCreate ; @x1FFFAGL4
Bx1FFFo4C8 LDR ri,[pc,#64] ; [BxIFFFI584] = @x20088818
Bx1FFF94C2 STR re, [r1,#a]
Bx1FFF94C4 BL osKernelInitialize ; @xlFFFASEC
Bx1FFF94C8 BL osKernelStart ; @x1FFFA5S98 -

Memory view

In order to display and to modify the contents of memory it’s possible to use the Memory view. You
can specify the start address of the memory range, either as an absolute address or as an expression,

for example $pc+256. The size of the memory range to display, in bytes, is the offset value from the
start address.

191 Disassembly ‘H Memory 52 = Stack ¢ Trace = Events 0= Outline = O
(R A
G, Linked: Blinky_M4 ~
CL) + &("main.c":tid_threadA) 200
Bx280888 xx Data (Hexadecimal: 4 bytes)
R £} 181 Bx2E8BBRB08 Bx20EBEEYE exbpREEEBR
...38 BxFFFFF @x@eas5e00e8 @x0eE00888 BOx2008156C

FFF
... 48 Bx206215C8 @x20001614 Ox20001463 @x02000000 Ox200000CC Ox200001D0
...008 @xbeeeeed4 exelecesed exepoooRER @x20001168 OxERBEEEEE OxbooRoeERe

-= .78 exBRC30806 Ox20088ETO
...98 Bx28@@BDES @x1FFFABBD @xB20482080
.. AB BxB2aa0004

...CB Bx20821878 Ox208BREBS @x1FFF9407 @x20800100 OxBDEEREEE Ox0E2EEERE
...0D3 exeecepess @x0eoe0e00

The memory view allows specifying both the address and the size as a formula. A few examples:
- &(“main.c”::tid_threadA) refers to the address of variable tid_threadA in file main.c
- 3$PC refers to the value contained by the register PC
- sizeof{(float) refers to the size of the type “float”

Please refer to the online manual for further options.

Breakpoints

Breakpoints can be set either directly on the source code editor or in the Breakpoints view. In the
source code editor, right-click on the left side on the line you would like the execution to stop and
click on Toggle Breakpoint.

36 Debug applications

* main function */

/* Board specific RDC settings */
BOARD_RdcInit();

/* Board specific clock settings */
BOARD ClockInit();

Toggle Breakpoint Ctrl+Shift+B

Add Breakpoint... Ctrl+Double Click
Add Dynamic Printf...

threadA), NULL);
Enable Breakpoint Shift+Double Click

Breakpoint Properties... Ctrl+Double Click
) '/ when using CMSIS RTOS
D5-5 Breakpoints * ¥/ initialize CMSIS-RTOS
Breakpoint Types »

Default Breakpoint Type 3

Go ta Annotation Ctrel by when using CMSTS RTOS

Team » | executing,
osThread(name), NULL);
Add Bookmark... '/ start thread execution

Add Task...

v Show Quick Diff Ctrl+Shift+Q
Show Annotation

v | Show Line Numbers
Folding LA IRV R H

Preferences...
= T

a9
82

The breakpoint will appear in the list in the Breakpoints view where it can edited, disabled or
removed.

()= Variables ®g Breakpoints 2 | Registers 2" Expressions f() Functions [05 Data = B

R %o wiw T
<, Linked: Blinky_M4 ~
@ main.c:53 @ main+0xd (T32) [#2 SW]

It is possible to access to the properties of the breakpoint by right-click on the breakpoint and then
select Properties. The Properties window, showed below, allows using some of the advanced
functionalities of the DS-MDK debugger such as Thread specific breakpoint, advanced Stop
conditions and the ability to run scripts when the program stops.

Getting Started with DS-MDK 37

95 Breakpoint Properties o -8
Breakpoint Properties
Description: main.c:53 @ main+ 0 (T32) [£2 SW]
Host File Location: Ci\Users\stecad01\Documents\DS-MDK Clean\Blinky_M4\main.c:53.0
Compiled File Location: C:/Users/stecacl/Documents/DS-MDK Clean/Blinky_M4/main.:53.0
Type: Source Level Software Breakpoint
State: Active
Address: 7] ® OxIFFFMAC main+0x4 [221] (T32)
/| Break on Selected Threads or Cores
7] Show Both Active and Inactive Threads
Cortex-M4 21 stopped on breakpoint
7] fmain 3 stopped (PID 2)
osTimerThread #2 stopped (PID 1)
os_idle_demaon 24 stopped (PID 255)
Only core selection is persistent between connections
Stop Condition: -
Ignore Count: 0
On break, run script
~ | File System...| | Workspace...
Continue Execution
Silent
Hardware Virtualization: Unsupported
Break on Virtual Machine ID:
)

Please refer to the online help for a detailed explanation of all the functionalities accessible from the
Properties window.

Debug Linux application

This section explains how to debug a Linux application running on the Cortex-A7.

The DS-5 Debugger uses gdbserver for debugging Linux on the target hardware. Before connecting,
you must:

= Set up the target with Linux installed and booted. Refer to Install the Linux image on page 9.

= Obtain the target IP address or name for the connection between the debugger and the debug
hardware adapter. If the target is in your local subnet, click Browse and select your target.

Next, set up a Remote Systems Explorer (RSE) connection to the target to download the application
onto the target’s file system. Refer to Setup RSE connection on page 19for more information.

Configure the debugger as described in Configure DS-5 debugger at page 19 and launch the
application.

DS-MDK uses the same debug perspective as for bare metal when debugging Linux application so
you do not need to learn a new environment or set of Views in order to start debugging.

Debug the Linux Kernel

The DS-5 Debugger configuration dialog makes it easy to configure a debugging session to a specific
target. The Linux kernel debug configuration type is primarily designed for post-MMU debug to
provide full kernel awareness but — with some extra controls — can also be used for pre-MMU debug.
This makes it possible to debug the Linux kernel, all the way from its entry point, through the pre-
MMU stages, and then seamlessly through the MMU enable stage to post-MMU debug with full

38 Debug applications

kernel awareness. You can do this all with source-level symbols, and without the need for tedious
disconnecting, reconfiguring and reconnecting!

The Linux kernel, already built with debug info and a complete vmlinux symbol file, file system, and
full source code, is available from the respective board support pages (see www.keil.com/mdk5/ds-
mdk/install#boards).

Unpack the Linux kernel sources (kernel-source.tar.gz) into your currently active DS-MDK Eclipse
workspace. Be aware that on a Windows system you will not be able to fully unpack the sources.
Some symbolic links and case-sensitive source files will not be created. Usually, this is not critical for
Linux kernel debug.

http://www.keil.com/mdk5/ds-mdk/install#boards
http://www.keil.com/mdk5/ds-mdk/install#boards

Getting Started with DS-MDK 39

Create a Linux Kernel debug project

(& Create a new CMSIS C/C++ Project named Linux Kernel Debug and select NXP i.MX7Dual
device MCIMX7D7:Cortex-A7.

Select Device .
Device: MCIMX7D7:Cortex-A7 CPU: ARM Cortex-A7
Vendor: NXP Max. Clock:
Pack: Keil.iMX7D_DFP.1.5.1 Memory:
URL: http://www.keil.com/dd2/nxp, FPU: double precision =
Search: Endian: Little-endian
¥ ARM The i.MX 7Dual family of processors features ~ ~
~ @ NXP an advanced implementation of the ARM
~ %2 .MX 7 Series Cortex-AT core, which operates at speeds of
% i.MX 7Dual :Erteo 1 GHz, as well as the ARM Cortex-M4
& MCIMX7D3 - Heterogeneous Multicore Processing
‘& MCIMX7D5 Architecture, up to Dual Cortex-A7 and
v ¢ MCIMX7D7 Cortex-M4 configuration
B MCIMX7D7:Cortex-A7 - External Memory Support:
B MCIMX7D7:Cortex-M4 DDR3/DDR3L/LPDDR2/LPDDR3
% i.MX 7Solo - Flash Memory Support: NAND (60-bit
ECC), Managed NAND (eMMC, eSD)
- Eletrophoretic Display (EPD) Controller
A
@' < Back Next > Cancel

Add the vmlinux file to the project folder using Windows Explorer. This file must match the
kernel in the SD card on the board.

NOTE

The debug symbols in the vmlinux file have virtual addresses, so the usage of vmlinux file by the
debugger assumes that the OS is up and running with the MMU enabled. It still can be used to debug

pre MMU at source-level if there is no offset between physical and virtual addresses at the entry
point.

(& Add a debugger script to the project (right-click the project and select New = Other... = DS-5
Debugger = DS 5 Debugger Script) called stop.ds containing:

stop
set os enabled off

When OS awareness is enabled and kernel symbols are loaded from the vmlinux file, DS-5 Debugger
will try to read some kernel structures. If the MMU is not yet on, the debugger may try to access
invalid addresses, leading to data aborts, which is undesirable. This OS awareness support feature can
be temporarily disabled during the pre-MMU debug stage with the CLI command set os enabled
of £, and later (post-MMU) re-enabled with the CLI command set os enabled on.

(& Restart the board and make sure you stop the boot of the Linux kernel by pressing a button when
U-Boot is initializing in the Terminal view.

B App Console Wl Target Console 47 Terminal 1 22 & Terminal 1 €] Eror Log =0
RR=NENy IR

Serial: (COM4, 115200, 8, 1, None, None - CONNECTED) - Encoding: (IS0-8859-1)

No panel detected: default to TFT43AB A

Display: TFT43AB (480x272)

Video: 48@x272x24

In: serial

Out: serial

Err: serial

switch to partitions #8, OK
mmc@® is current device

Net: FEC@

Normal Boot

Hitlany key to stop autoboot: @
=>

40 Debug applications

(& Right-click on the project, select Debug As..., then select CMSIS DS-5 Debugger-... to open the
Debug Configurations dialog.

In the Connection tab, select CPU Instance = SMP.

In the Advanced tab, tick Run target initialization debugger script, and select the stop.ds script
in the workspace:

& Debug Configurations X

Create, manage, and run configurations

€3 [Connection]: Connection address is empty

= -+,
= X | =l T Name: | Linux Kemel Debug |
type filter text ﬂ\> Connection 4 Advanced . € OS Awareness
C/C++ Postmortem Debugger A s
C/C++ Remote Application fle Settings
~ W CMSIS DS-5 Debugger Program image | ${workspace_loc;/Linux Kemel Debug/vmlinux} | | File System...| Workspace...
‘ Kernel_Debug
* Linux Kernel Debug Load symbals only
W RPMSG_TTY_RTX_M4
#5 DS-5 Debugger Run centrol

@' IronPython Run

&7 IronPython unittest @ Connectonly (O Debug from entry point (O Debug from symbel main

[l Java Applet Run target initialization debugger script (.ds / .py)

[T Java Application

Ju JUnit | S{workspace_loc/Linux Kernel Debug/stop.ds} File System...
Jython run

;j Jﬁhun unittest [[]Run debug initialization debugger script (.ds / .py)

= Launch Group File System... Workspace...
m PyDev Django
43 PyDev Google App Run
eF Python Run
] A Puthan nmittect Apply Revert
Filter matched 23 of 23 items

|":7> Debug Close

(& Click Debug. The Commands view will show:

| Commands 2 | 7 G EES -4 = 0O

‘D, Linked: Linux Kernel Debug -

signals handled by operating system

Connected to running target iMX7D_DFP on TCP:localhost

cd "C:\@3_workspace\DS-MDK_iMX7KernelDebug”

Working directory "C:\B3_workspace\DS-MDK_iMX7KernelDebug”

source /v "C:\83_workspace\DS-MDK_iMX7KernelDebughlinux Kernel Debughstop.ds™
+stop

Execution stopped in SVWC mode at 5:@xBFF76234

On core Cortex-A7_@ (ID @)

5:@8xBFF78234 T5T r3,#ex2e

+set os enabled off

file "C:\83_workspace\D5-MDK_iMX7KernelDebugh\Linux Kernel Debughwmlinux"”

Command: Press (Ctrl+5pace) for Content Assist

(¥ Inthe Command (CLI) entry box, set a temporary hardware breakpoint (thbreak) on the entry
point into the kernel, by typing in:
thbreak 0x80008000

Press the Submit button or the Enter key. 0x80008000 is the entry point for the kernel. This is the
address to which U-Boot will pass control to boot Linux once it has completed its setup tasks.

(& Run the target by pressing the Continue button (¥) in the Debug Control view, or press F8.
& In the Terminal view, tell U-Boot to boot the kernel, by typing in:
boot

Code execution will stop at the breakpoint, and the Disassembly view will show the assembly code at
the entry point (labeled stext). If you have unpacked your kernel source code into the workspace, the
Editor view will show the content of head.s.

Getting Started with DS-MDK 41

If not, no source code is shown, because the path to the source code has not yet been configured. DS-5
Debugger will try to open .. ./arch/arm/kernel/head.s in its Editor view. If it does not find the
kernel sources using the source paths within the vmlinux file, you can resolve this by setting a
substitute source path, to re-direct paths from where the kernel was built, for example, from:

/home/munlin0l/fsl-community-bsp-platform/build-core-image-base/tmp/work-
shared/imx7dsabresd/kernel-source

to a local copy of the kernel sources at:
C:\path\to\linux-imx\4.1.15-r0\git

Make sure that the "Image Path™ and "Host Path" both end with a corresponding directory.

head. s Will now open in the Editor view, and the Disassembly view will show the symbol stext, at
the entry point for the kernel. If it doesn't, choose the Path Substitution... command from the Debug
Control view's drop-down menu (=) and check that the final directory in the Image Path and Host
Path correspond. Then right-click on an instruction in the Disassembly view, and select "Show in
Source".

head S 7 10 = O 1% Disassembly &7 ¥ v =0
7 Larm . & Linked: Linux Kernel Debug

. B YD v <Next Instruction> 100
50 ENTRY (stext) Address | Opcode | Disassembly
ARM_BEB(setend be) o
__hyp_stub_install ; @xeole4ae
THUMB(adr r9, BSYM(1F) r9,APSR ; formerly CPSR
THUMB(bx S)
THUMB(. thunb
THUMB(1:)

ifdef CONFIG_ARM_VIRT_EXT
® 39 bl _ hyp_stub_instal
dif

- 14
xB0008024 nsR SPSR_cxsf, ro
80008028 oo oxE12EF30E
X5000802C ey oxE160006¢

42 Debug applications

Debug the Kernel: Pre-MMU stage

You can now set breakpoints and watchpoints, view registers, view memory, single-step, and other
usual debug operations at this pre-MMU stage, all with source level symbols.

. ()= Varisbles ®g Breakp.. o Registers i1 ¥ Expressi.. f) Functi. = O
(& Atthe kernel entry point, you can i =+ s = check the Core
and CP15 system registers in the ———— ~ Registers view
tO CheCk that they are Set aS Name Value Size | Access recommended
= Core 50 of 50 registers -
by kernel.org. Observe that: Tom bwooocooce 2 ROW
@ R exeeeeoo0e 32 W
a. the CPUisin SVC (supervisor) . = e L mode; check
Core 9 CPSR 9 M 9 SVC @ R4 ox30008000 32 R/W
b ROiSO . rs merstres |3 [RW
. |S @ R7 exeeeseeen 32 RW
@ R3 ax33e00000 32 RAW
c. R2 contains a pointer to the device g iy - tree. Right-
H @ Rl @x8131F320 32 W -
click R2 and select Show Memory o R oxocasass 2 AW Pointed To By
R2. Change the size of the memory A eascreris IR displayed to
200 bytes for example by entering LS e Rt S = 200 in the text
entry box in the top right of the > ! DAl L) Memory view.
. e C oxe 1 RW
d. the MMU is off; check CP15 > oy o [1 [RW SecureBanked
9 S SCTLR 9 M e Im Bxe8 8§ R/W
- e J 8x8 1 RW
e. the Data cache is off; check CP15 .t oo |1 [7W >
SecureBanked > S SCTLR> C 5t o IR
e F oxl 1 RW
e T

. the Instruction cache is either on or et e e s | OFF; check

CP15 - SecureBanked - P Re Sof g S_SCTLR=> I
. # = UND 3 of 3 registers
& To see when the MMU will be Te AT i turned on, set a
breaprint: + z &J‘S:lm zotz reglsfers i

thbreak __ turn mmu_on

then continue running (or press F8). When turn mmu_on is reached, note the value of SP. This
contains the virtual address of mmap switched and is the place the code will jump to after the
MMU is enabled.

& In general, it is not possible to single-step through turn_mmu_on, S0 place a hardware
breakpoint on the virtual address of mmap switched:

thbreak *$SP

then continue running (press F8). When the breakpointat mmap switched is hit, the MMU is
on.

(& Check that the MMU is now on, by looking in the Registers view at CP15 = SecureBanked =
S SCTLR = M (should show Enabie).

Debug the Kernel: post-MMU stage

The main C code entry into the kernel, after all the architecture-specific setup has been done, is
start_kernel()in\source\init\main.o

(7 Set a breakpoint on it:
thbreak start kernel

and then run to it.

& You can now safely enable OS support in DS-5 Debugger:

set os enabled on

Getting Started with DS-MDK 43

(> Check that the following appears in the Command view, to confirm Linux kernel support is
enabled:

Enabled Linux kernel support for version "Linux 4.1.15-1.1.0+ga4d2a08 #2 SMP
PREEMPT Tue Jul 5 09:51:28 CEST 2016 arm"

(& The same Linux version information can be reported manually using:
info os-version

which will show for example:

Operating system on: Linux 4.1.15-1.1.0+ga4d2a08 #2 SMP PREEMPT Tue Jul 5
09:51:28 CEST 2016 arm

This is similar to:

output init nsproxy.uts_ns->name

which will show for example:

{sysname = "Linux", nodename = " (none)", release = "4.1.15-1.1.0+gad4dz2al8",
version = "#2 SMP PREEMPT Tue Jul 5 09:51:28 CEST 2016", machine = "armv71",
domainname = " (none)"}

This may take a few moments to display, because DS-5 Debugger has to process the debug
symbols.

When OS awareness is enabled and kernel symbols are loaded from the vmlinux file, DS-5 Debugger
will try to access some locations in the kernel. For example, it will try to read

init nsproxy.uts ns->name 0 get the kernel name and version. It will also set breakpoints
automatically on sys_init module () and sys delete module () to trap when kernel modules are
inserted (insmod) and removed (rmmod). You will see these breakpoints appearing in the Breakpoints
view:

9= Variables | ®g Breakpoints 57 | Registers 23 Expressions f() Functions = 0
WY
‘g, Linked: Linux Kernel Debug ~
V| @& S:0x8009C2FC @ SyS_delete_module [Debugger Internal A32 (ARM]]
V| & 5:0xB009E54C @ Sy5_init_module [Debugger Internal A32 (ARM]]
V| & 5:0x8009E688 @ SyS_finit_module [Debugger Internal A32 (ARM)]

(& Set a breakpoint with:

thbreak kernel init
then run to it.
So far, CPU 0 has been doing all the work. Note that CPU 1 is still powered down:

4 & Linux Kernel Debug connected VM:0
ﬁ Cortex-A7_0 #0 stopped on breakpoint
ﬁt Cortex-A7_1 #1 powered down

A very useful feature during kernel bring-up is to display early printk output in DS-5 Debugger's
command window.

(& Before the console has been enabled there will be no output from the serial port. You can view
the entire log so far with:

info os-log

44 Debug applications

B Commands 2 | @l History §35 Scripts &,

“G, Linked: Linux Kernel Debug ~

o "
x el i3 v % = O

into os-log
Booting Linux on physical CPU @x@
Linux version 4.1.15-1.1.8+ga4d2a@8 (munlin@l@mun-lin-box®2) (gcc version 5.3.8 (GCC)) #2 SMP PREEMPT Tue Jul 5
CPU: ARMv7 Processor [418fce75] revision 5 (ARMv7), cr=1@c53c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine model: Freescale 1.MX7D SabreSD Board
Reserved memory: created CMA memory pocl at @x3ab@@oes, size 328 MiB
Reserved memory: initialized node linux,cma, compatible id shared-dma-pool
Memory policy: Data cache writealloc
On node @ totalpages: 261632
free_area_init_node: node @, pgdat 88c9c6@8, node_mem map 9f559808
Normal zone: 182@ pages used for memmap
Mormal zone: @ pages reserved
Normal zone: 13856@ pages, LIFO batch:31
HighMem zone: 131872 pages, LIFO batch:31
PERCPU: Embedded 13 pages/cpu @9f519@@8@ s21868 rB8192 d23988 u53243
pcpu-alloc: 521863 r8192 d239388 u53248 alloc=13*4@96
pcpu-alloc: [@] @ [8] 1
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 268612
Kernel command line: console=titymxc®,115288 root=/dev/mmcblk®p2 roctwait rw
PID hash table entries: 2848 (order: 1, 8192 bytes)
Dentry cache hash table entries: 65536 (order: 6, 262144 bytes) -
< m »

Submit

-

m

Command: info os-log|

(& To view the log output line by line, as it happens, use:

set os log-capture on

r

kernel init () triesto start the init process. To see this, set a breakpoint at the end of
kernel init () thenrun to it (set the breakpoint in the main.c file available in the Editor view).
The init process now appears as an active thread. CPU 1 is now powered up.

Many of the above steps can be automated, either with a script file, or by filling-in the Debug

Configuration's fields before i Memory = stack I MMU 5 | Trace [Bvents £z owine 0% 7 = 8 |gunching (refer
- 5, Linked: Linux Kernel Debug =
to the Appendix). Transision | Tabls | Memary Mg |
. Virtual Range Physical Range Type | AP | C |S | X i
(& Delete all user breakpoints - and continue
5:0:00010000-0:00010FFF SP:0xBF4E4000-0xBFAE4FFF Normal RO ¥
(F8) Let the kernel run all 000011000 000011FFF SP-O:BFAE3000-0:BFAE3FFE Mormel RO v v v the way to the
- - $:0x00012000-0:00012FFF SP:0xBF4E2000-0xBFAE2FFF Normal RO ¥ ¥ ¥
LOgIn prompt. LOgln as root. S0:00013000-000013FFF SP-OBFAEION0-DBFAELFFF Nomal RO v v v
5:0x00014000-0x00014 FFF SP:0xBF4 E0000-0xBFAEOFFF Normal RO v Y
& Stopthe target by pressing | oo sosssmossor om0 - o o - Interrupt (10/F9),

Current: Secure PL1&0O

In the Debug Control view, expand "Active
Threads" and "All Threads". In "All Threads", you will see a large number of threads/processes
have been created. Only two were actually running, one on each of the two cores. You can see
these in "Active Threads".

Right-click on the connection and select Display Cores to see the state of both CPUs. You can
view the state of the cores, threads and processes on the command-line with:

info cores
info threads
info processes

It is possible to single-step a core or a thread/process. To do so, select either the core or the
thread/process in the Debug Control view, then press Step (<-/F5). Note that when single-
stepping though a process, it might get migrated to another core. If a breakpoint is set on a

process, the debugger is able to track the migration of process-specific breakpoints to the other
core.

You can check the virtual-to-physical address map for Linux by using the MMU view. Continue
to run the target (F8). Go to Window - Show View = MMU. Switch to the Memory Map tab
and press the Show Memory Map button to refresh the values.

Let's take a look at the kernel's thread info structure. Stop the target, then check the kernel's
stack size with:

show os kernel-stack-size
For this Armv7 kernel, the kernel stack size is 8K.

In the Expressions view, add a new expression into the field (type in the field at the bottom on
the view):

Getting Started with DS-MDK 45

(struct thread info*) ($sp_svc & ~0x1FFF)

Ox1FFF is 8K minus 1. Expand the tree structure to explore its contents. The list of threads in the
Debug Control view is created from the same information, so they should match. For example,
the thread name is held in task.comm.

(> To get a simple view into the workings of the scheduler, set a breakpoint on schedule () with:
hbreak _ schedule

NOTE
This time use hbreak to have a persistent hardware breakpoint instead of a temporary one.

Then continue running (press F8). At the breakpoint, continue running (press F8) again and
again, and see the names of the active threads changing in "Active Threads", and different
threads are scheduled-in.

(& Alternatively, instead of setting a breakpoint on _ schedule (), try to set a breakpoint on
do_fork (). If nothing forks, force a fork by typing e.g. '1s".

In summary, we have looked at how DS-MDK can be used to debug the Linux SMP kernel, both in
pre-MMU enabled and post-MMU enabled stages, and looked at a few of the kernel's internal
features.

Debug a Linux Kernel module

Only a few things are required to make kernel module debugging work. This sections explains how to
do this for the imx_rpmsg_tty module that is used in the example projects that are explained in detail
on page Error! Bookmark not defined..

Create a Linux Kernel module debug project
(& Create a new CMSIS C/C++ Project named Linux Kernel Module Debug

As with the Linux kernel debug, add the vmlinux file to the project folder using Windows
Explorer.

(> Add a debugger script to the project (right-click the project and select New = Other... = DS-5
Debugger = DS 5 Debugger Script) called stop.ds containing:
stop

(&> Add another debugger script to the project (right-click the project and select New = Other... >
DS-5 Debugger = DS 5 Debugger Script) called load_ko.ds containing:
add-symbol-file imx rpmsg_ tty.ko

NOTE

Make sure that the file imx_rpmsg_tty.ko is stored in the workspace so that DS-MDK can find it.
Otherwise, specify the fully qualified path to it. You can download the file and the source code
file from the board support page of your development board.

The stop command in the first script will halt the processor before loading the kernel symbols and
the add-symbol-£file command will load the kernel module object file.

(& Right-click the project and select Debug As = CMSIS DS-5 Debugger...

On the Connections tab, set the CPU Instance to either 0 or SMP. Go to the Advanced tab and specify
the path to the vmlinux file and enable Load symbols only. Also, set the initialization debugger
scripts as shown here:

46 Debug applications

& Debug Configurations

Create, manage, and run configurations

Launch a D'5-5 debugging session using a CMS5IS D5-5 Debugger project.

.)
= X | El 5& - Name: | Kernel_Debug

type filter text
~ W CMSIS DS-5 Debug A

4 Connection ¢ Advanced #» 05 Awareness

* Kernel_Debug File Settings
W RPMSG_TTY_RI Program image ‘ t:\Users\USER\Documents\DS-MDKWorkspace\vmlinux File System...| | Workspace...
i DS-5 Debugger
w 99
@' IronPython Run Load symbels only
a’ IrenPython unittes
il Java Applet Run control
[T Java Application
T JUnit PP ®) Connect only () Debug from entry point () Debug from symbol main
Ju
@ Jythen run Run target initialization debugger script (.ds / .py)
,5‘J Jython unittest
= Launch Group | ${workspace_loc:/Kemel_Debug/stop.ds} | File System... Workspace...
PyDev Django
g P;Dev GJnggle App Run debug initialization debugger script (.ds / .py)
o
s’ Python Run | ${workspace_loc:/Kernel_Debug/load_ko.ds} | File System...| | Workspace...
Python unittest
E_’ Remote Java Appliv
v
< >
Apply Revert

Filter matched 22 of 22 items

Close

Apply the settings and press Close (do not press Debug yet!).

Debug the Kernel module

The following steps are required to come to a point where you can debug the kernel module:

(7> Restart your target and halt in U-Boot.
Debug and run the Cortex-M4 application RPMSG TTY RTX.
Boot Linux.

At the Linux prompt, issue the following command to install the driver for the kernel module:

modprobe imx rpmsg_tty
Debug and run the Kernel_Debug project.

Now, you can open the imx_rpmsg_tty.c and set breakpoints.

Finally, debug the Linux Application TTY as well (make sure that the RSE connection is still
live). When you run the application, the debugger will stop at the breakpoint you have set in the

previous step.

£ Debug .. 12 =8
SR TR TS ERAN IR

@& Kemel_Debug connected
3 Cortex-A7_0 #0 running
¢ Cortex-A7_1 #1 running
a @ Linux Application TTY application exit: code 0
& Application terminated £2 terminated
a @ RPMSG_TTY_RTX_M4 connected
P Cortex-MM #1 running

Status: connected S Support: Enzbled

) imx_rpmsg_tty.c 3%

a9

print_hex_dump(KERN_DEBUG, __ func__,
data, len, true);

spin_lock_bh(&cport->rx_lock);

6 space = tty prepare flip_string(icpo
57 if (space <= @) {

58 dev_err(&rpdev->dev, "No memory
spin_unlock_bh(&cport->rx_lock);
return;

¥

memepy (cbuf, data, len);
tty_flip buffer_push(&cport->port);
spin_unlock_bh(&cport->rx_lock);

& Commands 52 i W ERES -4 =0

45, Linked: Kernel_Debug =

greakpoint 2 deleted a
wait
centinue
break -p "C:/@3_workspace/DS-MDK/imx_rpmsg_tty.c":52
Hardware breakpoint 3 at S:8x7F81B@20

on file imx_rpmsg tty.c, line 52
Execution stopped in SVC mode at breakpoint 3: S:@x7F@1B820
0On core Cortex-A7_& (ID @)
In im_rpmsg_tty.c
S:@x7F@1BR28 52,8
wait
continue
Execution stopped in SVC mode at breakpoint 3: S:@x7F@1B820
On core Cortex-A7_& (ID) =
5:0x7F@1BO2e 52,0 print_hex_dump(KERN_DEBUG, _ func_, DU
wait
continue

print_hex_dump (KERN_DEBUG, _ func__, DU

=0

Command: Press (Ctrl+ Space) for Content Assist

dev_dbg(&rpdev->dev, "msg(<- src Oxix) len ¥d\n", src, len);

DUMP_PREFIX_NONE, 16, 1,

rt->port, &cbuf, len);

for tty_prepare_flip_string\n"};

I

Getting Started with DS-MDK 47

Arm Streamline

Arm Streamline performance analyzer gives you the ability to collect performance metrics, software
tracing and statistical profiling from your Linux system and show that in its innovative user interface.
Streamline helps you to identify code hotspots, system bottlenecks and other unintended effects of your
code or the system architecture.

DS-MDK includes Arm Streamline in the MDK Professional edition: you can launch Streamline from
the Arm DS-MDK Start menu.

. ARM DS-MDE v5.26.1
|| Debug Hardware Tools (Removed)
BN DS-MDK v5.26.1 Command Prompt
¢ D5-MDK v5.26.1 Release Motes
& Eclipse for DS-MDK v5.26.1
'~ Streamline (DS-MDK 5.26.1)
LE;! Uninstall ARM DS-MDK v5.26.1

Once launched, Streamline allows connecting via TCP/IP to a running Linux target. A target agent
(gator) is required to run on the Arm Linux target for Arm Streamline to operate. If you downloaded
the Linux image from http://wwwz2 keil.com/mdk5/ds-mdk/install#boards, then gator is already
installed so you do not need to rebuild the image.

To start collecting data, you can type the target hostname or IP address in the field box on the top-left
side of the window and press the Start Capture button.

Streamline
File Edit Bare Metal Window Help

1l Streamline Data = B8
%% | Target name or IP address o)
i Filter B 2y

The interface would then show the acquired data in graphs which can be used to understand which
parts of the code require optimizations or affect the performance of the system considerably.

1| Capture_C01_A0L i3
[Timeline| 7 Call Paths| @ Functions| [si) Code| = Call Graph| B Stack| & Log

YN K T EVEY

145

GPU Vertex
I DAty

GPU Fragment
I Dlackvity

system_server 02148

Effective Shader Cycles
(=l
=k

=

E

3*
Geometry Statistics 3
BTriangles z

#*
glDrawElements Statistics
B Cats o =

*
Mali GPU Vertex Processor
Sl =5

For extra information on the capabilities of the product, please refer to the user guide available online
at https://developer.arm.com/docs/100769/latest/.

http://www2.keil.com/mdk5/ds-mdk/install#boards
https://developer.arm.com/docs/100769/latest/

48

Store Cortex-M image

Store Cortex-M image

To store the Cortex-M image for execution at start up use the following steps:

1. Create a binary image (BIN) with the frome1£ utility application.
2. Store this BIN image on SD card in the boot partition
3. Setup the U-Boot environment to start-up the BIN image file.

Create a Cortex-M binary image (BIN)
Right-click the project and select Properties - C/C++ Build - Settings. In the the Build

i 4

Steps enter under Post-build steps the Command:

fromelf --bin --output "Blinky.bin" "Blinky.axf"

& Properties for Blinky

type filter text

Resource
Builders
w C/C++ Build
Build Variables
Environment
Legging
Settings
Toel Chain Editor
C/C++ General
Project References
Run/Debug Settings

Settings

Configuration: |Debug [Active]

#) Tool Settings Build Steps Build Artifact |ﬂ Binary Parsers @ Error Parsers

Pre-build steps

Command:

~ | | Manage Cenfigurations...

Description:

Post-build steps

Command:

| fromelf --bin --output "Blinky.bin" "Blinky.axf"

Description:

NOTE

This example built in section Blinky with CMSIS-RTOS RTX at page 22 is not adequate to run
standalone as it makes use of semihosting to print messages thus requires a debug adapter
connected. A possible alternative is to use the Blinky example included in the CMSIS Pack

Packs [Examples 2

Search Example

Example Action
CMSIS-RTOS Blinky M4 (iMX7-Meerkat-96Boards) ¥ Copy
CMSIS-RTOS2 Blinky M4 (iMX7-Meerkat-96Boards) < Copy
Linux Application TTY (iMX7-Meerkat-96Boards) ¥ Copy
RPMSG TTY CMSIS-RTOS (iMX7-Meerkat-96Boards) < Copy
RPMSG TTY CMSIS-RTOS2 (IMX7-Meerkat-96Boards) ¥ Copy

[Only show examples from installed packs | “

Description

CMSIS-RTOS RTX Blinky example for Cortex-M4
CMSIS-RTOS2 RTXS Blinky example for Cortex-M4
Linux Application TTY example

CMSIS-RTOS RTX TTY example for Cortex-M4
CMSIS-RTOSZ RTX5 TTY example for Cortex-M4

Click OK and rebuild the project to get the BIN file generated.

Getting Started with DS-MDK 49

Store Cortex-M BIN file on SD Card
The SD Card has two partitions:

= The Linux file system partition.
= The FAT32 boot partition.
(& List the partitions with the fdisx command:

~# fdisk -1
Bevice Boot Start End Sectors Size Id Type
/dev/mmcblkOpl 8192 24575 16384 8M c W95 FAT32 (LBA)
/dev/mmcblk0p2 24576 1236991 1212416 592M 83 Linux
(& Store the Cortex-M binary image in the FAT32 boot partition to be able to execute it at system
startup:

1. Create a sub-directory on the Linux file system, for example:
~# mkdir /media/sdO

2. Mount the Linux file system partition for access with RSE.
~# mount -t vfat /dev/mmcblkOpl /media/sdO

3. Use RSE to copy the BIN file from your workspace to the /media/sdo directory.
4. Unmount the partition to ensure that the file is written correctly:

~# umount /media/sdO

5. Reboot the system and halt in U-Boot.

Cortex-M BIN file from U-Boot
At this point, the Cortex-M BIN file is stored in the boot partition.

[Use the setenv command to change the boot image to the new BIN file:
=> setenv md4image Blinky.bin; save
The printenv command shows the boot setup:
=> printenv

setenv loadm4image=fatload mmc ${mmcdev}:${mmcpart} 0x007F8000 ${mdimage}
setenv md4boot=run loadmd4image; bootaux 0x007F8000
setenv md4image=Blinky.bin

Run maboot to start the Blinky application:

=> run mdboot

NOTE
For more information refer to the U-Boot Command Line Interface in the U-Boot user's manual
(www.denx.de/wiki/DULG/UBoot).

http://www.denx.de/wiki/DULG/UBoot

50 Appendix

Appendix

Remote Processor Messaging protocol example

The device family packs for NXP’s i.MX devices contain two example projects that show how the
two processors communicate with each other using the remote processor messaging protocol
(RPMSG) viaa TTY serial device.

Cortex-A Nxo Cortex-M

I v Corsole £3 | - & Temnal M4 (3 |
1 Get Message From I_MX? 1 Get Message From

Remote Side: Master Side:
Hello from M4! ARM®Cortex®-A7 "Hello from A7!"

Child exited with ARM®COI’tEX®-M4 [len = 14]

status 0
RTOS System

Linux Application

The Linux Application TTY runs on the Cortex-A processor and writes a message to a TTY device.
The terminal of the RPMSG TTY RTX application running on the Cortex-M processor shows this
message. The application itself responds on the TTY device. The Linux application reads this
message and shows it in its App Console.

Eclipse IDE

DS-MDK is an Integrated Development Environment (IDE) that combines the Eclipse IDE with the
compilation and debug technology of Arm.

Use DS-MDK as a project manager to create, build, debug, monitor, and manage projects for Arm
targets. It uses a single folder called a workspace to store files and folders related to specific projects.

Users can extend its abilities by installing plug-ins written for the Eclipse platform, such as the
CMSIS Pack Manager and Remote System Explorer, included in DS-MDK.

Perspectives

DS-MDK have multiple perspectives: each perspective contains an initial set and layout of views that
help you to create, build and debug projects. While working with DS-MDK, you will switch
perspectives frequently. It is always possible to change a perspective layout and to add new views to
it.

DS-MDK uses mainly these perspectives:

= C/C++ Perspective

= CMSIS Pack Manager Perspective

= Remote System Explorer Perspective

= DS-5 Debug Perspective

Getting Started with DS-MDK 51

C/C++ perspective

By default, this perspective consists of the Project Explorer, an editor area and views for tasks,
properties, and a message console.

The editor area shows C/C++ source code as well as graphical representations of various
configuration files such as the Run-Time Environment configuration file, the AXF file, the scatter file,
and files with CMSIS configuration wizard annotations.

Project Explorer Dependency Check Manage Run-Time Environment Console
© C/C++ - RPMSG_TTV RTX_M4/RPMSG_TTY_RTX_Md.rteconfig - Eclipse Platform - o x
File Edit Source Refpctor Navigate Search Project Run Window Hel)
OGBS - i@ -8 -[-- %0 -0 &+ - ARAERE B loueknccess [i] || % @
(7 Project Explorer 13 |21 5 ¥ = O | "RPMSG_TTY_RTX Mdrteconfly 1% | i= RTX Conf CM.c [€] hardware init.c = 0O | % Outline 33 =g
v 5 Linux Application|TTY ¢ Components® (-] Resolue @ [
$> Binaries An outline is not available.
5 Includes Software Compenents Sel. Variant Vendor Verson Deseription A
8 sic ! MCIMX7D:Cortex-M4 NXP ARM Cortex-M4, 64 kB RAM, 32 kB R
(= Debug 4 Board Support MCIMXTD-SABRE Keil 100 , iMXTD SAERE Board
v (5 RPMSG_TTY_RTX_M4 v @ CMSIS Cortex Microcontroller Software Inte)
[Includes # CORE (] ARM 500 , CMSIS-CORE for Cortex-M, SC000, S¢
(& Debug @ DSP [m] ARM 146 CMSIS-DSP. for Cortex-!
~ & RTE % 105 (4P) 10
= Board_Support @ RTOS2 (4RI) 20]
v (= CMSIS € CIVISIS Driver Unified Device Drivers compliant to ¢
[RTX_Conf_CM.c [ARM:CMSIS & Compiler ARM Compiler Software Extensions
RTX_CM2.lib [ARM:CMSISRTC | |+ @b Device Startup, System Setup
& Compiler ~ @ iMX7D HAL
& Device @ ceum Keil 108, Clock Control Module
(= OpenAMP @ MU Keil 100, Messaging Unit
RTE_Components.h @ RDC Keil 10.0 , Resource Domain Controller
[€] hardware_init.c @ UART Keil 10.0 , Universal Asynchronous Receiver/Tr
€] tty_rbec @ Startun M Keil 10.0 NXP iMXTD (M4 dlevices v
[El MCIMXTD_Cortex-Md.sct < >
& RPMSG_TTY_RTX_Ma teconfig Validation Output Description)
v A, Keil MCIMXTD-SABRE: Board Support.iMX7D SABRE Board HW INIT Additional software components required
~ i require Cclass="CMSIS", Cgroup="CORE" Select component from list
@ ARM:CMSIS.CORE (CMSIS-CORE for Cortex-M, SC000, SC300, ARMvE-M
o A i MACIUAY T ABBE Brared C1rmos st ILAYTT) CABBE Bt e 1/ it sl nfhusars -nmmmante ram e
< >
Components | Device | Packs
B Console 2 oG BB BRI #rEIm-= 8
COT Build Cansale [RPMSG_TTY_RTX_M4]
~
Total RO Size (Code + RO Data) 28292 (27.63kB)
Total RW Size (RW Data + ZI Data 31856 (31.11kB)
Total ROM Size (Code + RO Data + RW Data) 28412 (27.75kB)
13:45:01 Build Finished (took 21s.546ms)
v
< 5 (3 >

For more information, refer to the C/C++ Development User’s Guide and the CMSIS C/C++
Development User’s Guide available from the Eclipse help system (Help - Help Contents).

ELF file viewer

An ELF file is the executable image generated by the Arm linker that contains object code and debug
information. Open it from the Project Explorer to inspect the contents of the image.

RPMSG_TTY_RTX_Md.axf 7 = O

Header

&

Machine class
Data encoding

Header version

Operating System ABI

ABI version

File type

Machine

Image entry point

Flags

Header Size

Segment header entry size
Section header entry size
Program header entries
Section header entries
Program header offset
Section header offset

Section header string table index 15

ELFCLASS32 (32-bit)

ELFDATA2LSE (Little endian)
EV_CURRENT (Current version)

none

]

ET_EXEC (Executable file) (2)
EM_ARM (Advanced RISC Machines ARM)
ax1FFFB299

EF_ARM _HASENTRY + EF_ARM ABI_FLOAT SOFT (@x@5808202)
52 bytes (@x34)

32 bytes (8x20)

48 bytes (8x28)

1

16

5497220

5497252

Header | Sections Segments Symbol Table | Disassembly

52 Appendix

CMSIS Configuration Wizard

Right-click on a file in the Project Explorer and select Open With - CMSIS Configuration Wizard
to modify files with CMSIS configuration wizard annotations in a graphical editor. Verify and adapt
the contents directly in the graphical representation of the text file.

= RTX Conf CM.c 32 g
i= CMSIS Configuration Wizard # B @
~

Option Value

~ Thread Configuration
Number of concurrent running user threads &

Default Thread stack size [bytes] 1024
Main Thread stack size [bytes] 1024
Number of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provided stack size 0
Stack overflow checking
Stack usage watermark O
Processor mode for thread execution Privileged mode
v RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer
RTOS Kernel Timer input clock frequency [Hz] 24000000
RTX Timer tick interval value [us] 1000
v System Configuration
~ Round-Robin Thread switching
Round-Rohin Timenut ticks] 5 v
< >

Number of concurrent running user threads
Defines max. number of user threads that will run at the same time.
Default: 6

Source Editor CMSIS Configuration Wizard

Scatter File Viewer

Scatter files (*.sct) are used to specify the memory map of an image to the linker. The Scatter File
Viewer lets you inspect this text file in a graphical representation. Use the filename.sct tab to edit the

scatter file contents (refer to Save the file using &l or CTRL+S

Adapt the scatter file on page 27).

[E] MCIMX7D_Cortex-Mdsct 53 =0
DFFFFFFFF T 1 OXFFFFFFFF |
LR _IROM1 RW IRAM1
ANY (+RW,+Z|
LR_IROM! s J
£x20000000
ER_IROM1

*.0 (RESET, +First)
* (InRootSSSections)
ANY (+RO)

Ox1FFFR000 Ox1FFFB000

0xD0DODO0D ¢ : 0x00DODO0D ¢

Load Regions Execution Regions

< >
Regions/Sections MCIMX7D_Cortex-Md.sct

If you want to learn more about the scatter loading mechanism, look for the documentation at
https://developer.arm.com.

CMSIS Pack Manager perspective

The Pack Manager perspective offers the following functionality:
= Install or update software packs.

= List devices and boards supported by software packs.

= List example projects from software packs.

https://developer.arm.com/

Getting Started with DS-MDK 53

Use the ' icon and select CMSIS Pack Manager, to open this perspective.

Device Database Available Packs/Examples Pack Properties

Manager - FPMSG_TT

GTTY_RTX WM tecarfig - Eclipss Platfarm

= bampies] iy show exambies from nctlled packs | (3

|| Bampie Action
CMSES. B0 Binky (MCWAXTD-SABRE) 8 Comy,
TIY (MCIMCTD-SABE) i Com

ize (Code + A Data) 382 (27.63K8)
ize (R Data + IT Data) 51356 (31.118)
ize (Code + RO Dats + RN Dats) 412 (27.75K8)

onLine

For more information, refer to the CMSIS C/C++ Development User’s Guide available from the
Eclipse help system (Help = Help Contents).

Remote System Explorer perspective

The Remote System Explorer (RSE) is a workbench perspective that allows you to connect and
work with a variety of remote systems. With predefined plug-ins, you can look at remote file systems,
transfer files between hosts, do remote search, execute commands and work with processes.

Remote Systems File/System Properties Source Code Editor Remote System Details

© Remote System Explorer e Termg s/ 1041.1.1
Fie Edt Mavigale Sesrch| Project fum Vafdow Heip

o I SO B-0-%-iV- SR ik A

keepousy sh ©
while i do i done &

5 5 Tasks

Parent profie Remote system type Co
DESKTOP-S6TOQPL Local
34 MIT_SABRE DESKTOP-SETOQPL S5H Only

For more information, refer to the RSE User Guide in the Eclipse help system (Help = Help
Contents).

54 Appendix

DS-5 Debug perspective

The DS-5 Debugger allows you to debug bare-metal, RTOS, and Linux applications with
comprehensive and intuitive views, including synchronized source and disassembly, call stack,
memory, registers, expressions, variables, threads, breakpoints, and trace.

Debug Control Source Code Editor ~ Target Connection Disassembly Variables

& DS-5 Debug -{Linux Application TTY/src/LinucTTY.c - Eclipse Fjatform - o X

File Edit Sourfe Refactor Navigate Search Project Ruf Window Help
(i [% v B Q™ v e e Quick Access 5| @d E
A5 Debug Con... 53 | [Project Bxp... 4§ RemoteSy.. =

SEARECEE TS SR gl]

nds &3 il

®BEEE v % = O ®-Varab. 83 i =7

v TR GDB Debug application xit: code 255
ermin

nUXTTY . C
e86F4 61,8 {
ed temporary breakpoint: 1

continue & r .
NORMAL_TERMINATION o [& Filestticforiables 00f 0 variables

< >« >
Cammand:{Press (Ctrl+Space) for Content Assist Browse.
=g
&y
ror %d from tesetatsc”, errno);
0xD000B6FE "
@x000086F2
it ary ar *argy|
¢ =1 0x000086F4
ame = */dey/tryRPISG"; x00008EFE
6xDOBBBEFS
int fd = open (portname, O_RDWR | O_MOCTTY | 0_SYNC); 0x000086FA
if (fd < @) - - - Ox@00886FC
R 0xD0BOBEFE
printf ("Error %d opening ¥s: %s”, errno, portname, strerror (errno)); 000085702
return 13 0x00005706 v
i < >
set_interface_attribs (fd, 6115200, B); I App Console 52 =5

write (fd, "Hello from A7!", 14);

usleep (10006);

-
Li:
char buf[14]; Del been started, ng to gdbserver
read (fd, buf, sizeof buf); Res rom host 10.41.158.26
. . Error 2 op dev/ttyRPISG: No such File or directory
printf ("Get Message From Remote Side: ¥s, buf); Child exited with status 255
v v

< > < >

R GDB Debug application exit: code 255 (Linux Application Debug - Application Debug)

For more information, refer to the Arm DS-5 Debugger Documentation in the Arm DS-MDK
Documentation available from the Eclipse help system (Help = Help Contents).

Additional links

Kernel.org: http://www.kernel.org/doc/Documentation/arm/Booting

Debugging with scripts: https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts

Debug configurations: https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-
and-views/debug-configurations-debugger-tab

http://www.kernel.org/doc/Documentation/arm/Booting
https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab

