ARMKEIL

Microcontroller Tools

Getting Started with MDK

Create Applications with pVision®
for ARM® Cortex®-M Microcontrollers

K3 wvision - O X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
1S5 dd B9 0C[e=|p | == wene Vaslalec @B
& e %% | STM32F746 Flash P3N . & O @
Project L > | _) HTTPServerc® | Abstracttd < &=
575 Project: HTTP Server 103 MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE: ~
&5 STM32FT46 Flash X 110 | meq B B B
B i Source i1 MPU BASE ~
) HITP Servecc 12 | | T
J HTTP_Server_CGl.c Thicy MPU_CTRL_ENABLE Msk
MPU_CTRL_ENABLE Pos
L] webe 1215 || MPU CTRL HFNMIENA Msk v|?
0 Web files ™ S— -
& Documentation I8 Manage Run-Time Environment X
L1 Abstract.bdt
= Board Support Software Component Sel. Variant Version Description
@ cmsis # € Board Support STM32F746G-Discovery |~|1.00 | STMicroelectronics STM32F746G-Discovery Kit =
€ CMSIS Driver © @ CMSIS Cortex Mi ller Software Interface C
59 Device ® € CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver
=% Network © € Compiler ARM Compiler Scftware Extensions
T Net CM3_Liib (CC | & @ Device Startup, System Setup
L) Net_Config.c (COR | @ € File System MDK-Pro 650 | File Access on various storage devices
L] Net Config ETHO | & & Graphics MDK-Pro 5300 | Usernterface on graphical LCD displays
1 Net_Config HTTP_ | 5 & Graphics Display Display Interface including configuration for emWIN
] Net_Config TCPh | o @ Network MDK-Pro 650 |P Networking using Ethemet or Serial protocols
L] Net_Config UDP.h ¢ CORE [%| Release +|650 Networking Core for Cortex-M (Release)
© € Interface Connection Mechanism
o @ Senice Network Services L
© € Socket Network protocol
© @ use MDK-Pro 650 | USB Communication with various device classes =
Validation Qutput Description
= A Keil MDK-Pro::Network:CORE Additional software components required i‘
5 require CMSIS:RTOS Select component from ist
@ ARM:CMSIS:RTOS:Keil RTX CMSIS-RTOS RTX implementation for Cortex-M, SC000, and SC300 =l
7l | | Reshe | [ssectPac| | Dai Ce= [e |],
il Project | €6 s | Dy Templates < >
ST-Link Debugger L110C6

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2016 ARM Germany GmbH
All rights reserved.

Keil®, uVision®, Cortex®, CoreSight™ and ULINK™ are trademarks or
registered trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC® is a registered trademark of International Business Machines Corporation.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the ARM® Cortex®-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started with MDK: Create Applications with pVision

Preface

Thank you for using the MDK Version 5 Microcontroller Development Kit
available from ARM® Keil®. To provide you with the very best software tools for
developing ARM® Cortex®-M processor based embedded applications we design
our tools to make software engineering easy and productive. ARM also offers
complementary products such as the ULINK™ debug and trace adapters and a
range of evaluation boards. MDK is expandable with various third party tools,
starter kits, and debug adapters.

Chapter Overview

The book starts with the installation of MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Tools, the Software
Packs, and describes the product installation along with the use of example
projects.

CMSIS is a software framework for embedded applications that run on Cortex-M
based microcontrollers. It provides consistent software interfaces and hardware
abstraction layers that simplify software reuse.

Software Components enable retargeting of 1/0 functions for various standard
I/0 channels and add board support for a wide range of evaluation boards.

Create Applications guides you towards creating and modifying projects using
CMSIS and device-related software components. A hands-on tutorial shows the
main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real
hardware and explains how to connect to development boards using a wide range
of debug adapters.

Middleware gives further details on the middleware that is available for users of
the MDK-Professional and MDK-Plus editions.

Using Middleware explains how to create applications that use the middleware
available with MDK-Professional and MDK-Plus and contains essential tips and
tricks to get you started quickly.

Preface

Contents
PIETACE ... e 3
MDK INTrOAUCTION ... s 7
10T S oo RSP T 7
SOTIWAIE PACKS ... et 8
MDK EGITIONS.ciuveiieiieiisiisise ettt 8
INSEAITALION ...ttt sreer e neenne s 9
Software and Hardware ReQUIrEMENTSccceeveieieerie i 9
INSEAIl IMDIK COFE ... e 9
INStall SOFEWArE PACKS.........civiieiiiieicseeie s 10
MDK-Professional Trial LICENSE........cccciveveriiriierierieiie e seese e 11
Verify Installation using Example Projectscccccevvvivivieieieeseseciesesnnan 12
USE SOTtWAre PACKSccveieeiee st 16
ACCESS DOCUMENTALION ..ottt et s nee e 20
REQUESE ASSISTANCE ...e.veeviiiiecie ettt s reste et esbeera e besre e e e re e 20
Learning PIatfOrmMcoooiii i et 21
QUICK SEAT GUILES. ... eivreveeieiee ettt st naeeees 21
L0\] 1 TR 22
CMSIS-CORE ..ottt ettt e s e 23
USING CMSIS-COREccoiiiiiieeieeese e 23
CMSIS-RTOS RTX ettt sttt ettt sttt 26
SOTIWAIE CONCEPLS ...ttt 26
USIiNG CMSIS-RTOS RTX ..ociiiiiiieieite ettt es 27
CMSIS-RTOS System and Thread VIEWETccovcvveveieeie i, 36
CIMSIS-DSP.... ittt ettt saer e 37
CIMSIS-DIIVEL ..ottt s be e be e beesbeesree s 39
(00001 1o V1 =1 1[0 o F USROS 40
VaAlIUALION ..o e 41
Software COMPONENTS......ccuoiiieiiecieece e 42
COMPIIET .ttt 42
BOArd SUPPOIT. ..o 44
Create APPHCATIONS.......ccoiiiiiiiicieiee e 45
Blinky With CMSIS-RTOS RTX.....oiiiiieiiceeeesee e 45
Blinky with Infinite LOOP DESIGN......coiiiieiieeieeee e 54
Device Startup VariationS..........cocceeieeieneneeeseee et 56
Example: Infineon XMC1000 using DAVE........c.cccooeiiiiiniiinineen 56

Example: STM32CUDEccooiieii e 59

Getting Started with MDK: Create Applications with pVision

Debug APPLICALIONSceeiieececeee e 63
Debugger CONNECTIONuiiiiiiieeeeee s 63
USING the DEDUGUETvveveiiecie ettt st sre e re e 64
DebUQG TOOIDANeoieciece e e 65
CommMaNd WINUOWcoveiiiieieieee e 66
DisassemBly WINUOWccoiiiiiiieiicee s 66
BreaKPOiNTScviiieiiecie et 67
WALCH WINAOW ... e 68
Call Stack and Locals WINOW............cocveiriiiireiineiie e 68
RegiSter WINAOWocvviiiiecice s 69
MEMOFY WINAOW......ccviiiiciiii et 69
Peripheral REQISTEISooiiiei s 70
I - T TR UP PRSPPI 71
Trace with Serial Wire OUIPUL..........ccoiiiiiiiiecc e 72
Trace EXCEPLIONScouveiiiiiiiiitisiie e 74
EVENE VIBWET ...ttt et ens 75
LOGIC ANAIYZET ..o et 76
Debug (Printf) VIEBWETccv i 77
EVENT COUNTETS. ...ttt et sre b 78
Trace With 4-Pin OUIPULccoeiieiiiececec e 79
Trace with On-Chip Trace BUFfer........cccooeiiieiii i 79
MIAAIBWATE ... e 80
NEtWOIrK COMPONENT.....c.viiiiiieciecteee ettt st st s reera e besaeer et 82
File System COMPONENT.........coviiiiiiiiie s 84
USB COMPONENL......eiiiiiiiitiiieie sttt bbbt ne e 85
Graphics COMPONENTociiieiecieeie ettt s be e e r e be s sreere 86
Migrating to Middleware VErSiON 7 ..o 87
FTP Server EXAMPIE........ccoiiire s 89
USING MIAAIBWATE ..o 91
USB Device HID EXamPple.......ccooiiiiiiiiieeee s 93
Add Software COMPONENES........cccecieiiieeie e s 94
Configure MIAAIBWATE...........ociiiiiieieeee s 96
CONTFIGUIE DIIVEIS ..ot 98
AdjuSt SYSTEM RESOUITESeeeeeieeiie e eieeiesieeieesie et e st ee e eneenee e 99
Implement Application FEATUIES.cccveii i 100
Build and DOWNIOAAcceeiiiiiiieieiece et 103
Verify and DeDUQo.vviiiiie 103

Preface

NOTE
This user’s guide describes how to create projects for ARM Cortex-M

microcontrollers using the uVision IDE/Debugger.

Refer to the Getting Started with DS-MDK user’s guide for information how to
create applications with the Eclipse-based DS-5 IDE/Debugger for ARM Cortex-

A/Cortex-M devices.

Getting Started with MDK: Create Applications with pVision

MDK Introduction

The Keil Microcontroller Development Kit (MDK) helps you to create embedded
applications for ARM Cortex-M processor-based devices. MDK is a powerful,
yet easy to learn and use development system. MDK consists of the MDK Core
plus device-specific Software Packs, which can be downloaded and installed
based on the requirements of your application.

MDK-Core ARM C/C++ Compiler DS-MDK

pVision IDE ARM Compiler 5 DS-5 IDE
with Pack Management with Qualification Kit with Pack Management

MDK Tools

pVision Debugger ARM Compiler 6 DS-5 Debugger
with StreamingTrace LLVM Technology with Streamline
Device CMSIS Middleware

CMSIS-Core IPv4 Network

USB Device

Startup IPv6 Network

mbedTLS
SSU/TLS Encryption

Device HAL CMSIS-DSP

Software Packs

mbed Client
loT Connector

CMSIS Drivers CMSIS-RTOS

File System

MDK Tools

The MDK Tools include all the components that you need to create, build, and
debug an embedded application for ARM based microcontroller devices. The
MDK-Core is based on the genuine Keil uVision IDE/Debugger with leading
support for Cortex-M processor-based microcontroller devices including the new
ARMV8-M architecture. DS-MDK contains the Eclipse-based DS-5
IDE/Debugger and offers multi-processor support for devices based on 32-bit
Cortex-A processors or hybrid systems with 32-bit Cortex-A and Cortex-M
processors.

MDK includes two ARM C/C++ Compilers with assembler, linker, and highly
optimize run-time libraries tailored for optimum code size and performance:

= ARM Compiler Version 5 is the reference C/C++ compiler available with a
TUV certified Qualification Kit and Long-Term Support and Maintenance.

= ARM Compiler Version 6 is based on the innovative LLVM technology and
supports the latest C language standards including C++11 and C++14.

MDK Introduction

Software Packs

Software Packs contain device support, CMSIS libraries, middleware, board
support, code templates, and example projects. They may be added any time to
MDK Core or DS-MDK, making new device support and middleware updates
independent from the toolchain. The IDE manages the provided software
components that are available for the application as building blocks.

MDK Editions

The product selector, available at http://www.keil.com/mdk5/selector, gives an
overview of the features enabled in each edition:

= MDK-Professional contains all features of MDK-Plus. In addition, it
supports IPv4/IPv6 dual-stack networking, 10T connectivity, and a USB Host
stack. Once available, MDK-Professional includes ARMv8-M architecture
support and a license for DS-MDK.

= MDK-Plus contains middleware libraries for IPv4 networking, USB Device,
File System, and Graphics. It supports ARM Cortex-M, selected ARM
Cortex-R, ARM7, and ARMS processor based microcontrollers.

= MDK-Cortex-M supports Cortex-M processor-based microcontrollers.

= MDK-Lite is code size restricted to 32 KByte and intended for product
evaluation, small projects, and the educational market.

License Types

With the exception of MDK-L.ite, the MDK editions require activation using a
license code. The following licenses types are available:

Single-User License (Node-Locked) grants the right to use the product by one
developer on two computers at the same time.

Floating-User License or FlexLM License grants the right to use the product on
several computers by a number of developers at the same time.

7-Day MDK-Professional Trial License to test the comprehensive middleware
without code size limits.

For further details, refer to the Licensing User’s Guide at
www.Keil.com/support/man/docs/license.

http://www.keil.com/mdk5/selector
http://www.keil.com/support/man/docs/license

Getting Started with MDK: Create Applications with pVision

Installation

Software and Hardware Requirements

MDK has the following minimum hardware and software requirements:
A PC running Microsoft Windows (32-bit or 64-bit) operating system

4 GB RAM and 8 GB hard-disk space

1280 x 800 or higher screen resolution; a mouse or other pointing device

Install MDK Core

Download MDK Version 5 from www.Kkeil.com/download - Product Downloads
and run the installer.

Follow the instructions to install the MDK Core on your local computer. The
installation also adds the Software Packs for ARM CMSIS and MDK
Middleware.

MDK Version 5 is capable of using MDK Version 4 projects after installation of
the Legacy Support from www.keil.com/mdk5/legacy. This adds support for
ARM7, ARM9, and Cortex-R processor-based devices.

After the MDK Core installation is complete, the Pack Installer is started
automatically, which allows you to add supplementary Software Packs. As a
minimum, you need to install a Software Pack that supports your target
microcontroller device.

http://www.keil.com/download
http://www.keil.com/mdk5/legacy

10 MDK Introduction

Install Software Packs

The Pack Installer is a utility for managing Software Packs on the local
computer.

@ The Pack Installer runs automatically during the installation, but also can
be run from pVision using the menu item Project — Manage — Pack
Installer. To get access to devices and example projects you should install
the Software Pack related to your target device or evaluation board.

NOTE
To obtain information of published Software Packs the Pack Installer connects to
www.keil.com/pack.

8 Pack Installer - C:\Keil_vS\ARM\PACK - [m] x
File Packs Window Help
¥ | Device: ARM - ARM Cortex M7

14| Devices | Boards ol |[4] Packs | Examples b
Search: - X Pack Action Description
Device ¢ | summary = Device Specific 0Packs |
Bt All Devices 3188 Devices <]f|| & Generic 12 Packs
4 @ ABOV Semiconductor |4 Devices - ARM:CMSIS & Update || CMSIS (Cortex Microcontroller Software Interface Standar
%@ Ambig Micro 2 Devices 4.5.0 (2015-10-28) < _Install CMSIS (Cortex Microcontroller Software Interface Standar
%@ Analog Devices 13 Devices 44,0 (2015-09-11) 98 Remove | CMSIS (Cortex Microcontroller Software Interface Standar
o @ ARM 18 Devices 43,0 (2015-03-20) 9 Remove || CMSIS (Cortex Microcontroller Software Interface Standar
-4 ARM Cortex MD 2 Devices + Previous ARM::CMSIS - Previous Pack Versions
= %5 ARM CortexMOplus |2 Devices - ARM::CMSIS-Driver_Validation Install CMSIS-Driver Validation
5 ¥ ARM Cortex M3 2 Devices e [T TS € Us to dote || Keil ARM Compiler extensions
&% ARM Cortex M4 4 Devices - Keil:Jansson & _Install Jansson is a C library for encoding, decoding and manipu
5 % ARM Cortex M7 & Devices T - Keil:MDK-Middleware € Update | Keil MDK-ARM Professional Middleware for ARM Cortex-
@ ARMCMT ARM Cortex-M7 10 M. - Keil:MDK-Network_DS < Install Keil MDK-ARM Professional Middleware Dual-Stack [Pvd/
1 ARMCM7 DP | ARM CortexMT 10 Mo - hwlPzwlP % _Install IwlP is 3 light-weight implementation of the TCP/IP protc
&1 ARMCMT7 SP | ARM ComerMT 10 M. & Micrium:RTOS & Install Micrium software components
£1 CMSDK CM7 | ARM Cortex-MT. 25 M., # - Oryx-Embedded:Middleware 4 _Install Middleware Package (CycloneTCP, CycloneSSL and Cycle
€1 CMSDK CM7 DP | ARM Corter MT. 25 M., - wolfSSLiCyassL < _Install Light weight SSL/TLS and Crypt Library for Embedded Sy _|
£1 CMSDK CM7 SP | ARM Cortex-MT. 25 M., - YOGITECH::fRSTLARMCMy EVAL | €% Install YOGITECH fRSTL Functional Safety EVAL Software Pack fc
@ %% ARM SCO00 1 Device #-YOGITECH::fRSTL_STM32Fx EVAL |4 Install YOGITECH fRSTL Functional Safety EVAL Software Pack fc
i L —| | :
Output 1 x

lUpdate available for ARM::CMSIS (installed: 4.4.0, available: 4.5.0)

IUpdate available for Infineo DFP (installed: 2. available: 2.2.0)
Update available for Infi DFP (installe availabl 0]
Update available for Keil::| , available:
lUpdate available for Keil:STM32F available: 2
Ready ONLINE

The status bar, located at the bottom of the Pack Installer, shows information
about the Internet connection and the installation progress.

T1P: The device database at www.keil.com/dd2 lists all available devices and
provides download access to the related Software Packs. If the Pack
Installer cannot access www.keil.com/pack you can manually install
Software Packs using the menu command File — Import or by double-
clicking *.PACK files.

http://www.keil.com/pack
http://www.keil.com/dd2
http://www.keil.com/pack

Getting Started with MDK: Create Applications with pVision

MDK-Professional Trial License

MDK has a built-in free seven-day trial license for MDK-Professional. This
removes the code size limits and you can explore and test the comprehensive
middleware.

Start pVision with administration rights.

1. InpVision, go to File — License Management... and click Evaluate
MDK Professional

Single-User License] Floating License] Floating License Administrator | FlexLM License]

Customer Information Computer 1D
Mame: | B
Comparry: | Get LIC via Intemet .. |

Email: |

Product | License ID Code... | Support Period
MDK-Lite Evaluation Version

Mew License |D Code (LIC):

[Evaluate MDK Professional I Close Help

2. On the next screen, click Start MDK Professional Evaluation for 7
Days. After the installation, the screen displays information about the
expiration date and time.

NOTE
Activation of the 7-day MDK Professional trial version enables the option Use
Flex Server in the tab FlexLM License as this license is based on FlexLM.

12

MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a Software Pack for your
device, you can verify your installation using one of the examples provided in the
Software Pack. To verify the Software Pack installation, we recommend using a
Blinky example, which typically flashes LEDs on a target board.

T1P: Review the getting started video on http://www.keil.com/mdk5 that
explains how to connect and work with an evaluation kit.

Copy an Example Project

@ In the Pack Installer, select the tab Examples. Use filters in the toolbar to
narrow the list of examples.

1§ STM32FT46BE |1 Device
-4 STM32F746... |1Device
= % STM32FT46IE |2 Devices
w45 STMB32FT46IG |2 Devices
#-% STM32F746... |1 Device

FTP Server (STM32F746G-Discovery)

FTP Server (STM32756G-EVAL)

File System Demo (STM32F746G-Discovery)
File System Demo (STM32736G-EVAL)

LITTN Crmimw FETRAIIETARS Mimmisimm

{8 Pack Installer - C:\Keil_vS\ARM\PACK - m] *
File Packs Window Help
,3’ Device: STMicroelectronics - STM32F746
14| Devices | Boards o] |[4] Packs ' Examples b
Search: - X [Show examples from installed Packs anly
Device /| Summary Eample Action Description
5 STM32F1 Series 95 Devices j BSD Client (STM32F746G-Discovery) l Copy Example using BSD sockets to send commands to_+ |
w4 STM32F2 Series 46 Devices BSD Client (STM327566-EVAL) & Copy Example using BSD sockets to send commands to
w % STM32F3 Series 70 Devices BSD Server (STM32F746G-Discovery) & Copy Example using BSD sockets to accept commands |
w45 STM32F4 Series 153 Devices BSD Server (STM32756G-EVAL) & Copy Example using BSD sockets to accept commands +—
=7 STM32FT Series 29 Devices CMSIS-RTOS Blinky (STM32F746G-Discovery) K K& CMSI5-RTOS based Blinky example
15 STM32F745 8 Devices CMSIS-RTOS Blinky (STM32756G-EVAL) & Copy CMSIs-RTOS based Blinky example
=T STM32F746 14 Devices CMSIS-RTOS Blinky with STM32CubeMX (ST... |€¢ Copy CMSIS-RTOS based Blinky example configured wit

l Copy File Server using FTP pretocol with SD/MMC Menr
& Copy File Server using FTP protocol with SD/MMC Menr
& Copy File manipulation example: create, read, copy, del
i Copy File manipulation example: create, read, copy, del

o i r._._.‘ JJ
3

Output

Ready

2 x

ONLINE

Click Copy and enter the Destination Folder name of your working directory.

Copy Example

orkspa

Destination Folder

DK,

¥ Use Pack Folder Structure

¥ Launch pvision

o]

Browse...

x

Cancel |

NOTE

You must copy the example projects to a working directory of your choice.

http://www.keil.com/mdk5

Getting Started with MDK: Create Applications with pVision 13

Enable Launch pVision to open the example project directly in the IDE.

Enable Use Pack Folder Structure to copy example projects into a common
folder. This avoids overwriting files from other example projects. Disable Use
Pack Folder Structure to reduce the complexity of the example path.

Click OK to start the copy process.

Use an Example Application with pVision

Now pVision starts and loads the example project where you can:

#3 Download the application, typically to on-chip Flash ROM of a device.
@] Run the application on the target hardware using a debugger.

The step-by-step instructions show you how to execute these tasks. After copying
the example, pVision starts and looks similar to the picture below.

K C\Workspaces\MDK\STM32\MDK\Boards\ST\STM32F746G._Discoveny\Blinky\Blinky.uvprojx - {Vision - u] X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=2=N-J @] =@ | i= = | B VRe @lec s &B- A
[) & | $Y | sTM32F746 Flash R B e
Project L= _] Abstract.bxt X
=1 Project: Blinky The 'Blinky' project i3 a simple CMSIS RICS based example for ~
= % STM32F746 Flash ST 'STM32F746NG' microcontroller using ST 'STM32F746G-Discovery' Kit.
0% Source Files Compliant to Cortex Miczoceontzoller Softwaze Intexface Standazd (CMSIS v2.0).
1 Blinky.c Example functionality:
L] Thread LED.c ~ Clock Settings:
- Documentation - XTAL = 25.00 Mz
[Abstractt - SYSCLE — 216.00 Mz
% Boerd Support — LED is blinking
o CMsIs - blinking is paused while holding down the USER button
w4 Device
The Elinky program is available in diffezent targets:
A o STM32F746 REM: configured for on-chip SRAM
femA e ravmar Askrne v
Eer.. |[@eo. | (Tru. 0,7 < >

ST-Link Debugger Lc

T1P: Most example projects contain an Abstract.txt file with essential
information about the operation and hardware configuration.

14 MDK Introduction

Build the Application

Build the application using the toolbar button Rebuild.

The Build Output window shows information about the build process. An error-
free build shows information about the program size.

Build Output x|

#*#% Tzing Compiler 'V5.06 (build 20)', folder: 'C:\Keil w5\ARM\ARMCC\Bin'
Rebuild target 'S5TM32FT74& Flash'
compiling Blinky.c...

compiling Thread LED.c...

compiling Buttons_ 746G _Discovery.c...
compiling LED 746G Discovery.c...
compiling RTX Conf CM.c...

compliling stm32f7xx_hal.c...
compliling stm32f7xx hal cortex.c...
compiling stm32f7xx hal gpio.c...
compiling stm32f7xx hal pwr.c...
compiling stm32f7xx hal pwr ex.c...
compiling stm32f7xx _hal rcc.c...
compliling stm32f7xx hal rcc ex.c...
assembling startup Stm32f746xx.s...
compiling system stm32fT7=x.c...

linking...
Program S5ize: Code=10508 RO-data=616 RW-data=84 ZI-data=4756
".\Flash\Blinky.axf" - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:12

Download the Application

Connect the target hardware to your computer
using a debug adapter that typically connects
via USB. Several evaluation boards provide
an on-board debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are
pre-configured for evaluation kits; thus, you do not need to modify these settings.

4% Click Options for Target on the toolbar and select the Debug tab. Verify
that the correct debug adapter of the evaluation board you are using is
selected and enabled. For example, CMSIS-DAP Debugger is a debug
adapter that is part of several starter kits.

KA Options for Target 'STM32F746 Flash' X
Device] Target] Output] Listing] User] C,-"CH] Asm] Linker Ltilities]
" Use Simulater with restrictions Settings (v USB:I CMSIS-DAP Debugger - | Settings |

[Limit Speed to Real-Time

W Load Application at Startup ¥ Run to main() v Load Application at Startup ¥ Run to main()

Getting Started with MDK: Create Applications with pVision

15

(¥ Enable Load Application at Startup for loading the application into the

TI

LoD

¥

pVision Debugger whenever a debugging session is started.

Enable Run to main() for executing the instructions up to the first

executable statement of the main() function. The instructions are executed
upon each RESET.

p: Click the button Settings to verify communication settings and diagnose
problems with your target hardware. For further details, click the button

Help in the dialogs. If you have any problems, refer to the user guide of the
starter kit.

Click Download on the toolbar to load the application to your target
hardware.

Build Output

Load "C:\\Workspaces\\MDX\\STM32\\MDE\\Boards\\ST\\STM32F746G_Discovery\\Blinky\\Flasn\\Blinky.ax"
Erase Done.

Programming Done.

Verify OK.

Application running ...

Flash Load finished at 14:38:29

The Build Output window shows information about the download progress.

Run the Application

Q

Click Start/Stop Debug Session on the toolbar to start debugging the
application on hardware.

Click Run on the debug toolbar to start executing the application. LEDs
should flash on the target hardware.

16 MDK Introduction

Use Software Packs

Software Packs contain information about microcontroller devices and software
components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only
the options that are relevant for the selected device.

k2 Start pVision and use the menu Project - New pVision Project. After you
have selected a project directory and specified the project name, select a
target device.

Select Device for Target ‘Target 1'... *

Device l

| Software Packs j

Vendor: STMicroelectronics
Device: STM32F746BETx

Toolset: ARM
Search: |
Description:
=% STMicroelectronics j The STM32F7 family incorporates high-speed embedded memories and
5 %% STM32FT Series an extensive range of enhanced |/0s and perpherals connected to

twao APB buses, three AHB buses and a 32-bit mutti-AHB bus matrix.
1§ STM32F745

213 STM32F746
=¥ STM32F746BE

- 64-Kbyte of CCM (core coupled memory) data RAM
- LCD parallel interface, 8080/6800 modes

- Timer with quadrature {incremental) encoder input

- 5 V4olerant 1/0s

- Parallel camera interface

“% STM32FT46BG - True andom number generator

- RTC: subsecond accuracy, hardware calendar

% STM32F745IE ~96bit unigue D

“I& STM32FT46IG

QK | Cancel | Help

T1P: Only devices that are part of the installed Software Packs are shown. If you
are missing a device, use the Pack Installer to add the related Software
Pack. The search box helps you to narrow down the list of devices.

Getting Started with MDK: Create Applications with pVision

17

& After selecting the device, the Manage Run-Time Environment window
shows the related software components for this device.

m Manage Run-Time Envirenment X
Software Component Sel, Variant Version Description
= @ CMSIS Cortex Microcontroller Software Interface Compenents j
¥ CORE [+ 420 CMSIS-CORE for Cortex-h, SC000, and SC300
¥ DsP r 146 CMSIS-DSP Library for Cortex-h, SCO00, and SC300
€ RTOS (AP)) 1.0 CMBSIS-RTOS APl for Cortex- M. SC000. and SC300
= @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ Ethernet (API) 20 Ethernet MAC and PHY Driver API for Cortex-M
@ Ethernet MAC (API) 2.01 Ethernet MAC Driver AP| for Cortex-M
@ Ethernet PHY (AP[) 2.00 Ethernet PHY Driver AP for Cortex-M
@ Flash (API) 2.00 Flash Driver APl for Cortex-M
-4 12C (API) 202 ||2C Driver API for Cortex-M
Lrle v 1.1 12C Driver for STM32F7 Series
& MCI (API) 202 |MCI Driver AP| for Cortex-M
4 NAMD (AP]) 201 NAMD Flash Driver APl for Cortex-M
@ SAl (AP 1.00 SAl Driver AP| for Cortex-M
@ SPI (AP) 201 SPI Driver AP| for Cortex-M
& USART (API) 201 USART Driver APl for Cortex-M
& USB Device (API) 2.01 USB Device Driver AP| for Cortex-h B
@ USE Host (AP 20 USB Host Driver API for Cortex-M
£-3 Compiler ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup v 1.0.1 System Startup for STMicroelectronics STM32FT Series
@ STM32Cube Framework (API) STM32Cube Framework
Validation Qutput Description
=4 Keil::CMSIS Driver:2C Additional software components required &
=) require Device:5TM32Cube HALDMA Select component from list
¥ Keil:Device:5TM32Cube HAL:DMA DMA controller (DMA) HAL driver
=) require Device:5TM32Cube HAL: Commen Select component from list
Keil:Device:5STM32Cube HAL:Cornmen Common HAL driver
[=1-require Device:5TM32Cube HAL:RCC Select component from list
¥ Keil:Device:5STM32Cube HALRCC Reset and clock control (RCC) HAL driver j
Resolve Select Packs Details - Cancel Help

T1P: The links in the column Description provide access to the documentation of

each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to
components. For example, ::CMSIS:CORE refers to the component CMSIS-

CORE selected in the dialog above.

18 MDK Introduction

Software Component Overview

The following table shows the software components for a typical installation.
Depending on your selected device, some of these software components might
not be visible in the Manage Run-Time Environment window. In case you have
installed additional Software Packs, more software components will be available.

Software Component Description ‘ Page

Board Support Interfaces to the peripherals of evaluation boards. 44

CMSIS CMSIS interface components, such as CORE, DSP, 22
and CMSIS-RTOS.

CMSIS Driver Unified device drivers for middleware and user 39
applications.

Compiler ARM Compiler specific software components to retarget 42
I/O operations for example for printf style debugging.

Device System startup and low-level device drivers. 46

File System Middleware component for file access on various 84
storage device types.

Graphics Middleware component for creating graphical user 86
interfaces.

Network Middleware component for TCP/IP networking using 82
Ethernet or serial protocols.

USB Middleware component for USB Host and USB Device 85

supporting standard USB Device classes.

Product Lifecycle Management with Software Packs

MDK allows you to install multiple versions of a Software Pack. This enables
Product Lifecycle Management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

Concept: Definition of major project requirements and exploration with a
functional prototype.

Design: Prototype testing and implementation of the product based on the final
technical features and requirements.

Release: The product is manufactured and brought to market.

Service: Maintenance of the products including support for customers; finally
phase-out or end-of-life.

Getting Started with MDK: Create Applications with pVision

19

In the concept and design phase, you normally want to use the latest Software
Packs to be able to incorporate new features and bug fixes quickly. Before

product release, you will freeze the Software Components to a known tested state.

In the product service phase, use the fixed versions of the Software Components
to support customers in the field.

The dialog Select Software Packs helps you to manage the versions of each
Software Pack in your project:

KA Select Software Packs for Target 'SAMV7 Flash DAP' X

I Use latest versions of all installed Software Packs

Pack Selection Version Description
=l ARM:CMSIS fixed ~ 430 CMSIS (Cortex Microcontroller Software Interface Standard)
44,0 r
43.0 [
Infineon:XMC1000_DFP | excluded |~ Infineon XMC1000 Series Device Support
Infineon:XMC4A000_DFP | excluded |~ Infineon XMC4000 Series Device Support, Drivers and Examples
Keil: ARM_Compiler fixed ~ | 1.00 Keil ARM Compiler extensions
= Keil:MDE-Middleware latest ~ | 6.6.0-RCT | Keil MDK-ARM Professional Middleware for ARM Cortex-M based devices

6.6.0-RC1 I~

E
= Keil: SAM-ESVT_SFP fixed ~ 220 Atmel SAM VT, V70, E70, 570 Software Foundation (HAL, Driver, BSP)
2.3.0-RC1 r
2.20 I¥
Keil:5AM-V_DFP fixed w220 Atmel SAMVT Series Device Support
Keil::STM32F 7o _DFP excluded |+ STMicroelectronics STM32F7 Series Device Support, Drivers and Examples

oK | Cancel | Help

When the project is completed, disable the option Use latest version of all

installed Software Packs and specify the Software Packs with the settings under

Selection:

latest: use the latest version of a Software Pack. Software Components are
updated when a newer Software Pack version is installed.

fixed: specify an installed version of the Software Pack. Software Components in

the project target will use these versions.
excluded: no Software Components from this Software Pack are used.
The colors indicate the usage of Software Components in the current project
target:
Some Software Components from this Pack are used.
Some Software Components from this Pack are used, but the Pack is

excluded.
No Software Component from this Pack is used.

20 MDK Introduction

Software Version Control Systems (SVCS)

pVision carries template files for GIT, SVN, CVS, and others to support
Software Version Control Systems (SVCS).

Application note 279 “Using Git for Project Management with pVision”
(www.keil.com/appnotes/docs/apnt 279.asp) describes how to establish a
robust workflow for version control of projects using Software Packs.

Access Documentation

MDK provides online manuals and context-sensitive help. The pVision Help
menu opens the main help system that includes the uVision User’s Guide, getting
started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS
functions, compiler directives, or library routines. Use F1 in the command line of
the Output window for help on debug commands, and some error and warning
messages.

The Books window may include device reference guides, data sheets, or board
manuals. You can even add your own documentation and enable it in the Books
window using the menu Project — Manage — Components, Environment,
Books — Books.

The Manage Run-Time Environment dialog offers access to documentation via
links in the Description column.

In the Project window, you can right-click a software component group and open
the documentation of the corresponding element.

You can access the uVision User’s Guide on-line at
www.keil.com/support/man/docs/uv4.

Request Assistance

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support and information channels are accessible at
www.keil.com/support.

When reporting an issue, include your license code (if you have one) and product
version, available from the pVision menu Help — About.

http://www.keil.com/appnotes/docs/apnt_279.asp
http://www.keil.com/support/man/docs/uv4
http://www.keil.com/support

Getting Started with MDK: Create Applications with pVision 21

Learning Platform

We offer a website that helps you to learn more about the programming of ARM
Cortex-based microcontrollers. It contains tutorials, videos, further
documentation, as well as useful links to other websites and is available at
www.Kkeil.com/learn.

[2] cortex-M Learning Plati X =+ — O X

& > O | wmekelcommdesiean m¥%| = & O
ARMKEIL

Microcontroller Tools

A Products Download Events Support

Home / MDK Version 5 / Learning Platform for Cortex-M Microcontroller Users

step-by-step instructions to
This is a collection of resources that help you to create application software for ARM® Cortex®@-M

microcontrollers. It covers various topics from getting started to debugging your application and
contains links to videos, example projects, application notes, and documentation

create and debug embedded
applications

Learning Platform for Cortex-M Microcontroller Users K The CMSIS workshop provides
Ve

The ARM Cortex-M7 support
w Fundamentals: Cortex-M Processor Overview, Generic User Guides, and Device List b page offers webinar recordings,
quick start guides and technical

How to Choose Your ARM Cortex-M Processor [Cortex-M7| | rorence material.

Describes the various ARM Cortex-M processors to help

you picking the right one for your application. It briefly AN PP notes provide in-
explains the processor architecture and the core depth information about
peripherals. j development tools and various

microcontroller applications and
help to solve complex problems.

Topic Description

The knowledge base contains
Microcontrollers and devices supported by CMSIS-Pack. For each articles created by members of
Device Database device the processor core and other device parameters are listed and
the Software Pack can be downloaded. our support team, answering

Cortex-M Devices Generic User Guides frequently asked questions.

= Pronrammars view and instrurtinn <af raferance for tha Cortexy M0

Quick Start Guides

Quick Start Guides help you to bring up your target hardware quickly. They
describe the required steps to get a development board up and running with MDK
and list required Software Packs as well as driver requirements for integrated
debug adapters.

NOTE
www.keil.com/mdk5/gsg explains how to download the quick start guides

http://www.keil.com/learn
http://www.keil.com/mdk5/qsg

22 CMSIS

CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provides a
ground-up software framework for embedded applications that run on Cortex-M
based microcontrollers. CMSIS enables consistent and simple software interfaces
to the processor and the peripherals, simplifying software reuse, reducing the
learning curve for microcontroller developers.

NOTE
This chapter is a reference section. The chapter Create Applications on page 45
shows you how to use CMSIS for creating application code.

The CMSIS, defined in close cooperation with various silicon and software
vendors, provides a common approach to interface peripherals, real-time
operating systems, and middleware components.

The CMSIS application software components are:

= CMSIS-CORE: Defines the API for the Cortex-M processor core and
peripherals and includes a consistent system startup code. The software
components ::CMSIS:CORE and ::Device:Startup are all you need to
create and run applications on the native processor that uses exceptions,
interrupts, and device peripherals.

= CMSIS-RTOS RTX: Provides a standardized real-time operating system
API and enables software templates, middleware, libraries, and other
components that can work across supported RTOS systems. This manual
explains the usage of the CMSIS-RTOS RTX implementation.

= CMSIS-DSP: Is a library collection for digital signal processing (DSP) with
over 60 Functions for various data types: fix-point (fractional q7, q15, q31)
and single precision floating-point (32-bit).

= CMSIS-Driver: Is a software API that describes peripheral driver interfaces
for middleware stacks and user applications. The CMSIS-Driver APl is
designed to be generic and independent of a specific RTOS making it
reusable across a wide range of supported microcontroller devices.

Getting Started with MDK: Create Applications with pVision 23

CMSIS-CORE

This section explains the usage of CMSIS-CORE in applications that run natively
on a Cortex-M processor. This type of operation is known as bare-metal, because
it uses no real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component
::CMSIS:CORE, which should be used together with the software component
::Device:Startup. These components provide the following central files:

NOTE

In actual file names, <device> is the name of the microcontroller device.

The startup_<device>s file
with reset handler and
exception vectors.

The system_<device>.c
configuration file for basic
device setup (clock and
memory BUS).

The <device>.h include file
for user code access to the
microcontroller device.

startup_<device>.s

CMSIS:CORE Component
D Device:Startup Component

CMSIS Device Startup
Interrupt Vectors D User Program
system_<device>.c
CMSIS System &
Clock Configuration
<users.clc++ <device>.h
le—]|
UserApplication CMSIS
main() { ... } Device Peripheral Access

The <device>.h header file is included in C source files and defines:

Peripheral access with standardized register layout.

Access to interrupts and exceptions, and the Nested Interrupt Vector Controller

(NVIC).

Intrinsic functions to generate special instructions, for example to activate sleep

mode.

Systick timer (SYSTICK) functions to configure and start a periodic timer

interrupt.

Debug access for printf-style 1/0 and ITM communication via on-chip

CoreSight™,

24 CMSIS

Adding Software Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added
to a project using the pVision dialog Manage Run-Time Environment. Just
select the software components as shown below:

() Manage Run-Time Environment *
Software Component Sel. Variant Version Description
= @ Board Support STM32FT46G-Discovery |~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit =
= @ Cortex Microcontroller Software Interface Components
¥ CORE I 420 CMSI5-CORE for Cortex-h, 5C000, and SC300
¥ DsP r 1.4.6 CMSI5-DSP Library for Cortex-h, 5C000, and SC300
414 RTOS (API) 1.0 CMSI5-RTOS API for Cortex-M, SCO00, and 5C300
= @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
=] @ Compiler ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup i 101 System Startup for STMicroelectronics STM32F7 Series .
£ @ STM32Cube Framework (API) STM32Cube Framework
£ @ STM32Cube HAL STM32F 5 Hardware Abstraction Layer (HAL) Drivers
£ @ File System MDK-Pro 6.6.0 File Access on various storage devices
£ @ Graphics MDK-Pro 5.30.0 | User Interface on graphical LCD displays j
Validation Output Description
Resolve Select Packs Details Cancel Help

The pVision environment adds the related files.

Source Code Example
The following source code lines show the usage of the CMSIS-CORE layer.
Example of using the CMSIS-CORE layer

#include "stm32f4xx.h" // File name depends on device used

uint32 t volatile msTicks; // Counter for millisecond Interval

uint32_t volatile frequency; // Frequency for timer

void SysTick Handler (void) ({ // SysTick Interrupt Handler
msTicks++; // Increment Counter

}

void WaitForTick (void) ({
uint32 t curTicks;

curTicks = msTicks; // Save Current SysTick Value
while (msTicks == curTicks) { // Wait for next SysTick Interrupt
__WFE (); // Power-Down until next Event
}
}
void TIM1 UP_ IRQHandler (void) ({ // Timer Interrupt Handler

; // Add user code here
}

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563

Getting Started with MDK: Create Applications with pVision 25

void timerl init(int frequency) { // Set up Timer (device specific)
NVIC SetPriority (TIM1 UP IRQn, 1); // Set Timer priority
NVIC EnableIRQ (TIM1_UP_ IRQOn) ; // Enable Timer Interrupt

}

// Configure & Initialize the MCU
void Device Initialization (void) {
if (SysTick Config (SystemCoreClock / 1000)) ({ // SysTick 1lms
// Handle Error

}
timerl init (frequency); // Setup device-specific timer
}

// The processor clock is initialized by CMSIS startup + system file
int main (void) { // User application starts here
Device Initialization () // Configure & Initialize MCU

while (1) { // Endless Loop (the Super-Loop)
__disable irq (); // Disable all interrupts
// Get_InputValues ();
__enable_irq (); // Enable all interrupts
// Process Values ();
WaitForTick () // Synchronize to SysTick Timer
}
}

For more information, right-click the group CMSIS in the Project window, and
choose Open Documentation, or refer to the CMSIS-CORE documentation
http://www.keil.com/cmsis/core.

B overview X |+ -

(m] x
(tsls CMSIS-CORE version 4.20
v LIANT
CMSIS-CORE support for Cortex-M processor-based devices
General Core Driver | DSP | RTOSAPIL | RIX | Pack | svo | Dap |
Main Page Usage and Description | Referance | Q- Search
CMSIS-CORE -
- Overview
Overview
Revision History of CMSIS-CORE
Using CMSIS in Embedded Applications CMSIS-CORE implements the basic run-time system for a Cortex-M device and gives the user access to
- the processor core and the device peripherals. In detail it defines:
Template Files
MISRA-C:2004 Compliance Exceptions * Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized
Register Mapping definitions for the SysTick, NVIC, System Control Block registers, MPU registers, FPU registers,
and core access functions.
Reference * System exception names to interface to system exceptions without having compatibility issues.
Data Structures * Methods to organize header files that makes it easy to learn new Cortex-M microcontroller
Data Fields products and improve software portability. This includes naming conventions for device-specific
interrupts.

* Methods for system initialization to be used by each MCU vendor. For example, the

Generated on Fri Sep 11 2015 14:39:59 for CMSIS-CORE by ARM Ltd. All nghts reserved.

http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
http://www.keil.com/cmsis/core

26 CMSIS

CMSIS-RTOS RTX

This section introduces the CMSIS-RTOS RTX Real-Time Operating System,
describes its features and advantages, and explains configuration settings of this
RTOS.

NOTE

MDK is compatible with many third-party RTOS solutions. However, CMSIS-
RTOS RTX is well integrated into MDK, is feature-rich and tailored towards the
requirements of deeply embedded systems.

Software Concepts
There are two basic design concepts for embedded applications:

Infinite Loop Design: involves running the program as an endless loop. Program
functions (threads) are called from within the loop, while interrupt service
routines (ISRs) perform time-critical jobs including some data processing.

RTOS Design: involves running several threads with a Real-Time Operating
System (RTOS). The RTOS provides inter-thread communication and time
management functions. A preemptive RTOS reduces the complexity of interrupt
functions, because high-priority threads can perform time-critical data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typically triggered by
hardware interrupts, execute in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-critical
and run in the background.

Getting Started with MDK: Create Applications with pVision

27

Advantages of an RTOS Kernel

RTOS kernels, like the CMSIS-RTOS RTX, are based on the idea of parallel
execution threads (tasks). As in the real world, your application will have to
fulfill multiple different tasks. An RTOS-based application recreates this model
in your software with various benefits:

Thread priority and run-time scheduling is handled by the RTOS Kernel, using a
proven code base.

The RTOS provides a well-defined interface for communication between threads.

A pre-emptive multi-tasking concept simplifies the progressive enhancement of
an application even across a larger development team. New functionality can be
added without risking the response time of more critical threads.

Infinite loop software concepts often poll for occurred interrupts. In contrast,
RTOS kernels themselves are interrupt driven and can largely eliminate polling.
This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is
mandatory for systems with hard real-time requirements. Communication
facilities can be used for IRQ-to-task communication and allow top-half/bottom-
half handling of your interrupts.

Using CMSIS-RTOS RTX

CMSIS-RTOS RTX is implemented as a library and exposes the functionality
through the header file cmsis_os.h.

Execution of the CMSIS-RTOS RTX starts with the function main() as the first
thread. This has the benefit that developers can initialize other middleware
libraries that create threads internally, but the remaining part of the user
application uses just the main thread. Consequently, the usage of the RTOS can
be invisible to the application programmer, but libraries can use CMSIS-RTOS
RTX features.

The software component ::CMSIS:RTOS:Keil RTX must be used together with
the components ::CMSIS:CORE and ::Device:Startup. Selecting these
components provides the following central CMSIS-RTOS RTX files:

NOTE
In the actual file names, <device> is the name of the microcontroller device;
<device core> represents the device processor family.

28

CMSIS

The file RTX_<core>.lib is
the library with RTOS
functions.

The configuration file
RTX_Conf_CM.c for defining
thread options, timer
configurations, and RTX
kernel settings.

The header file cmsis_os.h
exposes the RTX
functionality to the user
application.

The function main() is
executed as a thread.

Once these files are part of
the project, developers can

startup_<device>.s

CMSIS Device Startup
Interrupt Vectors

CMSIS:CORE Component
D Device:Startup Component

D User Program

system_<device>.c

CMSIS System &
Clock Configuration

RTX_<core>lib

CMSIS Compliant
RTOS-RTX Library

CMSIS:RTOS:RTX

RTX_Conf_CM.c

CMSIS
RTOS-RTX Configuration

cmsis_os.h

CMSIS
RTOS-RTX Interface

<user>.clc++

UserApplication
main() { ... }

<device>.h

CMSIS
Device Peripheral Access

start using the CMSIS-RTOS RTX functions. The code example shows the use of

CMSIS-RTOS RTX functions:

Example of using CMSIS-RTOS RTX functions

#include "cmsis os.h"

// CMSIS RTOS header file

void jobl (void const *argument) { // Function 'jobl'

// execute some code
osDelay (10);
}

// Delay execution for 10ms

osThreadDef (jobl, osPrioritylLow, 1, 0); // Define jobl as thread

int main (void) {
osKernelInitialize ();

// Initialize RTOS kernel

// setup and initialize peripherals
osThreadCreate (osThread(jobl), NULL); // Create the thread

osKernelStart ()

// Start kernel & jobl thread

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___wait.html#ga02e19d5e723bfb06ba9324d625162255
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gaee93d929beb350f16e5cc7fa602e229f
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#ga7f2b42f1983b9107775ec2a1c69a849aa17b36cd9cd38652c2bc6d4803990674b
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html#ga53d078a801022e202e8115c083ece68e
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gac59b5713cb083702dce759c73fd90dff
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gaf0c7c6b5e09f8be198312144b5c9e453
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html#gaab668ffd2ea76bb0a77ab0ab385eaef2

Getting Started with MDK: Create Applications with pVision 29

Header File cmsis_os.h

The file cmsis_os.h is a template header file for the CMSIS-RTOS RTX and
contains:

CMSIS-RTOS API function definitions.
Definitions for parameters and return types.
Status and priority values used by CMSIS-RTOS API functions.

Macros for defining threads and other kernel objects such as mutex, semaphores,
or memory pools.

All definitions are prefixed with os to give a unique name space for the CMSIS-
RTOS functions. Definitions that are prefixed os_ are not be used in the
application code but are local to this header file. All definitions and functions that
belong to a module are grouped and have a common prefix, for example,
osThread for threads.

Define and Reference Object Definitions

With the #define osObjectsExternal, objects are defined as external symbols.
This allows creating a consistent header file for the entire project as shown
below:

Example of a header file: 0sObjects.h

#include "cmsis_os.h" // CMSIS RTOS header
extern void thread 1 (void const *argument) ; // Function prototype
osThreadDef (thread 1, osPriorityLow, 1, 100); // Thread definition
osPoolDef (MyPool, 10, long); // Pool definition

This header file, called osObjects.h, defines all objects when included in a C/C++
source file. When #define osObjectsExternal is present before the header file
inclusion, the objects are defined as external symbols. Thus, a single consistent
header file can be used throughout the entire project.

Consistent header file usage in a C file

#define osObjectExternal // Objects defined as external symbols
#include "osObjects.h" // Reference to the CMSIS-RTOS objects

For details, refer to the online documentation www.Keil.com/cmsis/rtos, section
Header File Template: cmsis_os.h.

file:///C:/Users/bruneu01/AppData/MDK5/ARM/PACK/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/cmsis__os_8h.html
file:///C:/Users/bruneu01/AppData/MDK5/ARM/PACK/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23ga7f2b42f1983b9107775ec2a1c69a849aa193b650117c209b4a203954542bcc3e6
http://www.keil.com/cmsis/rtos

30 CMSIS

CMSIS-RTOS RTX Configuration

The file RTX_Conf_CM.c contains the configuration parameters of the CMSIS-
RTOS RTX. A copy of this file is part of every project using the RTX
component.

_] RTX_Conf CM.c v X
Expand Al | Collapse Al | Help | ™ Show Grid
Option Value

=8 Thread Configuration

MNumber of concurrent running user threads

6

Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Murmber of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provided stack size 0
Stack overflow checking [+
Stack usage watermark r

Processor mode for thread execution
[=1-RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer

Privileged mode

[+

RTOS Kernel Timer input clock frequency [Hz] 216000000
RTX Timer tick interval value [us] 1000
[=-System Configuration
[=-Round-Reobin Thread switching [#
Round-Robin Timeout [ticks] 5
[=--User Timers [+
Tirmer Thread Priority High
Timer Thread stack size [bytes] 200
Timer Callback Queue size 4
ISR FIFO Queue size 16 entries

Thread Configuration

Text Editor_}\ Configuration Wizard |/

You can set parameters for the thread stack, configure the Tick Timer, set Round-
Robin time slice, and define user timer behaviour for threads.

For more information about configuration options, open the RTX documentation
from the Manage Run-Time Environment window. The section Configuration
of CMSIS-RTOS RTX describes all available settings. The following highlights
the most important settings that need adaptation in your application.

Thread Stack Configuration

Threads are defined in the code with the function osThreadDef(). The parameter
stacksz specifies the stack requirement of a thread and has an impact on the
method for allocating stack. CMSIS-RTOS RTX offers two methods for
allocating stack requirements in the file RTX_Conf_CM.c:

Getting Started with MDK: Create Applications with pVision

31

Using a fixed memory pool: if the parameter stacksz is 0, then the value specified
for Default Thread stack size [bytes] sets the stack size for the thread function.

Defining a user space: if stacksz is not 0, then the thread stack is allocated from a
user space. The total size of this user space is specified by Total stack size
[bytes] for threads with user-provided stack size.

-~ Thread Configuration

Mumber of concurrent running user threads 6

Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Murnber of threads with user-provided stack size 0

Total stack size [bytes] for threads with user-provided stack size 0
Stack overflow checking [

Stack usage watermark [+

Number of concurrent running threads specifies the maximum number of
threads that allocate the stack from the fixed size memory pool.

Default Thread stack size [bytes] specifies the stack size (in words) for threads
defined without a user-provided stack.

Main Thread stack size [bytes] is the stack requirement for the main() function.

Number of threads with user-provided stack size specifies the number of
threads defined with a specific stack size.

Total stack size [bytes] for threads with user-provided stack size is the
combined requirement (in words) of all threads defined with a specific stack size.

Stack overflow checking enables stack overflow check at a thread switch.
Enabling this option slightly increases the execution time of a thread switch.

Stack usage watermark initializes the thread stack with a watermark pattern at
the time of the thread creation. This enables monitoring of the stack usage for
each thread (not only at the time of a thread switch) and helps to find stack
overflow problems within a thread. Enabling this option increases significantly
the execution time of osThreadCreate().

NOTE
Consider these settings carefully. If you do not allocate enough memory or you
do not specify enough threads, your application will not work.

32 CMSIS

RTX Kernel Timer Tick Configuration

CMSIS-RTOS RTX functions provide delays in units of milliseconds derived
from the Timer tick value. We recommend configuring the Timer tick value to
generate 1-millisecond intervals. Configuring a longer interval may reduce
energy consumption, but has an impact on the granularity of the timeouts.

--RT¥ Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer [+
RTOS Kernel Timer input clock frequency [Hz] 180000000
RTX Timer tick interval value [us] 1000

It is good practise to enable Use Cortex-M Systick timer as RTX Kernel
Timer. This selects the built-in SysTick timer with the processor clock as the
clock source. In this case, the RTOS Kernel Timer input clock frequency
should be identical to the CMSIS variable SystemCoreClock of the startup file
system_<device>.c.

For details, refer to the online documentation section Configuration of CMSIS-
RTOS RTX — Tick Timer Configuration.

CMSIS-RTOS User Code Templates
MDK provides user code templates you can use to create C source code for the
application.

(¥ In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, select any template and click Add.

Add Mew ltem to Group 'Source Files' *
@ CFie (o) Add template file(s) to the project.
- Component Mame
@ Ce+ File (.cpp) -4 CMsis ~
\ﬂ Asm Fils (5) RTOS:Keil RTX CMSIS-RTOS 'main’ function
RTOS:Keil RTX CMSI5-RTOS Mail Queue
\ﬂ Header File (h) RTOS:Keil RTX CMSIS-RTOS Memory Pool
= RTOS:Keil RTX CMS5I5-RTOS Message Queue
\é Teat File () RTOS:Keil RTX CMSIS-RTOS Mutex
. RTOS:Keil RTX CMSIS-RTOS Semaphore
2| Image File (%)
=5 RTOS:Keil RTX CMSIS-RTOS Thread
7\‘@ User Code Template RTOS:Keil RTX CMSIS-RTOS Timer
RTOS:Keil RTX CMSIS-RTOS User SWVC j
Type:
Name: |Thread.c
Location: | C:\Workspaces \MDK\STM32\MDK\Boards \ST\STM32F 746G _Discovery\Blinky
Add Close Help

Getting Started with MDK: Create Applications with pVision 33

CMSIS-RTOS RTX API Functions

The table below lists the various API function categories that are available with
the CMSIS-RTOS RTX.

API Category Description

Thread Management Define, create, and control thread functions.
Timer Management Create and control timer and callback functions.
Signal Management Control or wait for signal flags.

Mutex Management Synchronize thread execution with a Mutex.
Semaphore Management Control access to shared resources.

Memory Pool Management Define and manage fixed-size memory pools
Message Queue Management Control, send, receive, or wait for messages.
Mail Queue Management Control, send, receive, or wait for mail.

T1P: The CMSIS-RTOS RTX tutorial available at
www.keil.com/pack/doc/CMSIS/RTX/html/index.html explains the
usage of the API functions.

http://www.keil.com/pack/doc/CMSIS/RTX/html/index.html

34 CMSIS

Thread Management

The thread management functions allow you to define, create, and control your
own thread functions in the system. The function main() is a special thread
function that is started at system initialization and has the initial priority
osPriorityNormal.

Active Threads

event occurs

terminate

CMSIS-RTOS RTX assumes that threads are scheduled as shown in the figure
above. Thread states change as described below:

A thread is created using the function osThreadCreate(). This puts the thread into
the READY or RUNNING state (depending on the thread priority).

CMSIS-RTOS is pre-emptive. The active thread with the highest priority
becomes the RUNNING thread provided it is not waiting for any event. The
initial priority of a thread is defined with the osThreadDef() but may be changed
during execution using the function osThreadSetPriority().

The RUNNING thread transfers into the WAITING state when it is waiting for
an event.

Active threads can be terminated any time using the function
osThreadTerminate(). Threads can also terminate by exit from the usual forever
loop and just a return from the thread function. Threads that are terminated are in
the INACTIVE state and typically do not consume any dynamic memory
resources.

Getting Started with MDK: Create Applications with pVision

Single Thread Program

A standard C program starts execution with the function main(). For an embedded
application, this function is usually an endless loop and can be thought of as a
single thread that is executed continuously.

Preemptive Thread Switching

Threads with the same priority need a round robin timeout or an explicit call of
the osDelay() function to execute other threads. In the following example, if job2
has a higher priority than job1, execution of job2 starts instantly. job2 preempts
execution of job1 (this is a very fast task switch requiring a few ms only).

Simple RTX Program using Round-Robin Task Switching

#include "cmsis os.h"

int counterl;
int counter2;

void jobl (void const *arg) {
while (1) { // Loop forever
counterl++; // Increment counterl
}
}

void job2 (void const *arg) {
while (1) { // Loop forever
counter2++; // Increment counter2
}
}

osThreadDef (jobl, osPriorityNormal, 1, 0); // Define thread for jobl
osThreadDef (job2, osPriorityNormal, 1, 0); // Define thread for job2

int main (void) { // main() runs as thread
osKernellInitialize (); // Initialize RTX
osThreadCreate (osThread (jobl), NULL); // Create and start jobl
osThreadCreate (osThread (job2), NULL) ; // Create and start job2
osKernelStart (); // Start RTX kernel
while (1) {
osThreadYield () // Next thread

}
}

Start job2 with Higher Thread Priority

osThreadDef (osThread (job2), osPriorityAboveNormal, 1, 0);

36 CMSIS

CMSIS-RTOS System and Thread Viewer

The CMSIS-RTOS RTX Kernel has built-in support for RTOS aware debugging.
During debugging, open Debug - OS Support and select System and Thread
Viewer. This window shows system state information and the running threads.

System and Thread Viewer B
Property Value

Tick Timer: 1.000 mSec

Round Robin Timeout: 5.000 mSec

Default Thread Stack Size: 200

Thread Stack Overflow Check: | Yes

Thread Usage: Available: 7, Used: 6 + os_idle_demon

=~ Threads Priority State Delay Event Value Stack Usage
N B = =N = = e e R

osTimerThread High Wait_MBX cur: 32%, max 32% [64/200]

1

2 |main Normal |wait DY S cur: 26%, max 84% [432/512]

3 USBD_HIDO_Thread AboveNor.. Wait_OR (0000 (xFFFF cur: 12%, max 12% [64/512]

4 USBDO_Core_Thread AboveNor... Wait_OR OneD000 DnFFFF cur: 12%, mae 12% [64/512]

5 USBD_HID1_Thread AboveMor.. Wait_OR 00000 OxFFFF cur: 12%, maw 12% [64/512] _|
& USBD1_Core_Thread AboveNor... | Wait_OR 050000 0xFFFF cur: 12%, max: 12% [64/312]

233 | os_idle_demon None Running j

The System property shows general information about the RTOS configuration in
the application. Thread Usage shows the number of available and threads and the
used threads that are currently active.

The Threads property shows details about thread execution of the application. It
shows for each thread information about priority, execution state and stack usage.

If the option Stack usage watermark is enabled for Thread Configuration in
the file RTX_Conf_CM.c, the field Stack Usage shows cur: and max: stack load.
The value cur: is the current stack usage at the actual program location. The
value max: is the maximum stack load that occurred during thread execution,
based on overwrites of the stack usage watermark pattern. This allows you to:

Identify stack overflows during thread execution or
Optimize and reduce the stack space used for threads.

NOTE
Using Trace, the debugger provides also a view with detailed timing information.
Refer to Event Viewer on page 75 for more information.

Getting Started with MDK: Create Applications with pVision

37

CMSIS-DSP

The CMSIS-DSP library is a suite of common digital signal processing (DSP)
functions. The library is available in several variants optimized for different

ARM Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the Manage Run-
Time Environment dialog, the appropriate library for the selected device is

automatically included into the project.

k4 Manage Run-Time Environment
Software Component Sel. Variant Version Description
©- 4 Board Support STM32F746G-Discovery ~ 1.0.0 STMicroelectronics STM32F746G-Discovery Kit
= @ CMSIS Cortex Microcentroller Software Interface Components
¢ CORE [+ 420 CMSIS-CORE for Cortex-M, SC000, and SC300
* N - 14.6 | CIMSIS-DSP Library for Cortex-, SC000, and SC300
w4 RTOS (API) 1.0 CMSIS-RTOS API for Cortex-M, SCO00, and SC300

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions

#include "arm math.h"

const float32 t buf A[9] = {
1.0, 32.0, 4.0,
1.0, 32.0, 64.0,
1.0, 16.0, 4.0,
};

float32_t buf AT[9];
float32_t buf ATmA[9] ;

arm_matrix_instance_fBZ A;
arm_matrix_instance_fBZ AT;
arm matrix instance £32 ATmA;

3 .

uint32 t rows ;
3;

uint32 t cols

int main(void) {

// ARM: :CMSIS:DSP

// Matrix A buffer and values

// Buffer for A Transpose (AT)
// Buffer for (AT * A)

// Matrix A
// Matrix AT (A transpose)
// Matrix ATmA(AT multiplied by A)

// Matrix rows
// Matrix columns

// Initialize all matrixes with rows, columns, and data array

arm mat init f£32 (&A, rows, cols,
arm mat init £32 (&AT, rows, cols,

(float32_t *)buf A); // Matrix A
buf AT); // Matrix AT

arm mat_init £32 (&ATmA, rows, cols, buf ATmA); // Matrix ATmA

arm mat trans £32 (&A, &AT);
arm mat mult £32 (&AT, &A, &ATmA);

while (1);

// Calculate A Transpose (AT)
// Multiply AT with A

38

CMSIS

For more information, refer to the CMSIS-DSP documentation on

www.keil.com/cmsis/dsp.

B Reference X+ = m} X
<« - 0O e | = @ O
(tsls CMSIS-DSP version 1.4
SOMPLIANL .
e CMSIS DSP Software Library
General | Core | Driver DSp RTOS API | RTX | Pack SVD | DAP |
MainPage | Usage and Description Reference Q- se)
v CMSIS-DSP
CMSIS DSP Software Library Reference
Change Log
Deprecated List Here is a list of all modules:
Reference [detail level 1 2]
» Data Structures » Basic Math Functions
» Data Fields » Fast Math Functions

¥ Complex Math Functions
» Filtering Functions

P Matrix Functions

¥ Transform Functions

¥ Controller Functions

P Statistics Functions

» Support Functions

» Interpolation Functions
» Examples

Generated on Fri Sep 11 2015 14:40:16 for CMSIS-DSP by ARM Ltd. All rights reserved.

http://www.keil.com/cmsis/dsp

Getting Started with MDK: Create Applications with pVision

39

CMSIS-Driver

Device-specific CMSIS-Drivers provide the interface between the middleware
and the microcontroller peripherals. These drivers are not limited to the MDK
Middleware and are useful for various other middleware stacks to utilize those
peripherals.

The device-specific drivers are usually part of the Software Pack that supports the
microcontroller device and comply with the CMSIS-Driver standard. The Device
Database on www.keil.com/dd2 lists drivers included in the Software Pack for
the device.

Software Packs

Microcontroller Device Middleware

Control
Startup/System Structs

USBE USB Controller = USB Device Driver USB Device
s SAlController | SAI Driver

Etherner.E Ethernet PHY | Ethernet PHY
; TCPIIP.
Ethernet MAC | Ethernet MAC Networking
(Sa= USART | USART Driver
sploE SPI Controller | SPI Driver Graphics
E CAN Controller | CAN Driver
SPI E SPI Controller | Flash Driver
sDIoo |5 SDIO | MCI Driver File System
I/OE Memory Controller | NAND Driver
USEE USB Controller | USB Host Driver USB Host

RTE Device.h
Configuration File

Middleware components usually have various configuration files that connect to
these drivers. For most devices, the RTE_Device.h file configures the drivers to
the actual pin connection of the microcontroller device.

The middleware/application code connects to a driver instance via a control
struct. The name of this control struct reflects the peripheral interface of the
device. Drivers for most of the communication peripherals are part of the
Software Packs that provide device support.

http://www.keil.com/dd2

40 CMSIS

Use traditional C source code to implement missing drivers according the
CMSIS-Driver standard.

Refer to www.keil.com/cmsis/driver for detailed information about the API
interface of these CMSIS drivers.

Configuration

There are multiple ways to configure a CMSIS-Driver. The classical method is
using the RTE_Device.h file that comes with the device support.

Other devices may be configured using third party graphical configuration tools
that allow the user to configure the device pin locations and the corresponding
drivers. Usually, these configuration tools automatically create the required C
code for import into the pVision project.

Using RTE_Device.h

For most devices, the RTE_Device.h file configures the drivers to the actual pin
connection of the microcontroller device:

_] RTE_Device.h * X
BpandAl | Colapsedl | Hep | I ShowGid
Option Value
[=1--USBO Controller [Driver_USBDO and Driver_USBHO] rd -
El-Pin Configuration
USBO_PPWR (Host) P6_3 -
USBO_PWER_FAULT (Host)
USBO_INDO
USBO_IND1

Device [Driver_USBDO]
USE1 Controller [Driver_USBDT and Driver_USEBH1]
EMET (Ethernet Interface) [Driver ETH_MACD] r J
USBO_PPWR (Host)
VBUS drive signal (towards external charge pump or power management
unit).

Text Editor_, Configuration Wizard

Using the Configuration Wizard view, you can configure the driver interfaces in a
graphical mode without the need to edit manually the #defines in this header file.

http://www.keil.com/cmsis/driver

Getting Started with MDK: Create Applications with pVision

41

Using STM32CubeMX

MDK supports CMSIS-Driver configuration using STM32CubeMX. This
graphical software configuration tool allows you to generate C initialization code
using graphical wizards for STMicroelectronics devices.

Simply select the required CMSIS-Driver in the Manage Run-Time Environment
window and choose Device:STM32Cube Framework (API1):STM32CubeMX.
This will open STM32CubeMX for device and driver configuration. Once
finished, generate the configuration code and import it into pVision.

For more information, visit the online documentation at
www.Keil.com/pack/doc/STM32Cube/General/html/index.html.

Validation

A Software Pack for CMSIS-Driver validation tests is available from
www.keil.com/pack. It contains the source code and documentation of the
CMSIS-Driver validation suite along with a required configuration file, and
examples that shows the usage on various target platforms.

The CMSIS-Driver Validation Suite performs the following tests:
e Generic validation of API function calls
e Validation of configuration parameters
¢ Validation of communication with loopback tests
e Validation of communication parameters such as baudrate
e Validation of event functions

The test results can be printed to a console, output via ITM printf, or output to a
memory buffer. Refer to the section Driver Validation in the CMSIS-Driver
documentation available at www.keil.com/cmsis/driver.

http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/pack
http://www.keil.com/cmsis/driver

42

Software Components

Software Components

Compiler

The software component Compiler allows you to retarget 1/0 functions of the
standard C run-time library. Application code frequently uses standard 1/O library
functions, such as printf(), scanf(), or fgetc() to perform input/output operations.

The structure of these functions in the standard ARM Compiler C run-time

library is:

High-Level Functions [
printf, scanf, etc. ‘

Low-Level Functions ‘
fputc, fgetc, etc.

System I/O Functions
_sys_write, _sys_read, etc.

Hardware independent

Hardware
dependent

The high-level and low-level functions are not target-dependent and use the
system 1/O functions to interface with hardware.

The MicroLib of the ARM Compiler C run-time library interfaces with the
hardware via low-level functions. The MicroLib implements a reduced set of
high-level functions and therefore does not implement system 1/O functions.

The software component Compiler retargets the 1/0 functions for the various
standard 1/O channels: File, STDERR, STDIN, STDOUT, and TTY:

kA Manage Run-Time Environment X
Software Component Sel. Variant Version Description
4 Board Support MCB1300 1.00 Keil Development Board MCB1800 o
‘ CMSIS Cortex Microcontroller Software Interface Components
4 CMSIS Driver Unified Device Drivers compliant to CMS5IS-Driver Specifications
EE Compiler ARM Compiler Software Extensions
= ’ 170 Retarget Input/Output
¥ File ™ |File System 1.00 Use retargeting together with the File System component
¥ STDERR |[¥ Breakpoint |+~ 1.0.0 Stop program execution at a breakpoint when using STDERR
¥ STDIN [+ User ~ | 1.0.0 Retrieve STDIM from a user specified input source (USART, Keyboard or other)
¥ STDOUT I+ ITM | 1.00 Redirect STDOUT to a debug output window using ITM
¥ OTTY ™ |User | 1.00 Redirect TTY to a user defined output target ﬂ
Validation Qutput Description
Resolve Select Packs Details oK | Cancel Help

Getting Started with MDK: Create Applications with pVision

43

I/0 Channel

Description

File
STDERR
STDIN
STDOUT
TTY

Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)
Standard error stream of the application to output diagnostic messages.
Standard input stream going into the application (scanf etc.).

Standard output stream of the application (printf etc.).

Teletypewriter which is the last resort for error output.

The variant selection allows you to change the hardware interface of the 1/0

channel.

Variant

Description

File System
Breakpoint
IT™M

User

Use the File System component as the interface for File related operations

When the I/O channel is used, the application stops with BKPT instruction.

Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.
Retarget I/O functions to a user defined routines (such as USART, keyboard).

The software component Compiler adds the file retarget_io.c that will be
configured acording to the variant settings. For the User variant, user code
templates are available that help you to implement your own functionality. Refer
to the documentation for more information.

ITM in the Cortex-M3/M4/M7 supports printf style Debug (printf] Viewer
debugging. If you choose the variant ITM, the I1/0
library functions perform 1/O operations via the
Debug (printf) Viewer window.

0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101

value
value
value
value
value
value
value
value
value
value
value

EEEEEEEEEEL

4

(2 Call Stack = Locals | B¢ Debug (printf) Vi...

44

Board Support

There are a couple of interfaces that are frequently used on development boards,
such as LEDs, push buttons, joysticks, A/D and D/A converters, LCDs, and
touchscreens as well as external sensors such as thermometers, accelerometers,
magnetometers, and gyroscopes.

The Board Support Interface API provides standardized access to these
interfaces. This enables software developers to concentrate on their application
code instead of checking device manuals for register settings to toggle a
particular GPIO.

Many Device Family Packs (DFPs) have board support included. You can choose
board support from the Manage Run-Time Environment window:

Software Component Sel. Variant Version Description
=4 Board Support STM32F746G-Discovery |z| 1.00 STMicroelectronics STM32FT46G-Discovery Kit
= @ Buttons (APT) 1.00 Buttons Interface
Buttons [+ 1.00 Buttons Interface for STMicroelectronics STM32F746G-Discovery Kit
= @ Dirivers Kinetis BSP Drivers
= @ Graphic LCD (APT) 1.00 Graphic LCD Interface
=4 LED (APT) 1.00 LED Interface
/ LED [+ 1.00 LED Interface for STMicroelectronics STM32F746G-Discovery Kit
= @ Touchscreen (AP 1.00 Touchscreen Interface
= @ emWin LCD (4PT) 11 emWin LCD Interface

Be sure to select the correct Variant to enable the correct pin configurations for
your particular development board.

You can add board support to your custom board by creating the required support
files for your board’s Software Pack. Refer to the APl documentation available
at: http://www.keil.com/pack/doc/mw/Board/html/index.html

Software Components

http://www.keil.com/pack/doc/mw/Board/html/index.html

Getting Started with MDK: Create Applications with pVision

45

Create Applications

This chapter guides you through the steps required to create and modify projects
using CMSIS described in the previous chapter.

NOTE
The example code in this section works for the MCB1800 evaluation board
(populated with LPC1857). Adapt the code for other starter kits or boards.

The tutorial creates the project Blinky in the two basic design concepts:
RTOS design using CMSIS-RTOS RTX.
Infinite loop design for bare-metal systems without RTOS Kernel.

Blinky with CMSIS-RTOS RTX

The section explains the creation of the project using the following steps:

Setup the Project: create a project file and select the microcontroller device
along with the relevant CMSIS components.

Configure the Device Clock Frequency: configure the system clock.
Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.
Create the Source Code Files: add and create the application files.

Build the Application Image: compile and link the application for downloading
it to an on-chip Flash memory of a microcontroller device.

Using the Debugger on page 64 guides you through the steps to connect your
evaluation board to the PC and to download the application to the target.

For the project Blinky, you will create the following application files:

main.c This file contains the main() function that initializes the RTOS
kernel, the peripherals, and starts thread execution.

LED.c The file contains functions to initialize and control the GP10O port
and the thread function blink_LED(). The LED_ Initialize() function
initializes the GPIO port pin. The functions LED_On() and
LED_Off() control the port pin that interfaces to the LED.

LED.h The header file contains the function prototypes for the functions in
LED.c and is included into the file main.c.

46 Create Applications

Setup the Project
From the pVision menu bar, choose Project — New pVision Project.
(& Select an empty folder and enter the project name, for example, Blinky.

Click Save, which creates an empty project file with the specified name
(Blinky.uvproj).

Next, the dialog Select Device for Target opens.

(Z" Select the LPC1857 and click OK.

The device selection defines essential tool settings such as compiler controls, the
memory layout for the linker, and the Flash programming algorithms.

The Manage Run-Time Environment dialog opens and shows the software
components that are installed and available for the selected device.
& Expand ::CMSIS:RTOS(API) and enable :Keil RTX.

Expand ::Device and enable :GPI1O and :SCU.

K Manage Run-Time Environment X
Software Component Sel. Variant Version Description
€ Board Support MCBE1300 |1.0.0 Keil Development Board MCE1300 =
= @ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE r 420 CMSIS-CORE for Cortex-M. SC000. and 5C300
¥ DsP r 146 CMSIS-DSP Library for Cortex-h, SCO00, and SC300
=4 RTOS (API) 1.0 CIMSIS-RTOS API for Cortex-M. SC000. and SC300
¥ Keil RTX v 4760 | CMSIS-RTOS RTX implementation for Cortex-h. SCO00, and SC300
@ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& Compiler ARM Corpiler Software Extensions
-4 Device Startup, System Setup
¥ GPDMA r 1.2 GPDMA driver used by RTE Drivers for LPC1800 Series
¥ GPIO [1.0 GPIO driver used by RTE Drivers for LPC1800 Series
¥ SCU v 11 SCU driver used by RTE Drivers for LPC1300 Series
¥ Startup r 1.00 Systemn Startup for NXP LPC1200 Series
@ File System MDK-Pro | 6.6.0 File Access on various storage devices b
@ Graphics MDK-Pro | 5.30.0 | User Interface on graphical LCD displays
@ Network MDK-Pro | 6.5.2 IP MNetworking using Ethernet or Serial protocols
@ USE MDK-Pro | 6.6.6 USE Communication with various device claszes j
Validation Output Description
=k ARM::CMSIS:RTOS: Keil RTX Additional software compenents required B
(=) require Device:Startup Select component frem list
@ Keil:Device:Startup Systern Startup for NXP LPC1800 Series
b Keil:Device:GPIO Additional software compenents required
(=)-require CMSI5:CORE Select component frem list
¥ ARM:CMSIS:CORE CMSIS-CORE for Cortex-M, SC000, and 5C300
=48 Keil:Device:SCU Additional software compenents required
=l-require CMSIS:CORE Select component from list
¥ ARM:CMSIS:CORE CM5I5-CORE for Cortex-M, SC000, and 5C300 ﬂ
[= |

Resolve Select Packs Details Cancel Help

Getting Started with MDK: Create Applications with pVision

a7

The Validation Output field shows dependencies to other software components.
In this case, the component ::Device:Startup is required.

T1P: A click on a message highlights the related software component.

& Click Resolve.

This resolves all dependencies and enables other required software components
(here, ::CMSIS:Core and ::Device:Startup).

Project LA |
[:f,q'—-‘ C"Ck OK =T Project: Blinky
’ =45 Target 1
Id Source Group 1

The selected software components are included - & %M;'TSX v (705K 1
into the project t_oget_her with the startup file, the D) RTX Conf, CM.c (RIOSKeil KTX)
RTX configuration file, and the CMSIS system =& Device
files. The Project window displays the selected 5T GPIO_LPC1G0cc (GPIO)
software components along with the related 5T scu_Lpcraecc (scu)

. . . T J RTE_Device.h (Startup)
files. Double-click on a file to open it in the B startup LPCitincs (Startup)
edIIOI‘ _1 systermn_LPC18&occ (Startup)

< | ©

-EIProject @ Books | {} Functions| 0, Templates

48 Create Applications

Configure the Device Clock Frequency

The system or core clock is defined in the system_<device>.c file. The core clock
is also the input clock for the RTOS Kernel Timer and, therefore, the RTX
configuration file needs to match this setting.

NOTE
Some devices perform the system setup as part of the main function and/or use a
software framework that is configured with external utilities.

Refer to Device Startup Variations on page 56 for more information.

The clock configuration for an application depends on various factors such as the
clock source (XTAL or on-chip oscillator), and the requirements for memory and
peripherals. Silicon vendors provide the device-specific file system_<device>.c
and therefore it is required to read the related documentation.

TIP: Open the reference manual from the Books window for detailed
information about the microcontroller clock system.

The MCB1800 development kit runs with an external 12 MHz XTAL. The PLL
generates a core clock frequency of 180 MHz. As this is the default, no
modifications are necessary. However, you can change the settings for your
custom development board in the file system LPC18xx.c.

(& To edit the file system_LPC18xx.c, expand the group Device in the Project
window, double-click on the file name, and modify the code as shown
below.

Set PLL Parameters in system_LPC18xx.c

/* PLL1 output clock: 180MHz, Fcco: 180MHz,

N=1, M=15, P = x */

#define PLL1_NSEL 0 /* Range [0 - 3]: Pre-divider ratio N */
#define PLL1 MSEL 14 /* Range [0 - 255]: Feedback-div ratio M */
#define PLL1 PSEL 0 /* Range [0 - 3]: Post-divider ratio P */
#define PLL1 BYPASS 0 /* 0: Use PLL, 1: PLL is bypassed */
#define PLL1 DIRECT 1 /* 0: Use PSEL, 1: Don't use PSEL */
#define PLL1 FBSEL 0 /* 0: FCCO is used as PLL feedback i/
/* 1: FCLKOUT is used as PLL feedback *x/

Getting Started with MDK: Create Applications with pVision 49

Customize the CMSIS-RTOS RTX Kernel

& In the Project window, expand the group CMSIS, open the file

RTX_Conf_CM.c, and click the tab Configuration Wizard at the bottom of
the editor.

Expand RTX Kernel Timer Tick Configuration and set the Timer clock
value to match the core clock.

_1 RTX_Conf CM.c v X
Bpand Al | Collapse All | Help [~ Show Grid
Option Value

+-Thread Configuration
=)-RTX Kernel Timer Tick Configuration

Use Cortex-M SysTick timer as RTX Kernel Timer [+
RTX Timer tick interval value [us] 1000

+)-Systern Configuration

RTOS Kernel Timer input clock frequency [Hz]

RTOS Kernel Timer input clock frequency [Hz]

Defines the input frequency of the RTOS Kernel Timer.
When the Cortex-M SysTick timer is used, the input clock
is on most systems identical with the core clock.

TextEditor), Configuration Wizard |

TIP: You may copy the compiler define settings and system_<device>.c from

example projects. Right click on the filename in the editor and use Open
Containing Folder to locate the file.

G T - M

] system_LPCl18xx.”

Cl

137 | * ose = (FCLEI «

138 | = Clase All But This = FCLEOT

139 ® Close All

140 | A b

141 * PLL1 Copy Full Path

142 = Fr L TrLT

143 . Fi Cpen Containing Folder bz

144 " Fi g Mew Horizontal Tab Group [z

145 * 1 [Hz

146 - = [J] Mew Vertical Tab Group bz

147

148

149

150 N
'l (1

50

Create Applications

Create the Source Code Files

Add your application code using pre-configured User Code Templates
containing routines that resemble the functionality of the software component.

& In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

Add New ltem to Group 'Source Group 1' hd
@ C Fle () Add template file(s) to the project.
+ Component MName
@ C++ File (.cpp) =4 CcMsis ~
\ﬂ Asm File () RTOS:Keil RTX CMSIS-RTOS 'main’ function
RTOS:Keil RTX CMSIS-RTOS Mail Queue
\ﬂ Header File (h} RTOS:Keil RTX CMSIS-RTOS Memory Pool
=) RTOS:Keil RTX CMSIS-RTOS Message Queue
\é Text File (&) RTOS:Keil RTX CMSIS-RTOS Mutex
; . RTOS:Keil RTX CM5IS-RTOS Semaphore
2=l Image File (")
L= RTOS:Keil RTX CM5IS-RTOS Thread -
i@ User Code Template RTOS:Keil RTX CMSIS-RTOS Timer
RTOS:Keil RTX CMSIS-RTOS User SVC j
Type: | User Code Template
Name: | main.c osObjects.h
Location: | C:\Workspaces \MDK\NXPBlinky v
Add Close | Help

& Click on User Code Template to list available code templates for the
software components included in the project. Select CMSIS-RTOS ‘main’
function and click Add.

This adds the file main.c to the project group Source Group 1. Now you can add
application specific code to this file.

Getting Started with MDK: Create Applications with pVision 51

(= Right-click on a blank line in the file main.c and select Insert ‘#include
files’. Include the header file LPC18xx.h for the selected device.

Then, add the code below to create a function blink_LED() that blinks LEDs
on the evaluation kit. Define blink_LED() as an RTOS thread using
osThreadDef() and start it with osThreadCreate().

Code for main.c

e
* CMSIS-RTOS 'main' function template

e e e e e e e e e e e e — */
#define osObjectsPublic // Define objects in main module
#include "osObjects.h" // RTOS object definitions
#include "LPC18xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port

/*

* main: initialize and start the system

*/

int main (void) {

osKernellInitialize () // Initialize CMSIS-RTOS

// initialize peripherals here
LED Initialize () // Initialize LEDs

// create 'thread' functions that start executing,

// example: tid name = osThreadCreate (osThread(name), NULL);
Init BlinkyThread () // Start Blinky thread
osKernelStart () // Start thread execution

while (1);

52

r% Create an empty C-file named LED.c using the dialog Add New Item to
Group and add the code to initialize and access the GPIO port pins that
control the LEDs.

Code for LED.c

#include "SCU LPC18xx.h"
#include "GPIO_LPC18xx.h"
#include "cmsis_os.h" // BRM: :CMSIS:RTOS:Keil RTX

void blink LED (void const *argument); // Prototype function
osThreadDef (blink LED, osPriorityNormal, 1, 0); // Define blinky thread

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN CFG_PULLDOWN_EN)) ;
GPIO_SetDir (6, 24, GPIO DIR OUTPUT) ;
GPIO_PinWrite (6, 24, 0);

}

void LED On (wvoid) {
GPIO PinWrite (6, 24, 1); // LED on: set port
}

void LED Off (void) ({
GPIO_PinWrite (6, 24, 0); // LED off: clear port
}

// Blink LED function
void blink LED(void const *argument) {

for (;;) {
LED On (); // Switch LED on
osDelay (500) ; // Delay 500 ms
LED Off (); // Switch off
osDelay (500) ; // Delay 500 ms

}
}

void Init BlinkyThread (void) ({
osThreadCreate (osThread(blink LED), NULL); // Create thread
}

NOTE
You can also use the functions as provided by the Board Support component
described on page 44.

Create Applications

Getting Started with MDK: Create Applications with pVision 53

r% Create an empty header file named LED.h using the dialog Add New Item
to Group and define the function prototypes of LED.c.

Code for LED.h

/B e e S S S S S S S TS OEOEmoos
* File LED.h
e e e e e e e e e e e e — */
void LED Initialize (void); // Initialize GPIO
void LED On (void); // Switch Pin on
void LED Off (void); // Switch Pin off
void blink LED (void const *argument); // Blink LEDs in a thread
void Init BlinkyThread (void); // Initialize thread

Build the Application Image

(4 Build the application, which compiles and links all related source files.

Build Output shows information about the build process. An error-free
build displays program size information, zero errors, and zero warnings.

Build Output a8
#* Using Compiler 'V5.06 (build 20)', folder: 'C:\Keil vS\ARM\ARMCC\Bin'

Build target 'Target 1°'

compiling main.c...

compiling LED.c...

compiling RTX Conf_CM.c...

compiling GPIO_LBCISxx.c...

compiling SCU_LPCLEXX.C...

assembling startup LPC18xx.s...

compiling system LPCLERX.C...

linking...

Program Size: Code=8512 RO-data=924 RW-data=80 ZI-data=4T752

After Build - User command #1: C:\Keil v5\/ARM/BIN/E1fDwT.exe .\Objects\Blinky.axf BASEADDRESS (0x1A000000)

ELFDWT - Signature Creator V1.1.0.0

COPYRIGHT Keil - An ARM Company, Copyright (C) 2014

#* Updated Signature over Range[32] (0x1A000000 - 0x1A000018): @0x1A00001C = 0x53FFCF3E
*# Proceszsing completed, no Errors.

".\Objects\Blinky.axf" - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:04

The section Using the Debugger on page 64 guides you through the steps to
connect your evaluation board to the workstation and to download the application
to the target hardware.

TIP: You can verify the correct clock and RTOS configuration settings of the
target hardware by checking the one-second interval of the LED.

54 Create Applications

Blinky with Infinite Loop Design

Based on the previous example, we create a Blinky application with the infinite
loop design and without using CMSIS-RTOS RTX functions. The project
contains the user code files:

main.c This file contains the main() function, the function Systick_Init() to
initialize the System Tick Timer and its handler function
SysTick_Handler(). The function Delay() waits for a certain time.

LED.c The file contains functions to initialize the GPIO port pin and to set
the port pin on or off. The function LED_Initialize() initializes the
GPIO port pin. The functions LED_On() and LED_Off() enable or
disable the port pin.

LED.h The header file contains the function prototypes created in LED.c
and must be included into the file main.c.

Open the Manage Run-Time Environment and deselect the software
component ::CMSIS:RTOS (API):Keil RTX.

(> Open the file main.c and add the code to initialize the System Tick Timer,
write the System Tick Timer Interrupt Handler, and the delay function.

e
* file main.c

e */
#include "LPC18xx.h" // Device header

#include "LED.h" // Initialize and set GPIO Port
int32 t volatile msTicks = 0; // Interval counter in ms

// Set the SysTick interrupt interval to 1lms
void SysTick Init (void) {
if (SysTick Config (SystemCoreClock / 1000)) {
// handle error
}
}

// SysTick Interrupt Handler function called automatically
void SysTick_ Handler (void) {
msTicks++; // Increment counter

}

// Wait until msTick reaches 0

void Delay (void) {
while (msTicks < 499); // Wait 500ms
msTicks = 0; // Reset counter

}

Getting Started with MDK: Create Applications with pVision 55

int main (void) {
// initialize peripherals here

LED Initialize (); // Initialize LEDs
SystemCoreClockUpdate () ; // Update SystemCoreClock to 180 MHz
SysTick Init (); // Initialize SysTick Timer
while (1) {
LED On (); // Switch on
Delay (); // Delay
LED Off (); // Switch off
Delay (); // Delay
}
}
(& Open the file LED.c and remove unnecessary functions. The code should
look like this.
e e e e e e e e D S D S S S S S S DS OEOEmS
* File LED.c
e */

#include "SCU LPC18xx.h"
#include "GPIO LPC18xx.h"

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG MODE_FUNC4 | SCU_PIN CFG_PULLDOWN_EN)) ;

GPIO SetDir (6, 24, GPIO DIR OUTPUT) ;
GPIO_ PinWrite (6, 24, 0);
}
void LED On (void) {
GPIO_PinWrite (6, 24, 1); // LED on: set port
}
void LED Off (void) {
GPIO_PinWrite (6, 24, 0); // LED off: clear port
}
r% Open the file LED.h and modify the code.
Y
* file: LED.h
gy gy g g g gy S */
void LED Initialize (void); // Initialize LED Port Pins
void LED On (void) ; // Set LED on

void LED Off (void); // Set LED off

56 Create Applications

Build the Application Image

The section Using the Debugger on page 64 guides you through the steps to
connect your evaluation board to the PC and to download the application to the
target hardware.

TIP: You can verify the correct clock configuration of the target hardware by
checking the one-second interval of the LED.

Device Startup Variations

Some devices perform a significant part of the system setup as part of the device
hardware abstraction layer (HAL) and therefore the device initialization is done
from within the main function. Such devices frequently use a software
framework that is configured with external utilities.

The ::Device software component may contain therefore additional components
that are required to startup the device. Refer to the online help system for further
information. In the following section, device startup variations are exemplified.

Example: Infineon XMC1000 using DAVE

Using Infineon’s DAVE™, you can automatically generate code based on So-
called DAVE Apps. Within the Eclipse-based IDE, you can add, configure, and
connect the apps to suit your application. During this process, you will configure
the clock settings using the CLOCK_XMC_1 0 app (in case of the XMC1000
family). This app sets the correct registers within the core to reach the desired
frequency. At the end of the generated code, it calls the CMSIS function
SystemCoreClockUpdate().

All steps to import a DAVE project into pVision are explained in the application
note 258 available at http://www.keil.com/appnotes/docs/apnt 258.asp.

http://www.keil.com/appnotes/docs/apnt_258.asp

Getting Started with MDK: Create Applications with pVision

After uVision imported the project, the Manage Run-Time Environment
window shows the group ::DAVES3 with the generated apps as components.

V] Manage Run-Time Envirenment x
Software Component Sel. Variant Version Description
@ CMSIS Cortex Microcontroller Software Interface Components =
@ CMSIS Driver Unified Device Drivers compliant to CAMSIS-Driver Specifications
@ Compiler ARM Compiler Software Extensions
= @ DAVE M Configuration Files generated by DAVE
¥ CLOCK_XMC1 [~ 4.0.6 APP to configure Systermn and Peripheral Clocks,
¥ CPU_CTRL_XMCT |[¥ 4.0.2 Defines the number of bits assigned to preemption pricrity.
¥ Framework I~ 1.0.0 DAVE Framework
¥ GLOBAL_CCU4 [~ 414 Initializes CCU4 Global Register Set,
¥ INTERRUPT I~ 4.04 Allows to overwrite the provided interrupt service routine (ISR] in
¥ PWM I~ 414 Generates a PWM using one timer slice of CCU4 or CCUS
@ Device Startup, System Setup
@ File System MDK-Pro | 8.5.0 File Access on various storage devices
@ Graphics MDK-Pro |5.30.0 | User Interface on graphical LCD displays
@ Metwark MDEK-Pro | 6.53.0 IP Metwaorking using Ethernet or Serial protocols i
@ UsB MDK-Pro | 8.5.0 USE Communication with various device classes J
Validation Qutput Description
Resolve Select Packs Details OK | Cancel | Help

Inside pVision, the component ::DAVE is locked. Use the start button # |to
open DAVE for changing the configuration of the apps.

The clock_xmc1_conf.c file contains a data structure for setting the clock
registers. The following is an example that shows how DAVE sets the values
according to the configuration from within the tool:

Code for clock_xmcl_conf.c

/**

* DATA STRUCTURES
**/
const XMC_SCU_CLOCK CONFIG t CLOCK XMC1_0_CONFIG =

{

.pclk_src = XMC SCU _CLOCK PCLKSRC DOUBLE MCIK,

.rtc_src = XMC_SCU_CLOCK RTCCLKSRC_DCO2,

.fdiv = Q0U, /**< Fractional divider */

.idiv = 1U, /**< 8Bit integer divider */

}i

58 Create Applications

Change the Clock Setup using DAVE

If you need to change these clock values, open the Manage Run-Time
Environment window and press the start button # lto open DAVE. Use
Configure APP Instance... to change the clock settings:

& cLock_smcio &2 =5

General Settings -

Main clock (MCLK) [MHz]: 16.0 Actual setting [MHz]: | 16
Fast peripheral clock (PCLK) [MHz]: | 2 x MCLK w | Actual setting [MHz): | 32
RTC clock source: DCoz v

Clock Control

DCO1 Unit
EXl -

16 MHz
TR
ACMP APP
32768 kHz
— RTC_CLOCK—“

32.768 kHZ

WDT_CLOCK—m

Re-run the code generation |E| in DAVE.

This will change the generated files, which will be recognized by uVision
automatically:

uVision

{@. For the current project new generated code is available for import.

T Project:
CA\Workspaces\DAVE-4.1\WS_2015_07_23\PWM_EXAMPLE_XMC1:PW
M_EXAMPLE_XMC13.uvprojc
Generated:
C:A\Workspaces\DAVE-4.1\WS_2015_07_23\PWM_EXAMPLE_XMC1APW
M_EXAMPLE_XMC13.gpdsc

Import Changes?

Yes No

Click on Yes to reload the changed file.

Getting Started with MDK: Create Applications with pVision

59

Example: STM32Cube

Many STM32 devices are using the STM32Cube Framework that can be
configured with a classical method using the RTE_Device.h configuration file or
by using STM32CubeMX.

The classic STM32Cube Framework component provides a specific user code
template that implements the system setup. Using STM32CubeMX, the main.c
file and other source files required for startup are copied into the project below
the STM32CubeMX:Common Sources group.

Setup the Project using the Classic Framework

This example creates a project for the STM32F746G-Discovery kit using the
classical method. In the Manage Run-Time Environment window, select the
following:

(&> Expand ::Device:STM32Cube Framework (API) and enable :Classic.
Expand ::Device and enable :Startup.

ﬂ Manage Run-Time Environment x
Software Component Sel. Variant Version Description
=4 Board Support STM32F746G-Discovery ~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit =
& @ CMSIS Cortex Microcontroller Software Interface Components
] @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
w4 Compiler ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup [+ 1.01 System Startup for STMicroelectronics STM32F7 Series
R 4 5TM32Cube Framewark (API) | STM32Cube Framewark
¥ Classic I 1.0.0 Configuration via RTE Device.h
¥ STM32CubeMX r 1.00 Configuration via STM32CubehX
£ @ STM32Cube HAL STM32FTiec Hardware Abstraction Layer (HAL) Drivers
£ @ File System MDK-Pro 6.5.0 File Access on various storage devices
] @ Graphics MDK-Pro 5300 | UserlInterface on graphical LCD displays
R Graphics Display Display Interface including configuration for emWIN
W 4 Nebwork MDK-Pra 650 |P Metworking using Ethernet or Serial protacols [
£ @ use MDK-Pro 6.5.0 USE Communication with various device classes J
o
Validation Qutput Description
Resolve Select Packs Details Cancel Help

& Click Resolve to enable other required software components and then OK.

60 Create Applications

& In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

‘Add New ltem to Group 'Source Files' X
Add template fle(s) to the project.
@ CFle () e R D
- Component Name
|C5.| C++File (cpp) 2 ousis
A | Asm File (5) 2% Devce
EET Tl ‘main' module for STM32Cube
\ﬂ Header Fle (h) STM32Cube Framework Classic Exception Handlers and Peripheral IRQ
= STM32Cube Framework Classic | MCU Specific HAL Initialization / De- Initi...
é Text Fle (be) Startup Flash One-Time programmable Bytes
9‘ mege Fie (1) Startup Flash Option Bytes
ﬁ User Code Template
Type: User Code Template:
Mame: [iain.
Location: ‘C:\\"/DrksDaEEsWDK\‘;rM}Z‘MDK\BDEMSWWXZFF%G,DISEDVEW\B‘IHKV B

& Click on User Code Template to list available code templates for the
software components included in the project. Select “‘main’ module for
STM32Cube and click Add.

The main.c file contains the function SystemClock_Config(). Here, you need to
make the settings for the clock setup:

Code for main.c

static void SystemClock Config (void) {
RCC_ClkInitTypeDef RCC ClkInitStruct;
RCC_OscInitTypeDef RCC OscInitStruct;

/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE HSE;
RCC_OscInitStruct.HSEState = RCC_HSE ON;
RCC_OscInitStruct.HSIState = RCC_HSI OFF;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE HSE;

RCC_OscInitStruct.PLL.PLIM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct .PLL.PLLP = RCC_PLLP_DIVZ 8
RCC_OscInitStruct.PLL.PLLQ = 9;

HAL RCC_OscConfig (&RCC_OscInitStruct) ;

/* Activate the OverDrive to reach the 216 MHz Frequency */
HAL PWREx EnableOverDrive() ;

/* Select PLL as system clock source and configure the HCLK, PCLK1l and
PCLK2 clocks dividers */

RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE HCLK |
RCC_CLOCKTYPE_PCLKI | RCC_CLOCKTYPE_PCLKZ);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK DIV1;
RCC_ClkInitStruct.APBlCLKDiVider = RCC_HCLK DIV4;
RCC_ClkInitStruct.APBZCLKDiVider = RCC_HCLK_DIVZ;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_?) 2

}

Getting Started with MDK: Create Applications with pVision

61

Setup the Project using STM32CubeMX

This example creates the same project as before using STM32CubeMX. In the
Manage Run-Time Environment window, select the following:

(> Expand ::Device:STM32Cube Framework (API) and enable
:STM32CubeMX. Expand ::Device and enable :Startup.

Select Packs | | Details

KA Maznage Run-Time Environment X
Software Component Sel. Variant Version Description
@ Board Support S5TM32756G-EVAL | 1.00 STMicroelectronics STM32736G-EVAL Board =]
@ CMSIS Cortex Microcontroller Software Interface Components
@ CMSIS Driver Unified Device Drivers compliant to CMS3IS-Driver Specifications
@ Compiler ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup [1.01 System Startup for STMicroelectronics STM32F7 Series
4 STM32Cube Framewark (API) STM32Cube Framework
¥ Classic r 1.00 Cenfiguration via RTE Device.h
¥ 5TM32CubeMX [1.00 Configuration via STM32CubeMX
@ STM32Cube HAL STM32FTwec Hardware Abstraction Layer (HAL) Drivers
@ File System MDK-Pro 6.5.0 File Access on various storage devices
@ Graphics MDK-Pro 5300 | UserlInterface on graphical LCD displays
4 Graphics Display Display Interface including configuration far emWiIN
@ MNetwork MDK-Pro 6.5.0 IP Metworking using Ethernet or Serial protocols &=
@ use MDK-Pro 650 USE Communication with various device classes J
Validation Output Description

Help

& Click Resolve to enable other required software components and then OK.
A new window will ask you to start STM32CubeMX.

MDK: Requires Code Generation by: "STM32CubeMix "

P configuration by an external code generator.

Component:
Keil:Device:STM32Cube Framework:5TM32CubeMX

Program:
STM32CubeMX

Generates:
GHx\FrameworkCubeMX.gpdsc

Do you want to launch Program?

"‘ A selected Software Component requires code generation or

C\Workspaces\MDKySTM32\5TM32CubeM\RTE\Device\ STM32F 746N

No

Create Applications

STM32CubeMX is started with the correct device selected:

& STM32CubeMX STCubeGenerated.ioc: STM32FTAENGHx

File Project Pinout Window Help

‘B EEE & T Orepcurentsgaspacenent 9 o — @ 4 Fnd|

~

© FATES
© FREERTOS
*
0
0

5 ADCL
- ADC2
* ADCE
o cant
- caN2
@ CRC
& DAC
o pemr
% DMA2D
° ETH
o mc
& HDMI_CEC
o na
o R
o e
o 14
o 2s1
5 s
- 1253
o WG
o pTIML
- LTDC
© QUADSPI g

PiN0Ut | Clock Configuration Configuration Power Consumption Calaator

WVision

Project:

Generated:
GH:x\FrameworkCubeMX.gpdsc

Import Changes?

@ For the current preject new generated code is available for import.
C\Workspaces\MDK\STM32\STM32CubeMKX\STM32CubeMX uvprojx

C\Workspaces\MDK\STM32\STM32CubeMX\RTE \ Device\ STM32F746M

o=] |

(> Configure your device as required. When done, go to Project > Generate
Code to create a GPDSC file. pVision will notify you:

(&= Click Yes to import the project. The main.c and other generated files are

added to a folder called STM32CubeMX:Common Sources.

Getting Started with MDK: Create Applications with pVision

63

Debug Applications

The ARM CoreSight™ technology integrated into the ARM Cortex-M processor
based devices provides powerful debug and trace capabilities. It enables run-
control to start and stop programs, breakpoints, memory access, and Flash
programming. Features like sampling, data trace, exceptions including program
counter (PC) interrupts, and instrumentation trace are available in most devices.
Devices integrate instruction trace using ETM, ETB, or MTB to enable analysis
of the program execution. Refer to www.keil.com/coresight for a complete
overview of the debug and trace capabilities.

Debugger Connection

MDK contains the puVision Debugger that connects to various debug/trace
adapters, and allows you to program the Flash memory. It supports traditional
features like simple and complex breakpoints, watch windows, and execution
control. Using trace, additional features like event/exception viewers, logic
analyzer, execution profiler, and code coverage are supported.

The ULINK2 and ULINK-ME debug
adapters interface to JTAG/SWD debug
connectors and support trace with the Serial
Wire Output (SWO). The ULINKpro -
debug/trace adapter also interfaces to ETM trace connectors and uses streaming
trace technology to capture the complete instruction trace for code coverage and
execution profiling. Refer to www.keil.com/ulink for more information.

CMSIS-DAP based USB JTAG/SWD debug interfaces are
typically part of an evaluation board or starter gm .
kit and offer integrated debug features. MDK
also supports several proprietary interfaces
that offer a similar technology.

MDK connects to third-party debug solutions such as Segger J-Link or J-Trace.
Some starter kit boards provide the J-Link Lite technology as an on-board
solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

64 Debug Applications

Using the Debugger

Next, you will debug the Blinky application created in the previous chapter on
hardware. You need to configure the debug connection and Flash programming
utility.

Select the debug adapter and configure debug options.

4% From the toolbar, choose Options for Target, click the Debug tab, enable
Use, and select the applicable debug driver.

KA Options for Target 'Target 1' X
Device] Target] Output] Usting] User] C,-"C-H] Asm] Linker | Debug ILHiIitiesl

" Use Simulator with restrictions Settings * Use: [1ULINK Pro Cortex Debugger ﬂ] Settings |
[Limit Speed to Real-Time

The device selection already configures the Flash programming algorithm for on-
chip memory. Verify the configuration using the Settings button.

Program the application into Flash memory.

%3 From the toolbar, choose Download. The Build Output window shows
messages about the download progress.

Build Output |
Load "C:\\Workspaces\\MDE\\NXP\\Blinkyv\\Cbjects\\Blinky.axf"
Erase Done.

Programming Done.

Verify OH.

Flash Load finished at 14:28:38

Getting Started with MDK: Create Applications with pVision

65

@] Start debugging on hardware. From the toolbar, select Start/Stop Debug
Session.

B C:\Workspaces\MDK\NXP\Blinky'Blinky.uvprojx - LiVision - o x
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=2"N- Iy [| == | & MaRela e oo a@-] A
FERO| BTG DR BEaRE - O-2-8- 0 @)%
Registers o E Disassembly L=
Register |Va\ue b 0x1A001280 FOOOBCE6A B.W rt_psh_req (0x1A001BS8) -
TG 14: osRernellnitialize (): Initialize CMSIS-RTOS
RO 00000000 15: initialize peripherals here
R1 00000000 EDUX:LAUUIZEH FOO 14 BL.W osKernellnitialize (Ox1A0012B0)
R2 00000000 le: LED Initialize (}: // Initialize LEDs
R3 00000000 7
Re 00000000 // create 'thread' functions That SCart executing,
A5 (00000000 19: // example: tid name = osThreadCreate (osThread(mame), NULL); v
RE 00000000 < >
R7 <00000000] tDh] EDe |] RDCConfCM.c] osObjects.h |] mainc |] startup_LPC18i00s v x
RE 00000000 — — =
RY 000000000 a3 i Q
RID 00000000 11 | * mzin: dinitialize and scarc the syscem
R11 000000000 . .
Ri2 00000000 13 Fint main (void) f
R13(5P) 10000828 I>I> 14 osKernellnitialize (): Initialize CMSIS-RTOS
R14{LR) x1AD01389 15 /! '_:'_F'_é_'_;& peripheral here
R15{PC) Ix1ADDT284 16 LED Initialize ():
PSR 01000000 a7
¥ Barked 18 hread' functions that start
- System 1g exanple: tid name = osThreadCreats
5 ntemal 20 Init_BlinkyThread ();: Start
Mods Thread 1 21 osKernelStart (); // Start thread execution
Friviege Privileged = .
‘Stack PSP 23 while (1)
- 9RCORG = 24 |} v
E project | = Registers < >
Command 2 [Call Stack - Locals Lo =)
Load "C:\\Workspaces\\MDX\\NXP\\Blinky\\Objects\\Blinky.axf" Name LocationfValue Type
@ osTimerThread: 1 | O<ADD13AC Task -
-9 Ox1A001284 Task
@ main 0<D0000000 int £
S 2 @ os_idle_demon: 255 | Ox1ACDI3FA Task
> =l
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet | -,-“JCBHS[E(k*LU(EIS gg’g'ﬂd-ﬁé Exceptions ,AZ:;E ent Counters jl\cmal,i
ULINK Pro Cortex Debugger t1: 0.03560590 sec L14C

During the start of a debugging session, pVision loads the application, executes

the startup code, and stops at the main C function.

Click Run on the toolbar. The LED flashes with a frequency of one second.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such

1 Step steps through the program and into function calls.

{3* Step Over steps through the program and over function calls.
{}* Step Out steps out of the current function.

€ Stop halts program execution.

8% Reset performs a CPU reset.

> Show to the statement that executes next (current PC location).

as:

66

Command Window

You may also enter debug commands in the Command window.

Command []

Debug Applications

BS

YWWBlinkyimain.ch32

Write Access
Write Access
Write Access

Breakpoint:
Breakpoint:
Breakpoint:

100 ticks reached
100 ticks reached
100 ticks reached

]

Il

B5 \\Blinky\main.c\23

BS Write msTicks==100, 1, "printf(\"Write Access Breakpoint: 100 ticks reached\\n\"):"
W5 1, "msTicks,O0x0R

W5 1, ‘CORE_CLE/1000000,0x0A

WS 1, ((SysTick Type *) ((OxEQO0EO0OUL) + Ox0010UL)),OxOR

WS 1, *SystemCoreClock, Ox0RA

Comamnd Line

»

Dynamic Command List

b

>

ASS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet

Breakhccejs COVERAGE DEFINE |

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

The Disassembly DelEEEE O- 3-8 d- @ x-
WIndOW ShOWS the Disassembly
program execution in oot g e peley (vokd) .
assemb|y code 22: while (msTicks < 493);
. . . 0x02000286 BFOO NOP
intermixed with the @ 0x08000288 480K LDR x0, [pc, #56] ; @0x080002C4
0x0DE00028A 6800 LDR 0, [x0, $0x00]

source code (When oioaooozac FSBOTEES CMP io,#;xmx
ava“ab'e) When thlS iS —>0x08000280 DDFA ELE 0x028000288

) 23: msTicks = 0;
the active WindOW, then 0x08000292 2000 MOVS r0, #0x00
all debug stepping ‘
commands work at the = ___x—"“'“‘ =
assembly Ievel ;T * CMSIS-RIOS 'main' function template
The window margin - S

shows markers for

breakpoints, bookmarks, and for the next execution statement.

Getting Started with MDK: Create Applications with pVision

67

Breakpoints

You can set breakpoints

= While creating or editing your program source code. Click in the grey margin

of the editor or Disassembly window to set a breakpoint.

= Using the breakpoint buttons in the toolbar.

= Using the menu Debug — Breakpoints.

= Entering commands in the Command window.

= Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define
sophisticated breakpoints
using the Breakpoints
window.

Open the Breakpoints
window from the menu
Debug.

Enable or disable
breakpoints using the
checkbox in the field
Current Breakpoints.
Double-click on an
existing breakpoint to
modify the definition.

Breakpoints X

Current Breakpoints:

< >
Access
Expression: | " Read [Wrie
Count: |1 J;I Size: E
1 =1
Command: | = -
| il Selected Kl Al | Cose | Help

Enter an Expression to add a new breakpoint. Depending on the expression, one
of the following breakpoint types is defined:

= Execution Breakpoint (E): is created when the expression specifies a code
address and triggers when the code address is reached.

= Access Breakpoint (A): is created when the expression specifies a memory
access (read, write, or both) and triggers on the access to this memory
address. Use a compare (==) operator to compare for a specified value.

If a Command is specified for a breakpoint, ptVision executes the command and
resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint halts program execution.

68 Debug Applications

Watch Window

The Watch window allows you to observe |wata1 =]
1 Name Value Type
program symbols, registers, memory areas, . e —
and expressions. @ CORE_CLK/1000000 168 ulong
0¥ SysTick 0xEQ00EDLO pointer
Q&_ﬁ Open a Watch WIndOW from the “ CTRL 000010007 unsigned int
. W LOAD 0x0002903F unsigned int
toolbar or the menu using @ vaL [T g
VieW _ Watch WIndOWS @ CALB 0x4000493E unsigned int
W SystemCoreClock | 168000000 unsigned int
Add variables to the Watch window with:

= Click on the field <Enter expression> and double-click or press F2.

= In the Editor when the cursor is located on a variable, use the context menu
select Add <item name> to...

= Drag and drop a variable into a Watch window.

= |n the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during
program execution when View — Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window [caistack= Locais B
shows the function nesting and Naf:j S oonsotooAll TTW:
variables of the current program s o
location. © main 0x080003CE int ()
5@ blink_LED:3 Task
G Open the Call Stack + Locals | * "%, 50 e
window from the toolbar or 5% blink LED 0x08000410 void f(void *)
H H _ =% argument <not in scope> param - void *
the menUUSIng VIeW Ca“ =% os_idle_demon: 255 |0x08000438 Task
Stack Window.

When program execution stops, the Call Stack + Locals window automatically
shows the current function nesting along with local variables. Threads are shown
for applications that use the CMSIS-RTOS RTX.

Getting Started with MDK: Create Applications with pVision

Register Window

Registers =
The Register window shows the content of the Regster Vaiue |
microcontroller registers. i (00000000

| Rz oooooose |
£ Open the Registers window (20000678

from the toolbar or the menu
View — Registers Window. _

(61000000

M5P k20000678
You can modify the content of a register by double- L oo ooaceoe
clicking on the value of a register, or pressing F2 to BASEFR DO
edit the selected value. Currently modified registers are FAULTMASK 0

CONTROL D4
Intemal

highlighted in blue. The window updates the values

H Made Thread
when program execution halts. Proge Proieged
Stack MSP
States 52395004552
Sec 311.87502942
+ FRU
Monitor memory areas using W 1 B
Memory Windows. Adcrss: [imsTicks M
0%20000000: [EEJEDE| 0A037R00 00000000 00000000
Open a Memory WindOW 0x20000010: 04030201 09080706 0Q0D00000 00000000
0%20000020: 00000000 00000000 00000000 00000000
from the toolbar or the 0%20000030: 00000000 00000000 000DD000 00000000
. . 0%20000040: 00000000 00000000 00000000 00000000
menu using View — 0x20000050: 00000000 00000000 00000000 00000000
. 0%20000060: 00000000 00000000 00000000 00000000
Memory Windows. 0%20000070: 20000018 08000200 00000000 00000000
o 0%20000080: 00000000 00000000 00000000 00000000
= Enter an expression in the 0%20000090: 00000000 00000000 00000000 00000000

Ax2NANANEA- AAOANANN_AANNNANA_OONANANA_A0AONANA

Address field to monitor the
memory area.

* To modify memory content, use the Modify Memory at ... command from
context menu of the Memory window double-click on the value.

= The Context Menu allows you to select the output format.

= To update the Memory Window periodically, enable View — Periodic
Window Update. Use Update Windows in the Toolbox to refresh the
windows manually.

i1 Stop refreshing the Memory window by clicking the Lock button. You can
use the Lock feature to compare values of the same address space by
viewing the same section in a second Memory window.

70 Debug Applications

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write
to and read from to control a peripheral. The menu Peripherals provides access
to Core Peripherals, such as the Nested Vector Interrupt Controller or the
System Tick Timer. You can access device peripheral registers using the System
Viewer.

NOTE
The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information GP10D B
about device peripheral registers. -us) [
Property Value
B8 Open a peripheral register from the toolbar | = “® ~ EEEIENN -
or the menu Peripherals — System OTVPER o |
Viewer Geiop osPEEDR (I
' il C
i i : &-10R
With the System Viewer, you can: i -
= View peripheral register properties and - o1
values. Values are updated periodically LekR R
when View — Periodic Window Update AFRH COR -
IS enabIEd [[BTs 31..0]1 RO (@ 0:40020C10) GPIO port input data
. . register
= Change property values while debugging.

= Search for specific properties using TR1 Regular Expressions in the search
field. The appendix of the uVision User’s Guide describes the syntax of
regular expressions.

For details about accessing and using peripheral registers, refer to the online
documentation.

http://www.keil.com/support/man/docs/uv4/uv4_f_search_expr.htm

Getting Started with MDK: Create Applications with pVision 71

Trace

Run-Stop Debugging, as described previously, has some limitations that become
apparent when testing time-critical programs, such as motor control or complex
communication applications. As an example, breakpoints and single stepping
commands change the dynamic behavior of the system. As an alternative, use the
trace features explained in this section to analyze running systems.

Cortex-M processors integrate CoreSight logic that is able to generate the
following trace information using:

Cortex-M Debug & Trace IP

= Data Watchpoints record

memory accesses with data Breakpoint Unit Debug
value and program address and, Access Port
optionally, stop program Memory Access (DAP)
execution.

= Exception Trace outputs Data Watchpoints
details about interrupts and Exception & 'Ticif Port
exceptions. Instrumented Trace neeriace

Unit (TPIV)

» Instrumented Trace
communicates program events
and enables printf-style debug
messages and the RTOS Event Viewer.

Instruction Trace

= Instruction Trace streams the complete program execution for recording and
analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-
M4, and Cortex-M7 processor-based microcontrollers and outputs above trace
information via:

= Serial Wire Trace Output (SWO) works only in combination with the
Serial Wire Debug mode (not with JTAG) and does not support Instruction
Trace.

» 4-Pin Trace Output is available on high-end microcontrollers and has the
high bandwidth required for Instruction Trace.

On some microcontrollers, the trace information can be stored in an on-chip
Trace Buffer that can be read using the standard debug interface.

= Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace
Buffer (ETB) that stores all trace data described above.

= Cortex-MO0+ has an optional Micro Trace Buffer (MTB) that supports
Instruction Trace only.

72 Debug Applications

The required trace interface needs to be supported by both the microcontroller
and the debug adapter. The following table shows supported trace methods of

various debug adapters.

Feature ULINKpro ULINKpro-D ULINK2 ST-Link v2
Serial Wire Output (SWO) v v v v

Maximum SWO clock frequency 200 MHz 200 MHz 3.75MHz 2 MHz
4-Pin Trace Output for Streaming v/ x x x
Embedded Trace Buffer (ETB) v v x

Micro Trace Buffer (MTB) v v v x

Trace with Serial Wire Output
To use the Serial Wire Trace Output (SWO), use the following steps:

4% Click Options for Target on the toolbar and select the Debug tab. Verify
that you have selected and enabled the correct debug adapter.

Options for Target 'Target 1' x

Device | Target | Output | Listing | User | C/C++| Asm | Linker ' Debug 'Util'rties |

Settings |

 Use Simulator
[™ Limit Speed to Real-Time

with restrictions g Use:[IULlNK Pro Cortex Debugger Lll Settings |

(7 Click the Settings button. In the Debug dialog, select the debug Port: SW
and set the Max Clock frequency for communicating with the debug unit of
the device.

Cortex-M Target Driver Setup *

Trace I Rash Download |

— ULINK USB - JTAG/SW Adapter —
Serial MNo: -

ULINK Version: IULINKpro
Device Family: ICortex—M
Firmware Version: IV'I 57

v s Porl:lsw -]

Max[]ock:l‘]MHz vI

—SW Device
IDCODE | Device Name [tove
SWDIO | & 0«2BAD1477 ARM CoreSight SW-DP Up |
Dc-wnl
% Automatic Detection |D CODE: I
" Manual Configuration Device Name: |
add | | Delete | | Update | AP: [Bc00

Getting Started with MDK: Create Applications with pVision

(& Click the Trace tab. Ensure the Core Clock has the right setting. Set Trace
Enable and select the Trace Events you want to monitor.

= Enable ITM Stimulus Port 0 for print £-style debugging.
= Enable ITM Stimulus Port 31 to view RTOS Events.

Cortex-M Target Driver Setup *
Debug Flash Download]
[Core Clock: | 180.000000 MHz ¥ Trace Enable| ™ UnlimtedTrace [
Trace Port Timestamps Trace Events
|Seria| Wire Qutput - Manchester ﬂ V' Enable Prescaler: [1 ~ [[CPI: Cycles per Instruction
SWO Clock Prescaler: 1 PC Sampling W Cimooen
7 Adtodeiedt I |SLEEP: Sleep Cycles
odete: . .—_|v
. Prescaler: | 1024°16 [|LSU: Load Store Unit Cycles
SWO Clock: | 180000000 MHz ™ Periodic Period: | <Disabled: [|FOLD: Folded Instructions
™ on Data R/W Sample [JEXCTRC: Exception Tracing
ITM Stimulus Ports
H Port 2423 Port 16 15 Port 8 7 Port o
Enable: | (20000001 1 I I IO [
Privilege: | k00000008 Port 31.24 |» Port 23.16 [Port 15.8 [~ Port 7.0 ™
0K | Cancel Help

NOTE

When many trace features are enabled, the Serial Wire Output communication
can overflow. The pVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such
communication overflows are rare. Enable only the trace features that are
currently required to avoid overflows in the trace communication.

74 Debug Applications

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and
interrupts.

24 Click on Trace Windows and select Trace Exceptions from the toolbar or
use the menu View — Trace — Trace Exceptions to open the window.

Trace Exceptions @
=] ‘] ‘ (7] ‘ [¥ EXCTRC Exception Tracing | [V Timestamps Enable
Num Name Count Total Time Min Timeln Max Time.. Min Time Out Max Time Qut First Time [s] Last Time [s]
7] UsageFault 4] Os j
11 SVCall 0 0s 1
12 DebugMeonitor 1] Os
Pend5V 0

14 Os
SysTick 1258 (74543us [59524ns 59524 ns (136905 ns 000103092 |1.25403151
16 s

WWDG 0 0
17 PVD 0 Os
18 TAMP_STAMP 0 Os
19 RTC_WKUP 0 0s

=

To retrieve data in the Trace Exceptions window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Enable EXCTRC: Exception Tracing.
= Set Timestamps Enable.

NOTE

The variable accesses configured in the Logic Analyzer are also shown in the
Trace Data Window.

Getting Started with MDK: Create Applications with pVision

75

Event Viewer

The Event Viewer shows RTOS thread as well as interrupt and exception timing
information. Open this window with the menu Debug — OS Support — Event

Viewer.

Event Viewer

Win Time MaxTime Grid Zoom Update Screen

pto | Transiton |R# Timing Info W Cursor

30.030%s | 33.90816s | 2us \I_nﬂo_unA_lll Stop c\ear Cude Trace mﬂ I~ Show Cyces

osTimerThread (1) ! ! : : : :
~ [l —-
eth_thread (3)
BlinkLed (4)
SVCall (11) I I
PendSV (14) 3 3 3 E E

SysTick (15)

L 380209: 33.802095]
3

>OC

i [Timing of ‘main’ (Thread #2 @0x1a00055¢)

H All Slices: Min

Max
Count: 523788 01us 38.88889 us
Cursars: Mouse Reference

33.8021s 33.80209 5

Al Threads main (2) 3>Oﬁa.mz) 3 >.<mam & Hns) XM) >'(mam \2; >O(ma.n|2
J fmain 21— SysTick (151} I

Average
6.777778 us

Difference

3330715, d: 11.35556 s|

11.35556 us = 88062.622309 Hz

" 33802125

IR

To retrieve data in the Event Viewer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Enable ITM Stimulus Port 31 for CMSIS-RTOS thread timing information.
= Enable EXCTRC: Exception Tracing for interrupt and exception timing

information.

= Set Timestamps Enable.

NOTE

The debugger provides also detailed RTOS and Thread status information that is
available without Trace. Refer to CMSIS-RTOS System and Thread Viewer on

page 36 for more information.

76 Debug Applications

Logic Analyzer

The Logic Analyzer window displays changes of up to four variable values over
time. To add a variable to the Logic Analyzer, right click it in while in debug
mode and select Add <variable> to... - Logic Analyzer. Open the Logic
Analyzer window by choosing View - Analysis Windows - Logic Analyzer.

Logic Analyzes &)
[Setp|[load | MnTme MaxTime Gid Zoom Min/Max |Update Screen| Transtion | Jumpto [Signalifo | Ampltude
Save 0s 04765545 [05ms |[In [[Out] Al'] [Auto][Undo] [Stop | Clear | [Prev [Next]| [Code |[Trace] I~ Show Cycles ¥ Cumsor
16263 P T e \
sine —* -
1694 15 371 =

32767

l
\

(11288 |3
\
dgtubed T —— | T }
\
\

32768 6712 2020, 4 18732
32767
ftered | |
| filtered
Mouse Pos Reference Point Delta
12768 0458738 s 0457832 s 090541 ms = 110447
327 14629 15512 283
: 0:3b0 0360
f | | f f T T
| | L5 | J |
f Y - ‘ Y | { \
nnfig {567 568 569 [57 571 |57 578 {577 ‘;
| | | | f |
| ; L
| I I \ |
0453878 04628788
4] B

To retrieve data in the Logic Analyzer window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

NOTE

The variable accesses monitored in the Logic Analyzer are also shown in the
Trace Data Window. Refer to the uVision User’s Guide — Debuqgging for more
information.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

Getting Started with MDK: Create Applications with pVision

77

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted
sequentially through the ITM Stimulus Port 0. To enable printf() debugging, use
the Compiler software component as described on page 42.

This fputc() function redirects any printf() messages (as shown below) to the
Debug (printf) Viewer.

int seconds; // Second counter
while (1) {
LED On (); // Switch on
delay (); // Delay
LED Off () // Switch off
delay (); // Delay
printf ("Seconds=%d\n", seconds++) ; // Debug output

=# Click on Serial Windows and select Debug (printf) Debug (print] Viewer 2 (&

Seconds=0 -

Viewer from the toolbar or use the menu View — Serial [oconaa—t

Windows — Debug (printf) Viewer to open the ooonde~?
WlndOW S‘Econd5=‘1 , -
? i‘iDE..‘ | M

To retrieve data in the Debug (printf) Viewer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

= Enable ITM Stimulus Port 0.

ms-its:C:/MDK5/ARM/HLP/ulinkpro.chm::/ulinkpro_tr_stimulusports.htm

78

Debug Applications

Event Counters

Event Counters displays cumulative

; . Event Counters [l
numbers, which show how often an event is €| R| @

triggered. Name Value Enable
) A CPICNT 698857 ¥
4 From toolbar use Trace Windows — EXCCNT |54 g
SLEEPCNT 256 v
Event Counters LSUCNT 698580 ¥
From menu View — Trace — Event FOLDCNT [0 v

Counters

To retrieve data in this window:

Set Trace Enable in the Debug Settings Trace dialog as described above.

Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

CPICNT: Exception overhead cycle: indicates Flash wait states.
EXCCNT: Extra Cycle per Instruction: indicates exception frequency.
SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.

LSUCNT: Load Store Unit Cycle: indicates additional cycles required to
execute a multi-cycle load-store instruction.

FOLDCNT: Folded Instructions: indicates instructions that execute in zero
cycles.

Getting Started with MDK: Create Applications with pVision 79

Trace with 4-Pin Output

Using the 4-pin trace output provides all the features described in the section
Trace with Serial Wire Output, but has a higher trace communication
bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output
(also called ETM Trace) which gives detailed insight into program execution.

NOTE
Refer to the uVision User’s Guide — Debugging for more information about the
features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the
following advanced analysis features:

= Code Coverage marks code that has been executed and gives statistics on
code execution. This helps to identify sporadic execution errors and is
frequently a requirement for software certification.

= The Performance Analyzer records and displays execution times for
functions and program blocks. It shows the processor cycle usage and enables
you to find hotspots in algorithms for optimization.

= The Trace Data Window shows the history of executed instructions for
Cortex-M devices.

Trace with On-Chip Trace Buffer

In some cases, trace output pins are no available on the microcontroller or target
hardware. As an alternative, an on-chip Trace Buffer can be used that supports
the Trace Data Window.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

80 Middleware

Middleware

Today’s microcontroller devices offer a wide range of communication peripherals
to meet many embedded design requirements. Middleware is essential to make
efficient use of these complex on-chip peripherals.

NOTE

This chapter describes the middleware that is part of MDK-Professional and
MDK-Plus. MDK also works with middleware available from several other
vendors.

Refer to http://www.keil.com/pack for a list of public Software Packs.

The MDK-Middleware Software Pack includes royalty-free middleware with
components for TCP/IP networking, USB Host and USB Device
communication, file system for data storage, and a graphical user interface.

Refer to www.keil.com/middleware for more information.

[>] mMDK-Professional Midd X =+ - O 'Y
D T — x| = @ &
bl
M Products Download Events Support Q, Search Keil.com
Hame 1 1K Verson 5 / iddene & o
MDK-Professional Middleware .

Microcontrollers offer a wide range of interfaces lo meet today's
embedded design requirements. However, implementing
applications that efficiently utilize these interfaces presents software = MDK Overview

& Quick Links

developers with real challenges. Flexible and easy-to-use
middieware components are essential to unieash the power of

Middleware User's Guide
CMSIS

communication and interface peripherals in modermn microcontroliers.

= Knowledgebase
Compare MDK Editions

This web page provides an overview of the middleware and links to:

= MDK Middleware User’s Guide
= Device List along with information about device-specific drivers
= Information about Example Projects with usage instructions

The middleware interfaces to the device peripherals using device-specific
CMSIS-Drivers. Refer to CMSIS-Driver on page 39 for more information.

http://www.keil.com/pack
http://www.keil.com/middleware

Getting Started with MDK: Create Applications with pVision 81

Combining several components is common for a microcontroller application. The
Manage Run-Time Environment dialog makes it easy to select and combine
MDK Middleware. It is even possible to expand the middleware component list
with third-party components that are supplied as a Software Pack.

Typical examples for the usage of MDK Middleware are:
= Web server with storage capabilities: Network and File System Component
= USB memory stick: USB Device and File System Component

= Industrial control unit with display and logging functionality: Graphics, USB
Host, and File System Component

Refer to the FTP Server Example on page 89 that exemplifies a combination of
several middleware components.

The following sections give an overview for each software component of the
MDK Middleware.

NOTE
A seven days evaluation license for MDK-Professional is delivered with each
installation. Refer to the Installation chapter on page 9 for more information.

82 Middleware

Network Component

The Network Component uses TCP/IP communication protocols and contains
support for services, protocol sockets, and physical communication interfaces. It
supports IPv4 and IPv6 connections.

Network Component
Compact Full Web Server FTP TFTP Telnet
g Web Server Using File System Server Server Server
z
@ SNMP DNS SNTP FTP TFTP SMTP
Agent Client Client Client Client Client
| B
H
with
IPv4/IPv6
g Dual-
3 ——n i
s

CMSIS-Driver

The various services provide program templates for common networking tasks.

= Compact Web Server stores web pages in ROM whereas the Full Web
Server uses the File System component for page data storage. Both servers
support dynamic page content using CGI scripting, AJAX, and SOAP
technologies.

= FTP or TFTP support file transfer. FTP provides full file manipulation
commands, whereas TFTP can boot load remote devices. Both are available
for the client and server.

= Telnet Server provides a command line interface over an IP network.

= SNMP Agent reports device information to a network manager using the
Simple Network Management Protocol.

= DNS Client resolves domain names to the respective IP address. It makes use
of a freely configurable name server.

= SNTP Client synchronizes clocks and enables a device to get an accurate
time signal over the data network.

= SMTP Client sends status emails using the Simple Mail Transfer Protocol.

Getting Started with MDK: Create Applications with pVision

83

All Services rely on a communication socket that can be either TCP (a
connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented
protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial
connection such as PPP (for a direct connection between two devices) or SLIP
(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on a CMSIS-Driver
to be present for providing the device-specific hardware interface. Ethernet
requires an Ethernet MAC and PHY driver, whereas serial connections
(PPP/SLIP) require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic
messages and a Release variant that omits these diagnostics. It supports IP
communication using IPv4 and IPv6.

84 Middleware

File System Component

The File System Component allows your embedded applications to create, save,
read, and modify files in storage devices such as RAM, NAND or NOR Flash,
memory cards, or USB memory sticks.

File System Component
USB MSC SD/MMC
Mass Storage Class Memory Card

CMSIS-Driver

=N | = | = =

Each storage device is accessed and referenced as a Drive. The File System
Component supports multiple drives of the same type. For example, you might
have more than one memory card in your system.

The File System Core is thread-safe, supports simultaneous access to multiple
drives, and uses a FAT system available in two file name variants: short 8.3 file
names and long file names with up to 255 characters.

To access the physical media, for example NAND and NOR Flash chips, or
memory cards using MCI or SPI, CMSIS-Driver have to be present.

File System

Core

Getting Started with MDK: Create Applications with pVision 85

USB Component

The USB Device component implements USB Host and Device functionality
and uses standard device driver classes that are available on most computer
systems, avoiding host driver development.

USB Component
@ HID CcDC
17
Io Human Interface Device USB Host Core
- MsC Custom
o Mass Storage Class Custom Device Class
(]
v HID CcDC -
E Human Interface Device USB Device Core
(a]
-] MsC Custom ADC
g Mass Storage Class Custom Device Class Audio Device Class

CMSIS-Driver

Human Interface Device Class (HID) implements a keyboard, joystick or
mouse. However, HID can also be used for simple data exchange.

Use the Mass Storage Class (MSC) for file exchange (for example a USB
memory stick).

Communication Device Class (CDC) implements a virtual serial port (using
the sub-class ACM) or a network connection (using the sub-class NCM).

Audio Device Class (ADC) performs audio streaming.
Use the Custom Class for new or unsupported USB classes.

The USB Component supports Composite USB devices that implement multiple
device classes.

This component requires a USB CMSIS-Driver to be present. Depending on the
application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB
2.0 (High-Speed USB) specification.

86 Middleware

Graphics Component

The Graphics Component is a comprehensive library that includes everything
you need to build graphical user interfaces.

Graphics Component

“
4 . . i
6 Bitmap Support Window Manager Antialiasing
LCD Configuration GUI Configuration

T T

Interface Template Preconfigured Interfaces

Core functions include:
* A Window Manager to manipulate any number of windows or dialogs.
» Ready-to-use Fonts and window elements, called Widgets, and Dialogs.

Input

Display

» Bitmap Support including JPEG and other common formats.
= Anti-Aliasing for smooth display.
= Flexible, configurable Display and User Interface parameters.

= The user interface can be controlled using input devices like a Touch Screen
or a Joystick.

The Graphics Component interfaces to a wide range of display controllers using
preconfigured interfaces for popular displays. Adapt the interface template to
add support for new displays.

The VNC Server allows remote control of your graphical user interface via
TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

Getting Started with MDK: Create Applications with pVision 87

loT Connectivity

The middleware in MDK-Professional provides interfaces to mbed software
components that enable secure communication and Internet of Things (IoT)
connectivity.

= mbed TLS adds cryptographic and SSL/TLS capabilities with a library
collection optimized for embedded systems.

= mbed Client implements the OMA Lightweight M2M protocol (from Open
Mobile Alliance http://openmobilealliance.org) and interfaces to the mbed
Device Server that connects loT devices to web applications.

http://openmobilealliance.org/

88 Middleware

Migrating to Middleware Version 7

MDK has built-in features that help you to migrate your pVision projects to the
new Middleware Version 7. Most components only require a configuration file

update (see below). However, the Network Component requires more migration
work as it has changed from IPv4-only to dual-stack support for IPv4/IPVv6.

Network Component Changes

Core Changes

The Network Component’s Core was previously available in a Release or Debug
variant. In Middleware Version 7 this is changed to IPv4/IPv6 Release or
IPv4/1Pv6 Debug. When you open a project with the old component, you will
see an error in the Build Output window. Please change to the corresponding
new variant.

Configuration File Update

Special icons in the Project window of pVision highlight configuration files that
require an update. You have the option either to overwrite the old configuration
file or to update and merge the contents:

®T FTP_Server FS.c (SenvicelFTP Server) To test this ¢

B Net_Config—=m= address frn:/;
. Options for Component Class Network’ Alt+FT

58 Network ‘

B3 Net_Config|
%) Net_Config
2 Net_Config

—] Net_Config, ﬁ Manage Project Items...
T Net_cm3_L

Update Config File (Ver: 504 -> 7.0.0)
Update Config File and Launch Merge

We

CH

Open Net_Config.c as
ne

[Rebuild all target files
cc

Translate Net_Config.c

V| Show Include File Dependencies

1
Go to Tools - Configure Merge Tool to specify the merge tool of your choice.

API Changes

The Network Component’s documentation offers sections on how to migrate
projects from the old to the new API. It offers general recommendations on the
migration of services, sockets, and interfaces, as well as a side-by-side
comparison of the APl whether you are migrating from Middleware v5/v6 or
even RL-TCPnet.

Getting Started with MDK: Create Applications with pVision

FTP Server Example

The FTP server example is a reference application that shows a combination of
several middleware components. Refer to Verify Installation using Example

Projects on page 12 for more information on the various example projects that
are available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP
network. The middleware documentation has more details about the FTP Server
and the reference application:

B3 FP Server X Bk = X

o
€ > O P hacnoren =2 o

ARMKEIL Network Component version 6.6

Microcontroller Tools MDK-Professional Middleware for IP Networking
General | File System | Graphic m usB Board Support |

Main Page Usage and Description Reference Q- Search
|

¥ Network Component
FTP Server

Revision History

» Creating a Network Application
» Using Network Components This tutorial creates a FTP server that allows you to manage files from any machine using a FTP client. The following

i ion of :
¥ Network Examples picture shows an exemplary connection of the development board and a Computer.

» HTTP Server Local Area Network
HTTP Upload

Telnet Server

SMTP Client

SNMP Agent

BSD Client/Server
» Differences to RL-TCPnet
» Resource Requirements

Ethernet Ethernet

R usB

» Reference

» Data Structures
Data Structure Index

> Data Fields

Network Examples / Generated on Fri Oct 30 2015 11:38:55 for Network Component by ARM Ltd. All rights reserved.

90

Middleware

Several middleware components are the building blocks of this FTP server. A
File System is required to handle the file manipulation. Various parts of the
Network component build up the networking interface.

The following software components from the MDK Middleware are required to
create the FTP Server example:

Socket

Interface

Ethernet

Network

B

g
T
@

FTP
Server

CORE

IPv4/IPvé
Dual-
Stack

CMSIS-Driver

File System

_s SD/MMC
<] Memory Card

File System Core

MCI

As explained before, CMSIS-Driver provides the interface between the

microcontroller peripherals and the MDK Middleware.

The Manage Run-Time Environment dialog shows the software components
selected for the FTP Server example:

Software Component Sel. Variant
£ € CMSIS Driver
% Ethernet (APT) 201
£ Ethemet MAC (2P) 201
@ EthemetMAC |7 202
=49 Ethemet PHY (AP]) 200
@ DPe3R4EC ~ 600
@ KSZBOBIRNA | 600
@ LANET20 (=] 6.00
@ STR0RTL [a] 600
@ Flash (AP]) 200
@ 1c (aP] 202
£ M ey 202
@ ma ~ 201
€ NAND (4P 201
£ SPLAPD 201
@ s ~ 203
4 USART (4PD) 201
@ USB Device (4P]) 201
€ USB Host (4PT) 201
& Compiler
2§ Device
@ GPDMA ~ 101
@ GPIO ~ 100
@ scu ~ 100
@ Startup ~ 100
£ _File Svstem MDK-Pro 624

Version Description

Unified Device Drivers compliant to CM¢
Ethernet MAC and PHY Driver AP1 for Cc
Ethernet MAC Driver APl for Cortex-M
Ethernet MAC Driver for LPC1800 Series
Ethernet PHY Driver APl for Cortex-h
Ethemet PHY DP83848C Driver

Ethernet PHY KSZB08LRNA Driver
Ethernet PHY LANS720 Driver

Ethemnet PHY STB02RTI Driver

Flash Driver AP1 for Cortex-M

12C Driver AP for Cortex-M

MCI Driver API for Cortex-M

MCI Driver for LPCL800 Series

INAND Flash Driver APl for Cortex-M

SPI Driver APLfor Cortex-M

SPI(S5P) Driver for LPC1800 Series
USART Driver API for Cortex-M

USB Device Driver 4P] for Cortex-M

USE Host Driver AP] for Cortex-M

Startup. System Setup

GPDMA driver used by RTE Drivers for Lt
GPIQ driver used by RTE Drivers for LPC]
SCU driver used by RTE Drivers for LPCL
System Startup for NXP LPC1800 Series
File Access on various storage devices.

Software Compenent
£ € FileSystem
@ CORE
@ Drive
& Graphics
& & Network
@ CORE
£ € Interface
% ETH
@ ppp
9 s
B8 Senvice
@ DNs Client
@ FTP Client
@ FTP Server
@ SMTP Client
9 SNMP Agent
@ SNTP Client
@ TFTP Client
@ TFTP Server
@ Telnet Server
@ Web Server Co.
@ Web Server
£€ Socket

aapEEAEEEEEaE T

Eliciinl

Variant
MDK-Pro
LEN

624

624

5261
620

[=]620

620
standard M{ | 6.20

Standard M | 620

MDK-Pro
MDK-Pro

Release

Version Description

File Access on various storage devices
File System with Long Filename support for
Storage Devices and Media Types

User Interface on graphical LCD displays

IP Networking using Ethemet or Serial protc
Networking Cere for Corter-M (Release)
Connection Mechanism

Network Ethemet Interfoce

Network PPP over Serizl Interface - Standar
Network SLP Interface - Standard Modem
Network Services

DN Client

ETP Client

FTP Server

SMTP Client

SNMP Agent

SNTP Client

TETP Client

TETP Server

Telnet Server

Web Server (HTTP) with Read-enly Web Re
Web Server (HTTP) with Web Resources on
Network protacol

BSD Socket

TCP Socket

UDP Sacket

Getting Started with MDK: Create Applications with pVision

91

Using Middleware

Create your own applications using MDK Middleware components. For more
information, refer to the MDK Middleware User’s Guide that has sections for
every component describing:

= Example projects outline key product features of software components. The
examples are tested, implemented, and proven on several evaluation boards.
Use them as reference applications or a starting point for your development.

= Resource Requirements describe the thread and stack resources for CMSIS-
RTOS and the memory footprint.

= Create an Application contains the required steps for using the components
in an embedded application.

= Reference contains the APl and file documentation.

B File System Examples X+ —

o
&« O ¥ = @ O

ARMKEIL File System Component version 66

Microcontroller Tools MDK-Professional Middleware for Devices with Flash File System

General File System Graphic | Network usB | Board Support

Main Page Usage and Description Reference Q" Search
|

File System Component =
File System Examples
Revision History
Create an Application Using the |
» File System Examples The File System Component is used in many different applications and examples. One stand-alone example is
available to demonstrate the usage of the File System. Other examples use the File System Component in

fheon/oropaatioy conjunction with other Components (such as USB or Network for example).

Differences to RL-FlashFS

Resource Requirements ® The File System Example shows the basic functionality of the File System.

® The USB Device Mass Storage Example shows how to create an USB MSC Device that will be recognized as
Reference such by an USB Host controller.

Data Structures * The USB Host Mass Storage Example explains how to use the File System to access data from an attached
Data Structure Index UsB memery device.

Data Fialds * The FTP Server Example is made for getting access to the device's File System via a network connection.

Generated on Fri Oct 30 2015 11:38:53 for File System Component by ARM Ltd. All rights reserved.

The learning platform www.keil.com/learn offers several tutorials and videos
that exemplify typical use cases of the middleware. Refer also to these application
notes:

= USB Host Application with File System and Graphical User Interface:
www.keil.com/appnotes/docs/apnt 268.asp

= Web-Enabled MEMS Sensor Platform:
www.keil.com/appnotes/docs/apnt 271.asp

= \Web-Enabled Voice Recorder:
www.keil.com/appnotes/docs/apnt 272.asp

= Analog/Digital Data Logger with USB Device Interface:
www.Keil.com/appnotes/docs/apnt 273.asp

http://www.keil.com/learn
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/appnotes/docs/apnt_271.asp
http://www.keil.com/appnotes/docs/apnt_272.asp
http://www.keil.com/appnotes/docs/apnt_273.asp

92 Using Middleware

The generic steps to use the various middleware components are:

= Add Software Components (page 94): In the Manage Run-Time
Environment dialog select the software components that are required for
your application.

= Configure Middleware (page 96): Adjust the parameters of the software
components in the related configuration files.

= Configure Drivers (page 98): Identify and configure the peripheral
interfaces that connect the middleware components to physical I/O pins of the
microcontroller.

= Adjust System Resources (page 99): The middleware components use
RTOS, memory, and stack resources and this may imply configurations, for
example to CMSIS-RTOS RTX.

= Implement Application Features (page 100): Use the API functions of the
selected components to implement the application specific behaviour. Code
templates help you to create the related source code.

= Build and Download (page 103): After compiling and linking of the
application use the steps described in the chapter Using the Debugger on
page 64 to download the image to your target hardware.

= Verify and Debug (page 103): Test utilities along with debug and trace
features are described in the chapter Create Applications (page 45).

Getting Started with MDK: Create Applications with pVision 93

USB Device HID Example

While above steps are generic and apply to all components of the MDK
Middleware, the following USB Device HID example shows these steps in
practice. This example creates a USB HID Device application that connects a
microcontroller to a host computer via USB. On the PC the utility program
HIDClient.exe is used to control LEDs on the development board.

This USB Device HID example uses the MCB1800 development board populated
with a LPC1857 microcontroller. It is based on the project Blinky with CMSIS-
RTOS RTX on page 45 along with the source files main.c, LED.c, LED.h, and
the configuration files.

NOTE

You must adapt the code and pin configurations when using this example on other
starter kits or evaluation boards. This example is available as a pre-built project
in Pack Installer for many microcontroller device families supporting CMSIS-
Driver.

94 Using Middleware

Add Software Components

To create the USB Device HID example, start with the project Blinky with
CMSIS-RTOS RTX described on page 45.

4 Use the Manage Run-Time Environment dialog to add specific software
components.

From USB Component (described on page 85):

= Select ::USB:CORE to include the basic functionality required for USB
communication.

= Set ::USB:Device to '1' to create one USB Device instance.

= Set::USB:Device:HID to '1' to create a HID Device Class instance. If you
select multiple instances of the same class or include other device classes,
you will create a Composite USB Device.

From CMSIS-Driver (described on page 39):

Select from ::CMSIS Driver:USB Device (API) an appropriate driver suitable
for your application. Some devices may have specific drivers for USB Full-Speed
and High-Speed whereas other microcontrollers may have a combined driver.
Here, select USBO.

T1P: Click on the hyperlinks in the Description column to view detailed
documentation for each software component.

Getting Started with MDK: Create Applications with pVision

95

The picture below shows the Manage Run-Time Environment dialog after

adding these components.

kA Manage Run-Time Environment

Software Component Sel. Variant
& CMsIs
-4 CMSIS Driver
& Ethemnet (API)
4 Ethernet MAC (API)
€ Ethernet PHY (AP])
4 Flash (API)
& 12C (aP))
& MCI(aP])
4 NAND (API)
& Sal(aP))
& sPI(AP])
4 USART (API)
-4 USB Device (4PI)
@ USBD e
@ UsBl r
€ USB Host (API)
’ Compiler

’ Device
4 File System MDK-Pro
‘ Graphics MDK-Pro
4 Network MDK-Pro
=4 UsB MDK-Pro
¥ CORE I
#% Device 1=
&% Host 0
= ‘ Device
&% ADC 02
% CDC 02
% Custom Class |0
@ HID 1[5
@ MSC 0

Version Description

2.01
2.01
2.00
2.00
2.02
2.02
2.01
1.00
2.01
2.0
2.0
2.7

2.5

2.01

6.6.0
5.30.0
6.5.2
6.6.6
6.6.6
6.6.6
6.6.6

6.6.6
6.6.6
6.6.6
6.6.6
6.6.6

Cortex Microcontroller Software Interface Compaoi

Unified Device Drivers compliant to CMSIS-Driver
Ethernet MAC and PHY Driver AP| for Cortex-M
Ethernet MAC Driver AP| for Cortex-M

Ethernet PHY Driver AP| for Cortex-M

Flash Driver AP| for Cortex-M

12C Driver AP for Cortex-M

MCI Driver AP| for Cortex-M

NAMD Flash Driver AP| for Cortex-M

SAI Driver AP| for Cortex-M

SP| Driver AP| for Cortex-M

USART Driver AP| for Cortex-M

USE Device Driver AP| for Cortex-M

USBD Device Driver for the LPC1800 series

USB1 Device Driver for the LPC1800 series

USB Hest Driver AP| for Cortex-M

ARM Compiler Software Extensions

Startup, System Setup

File Access on various storage devices

User Interface on graphical LCD displays
IP Metwerking using Ethernet or Serial protocols

USB Communication with varicus device classes
USE Core for Cortex-M

USB Device

USE Host

USB Device Classes

USB Device: Audic Device Class (ADC

USE Device: Communication Device Class (CDCY

USB Device: Custom Class
USB Device: Human Interface Device (HID] Class
USE Device: Mass Storage Class (MSC)

96 Using Middleware

Configure Middleware

Every MDK Middleware component has a set of configuration files that adjusts
application specific parameters and determines the driver interfaces. Access these
configuration files from the Project window in the component class group. They
usually have names like <Component>_Config_0.c or
<Component>_Config_0.h.

Some of the settings in these files require corresponding settings in the driver and
device configuration file (RTE_Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:
USBD_Config_0.c and USBD_Config_HID_0.h.

_] usBD_Config_0.c v X
Expand All | Collapse Al | Help | [~ Show Grid
Option Value
Bussocico g
Connect to hardware via Driver_ USBD# 0
High-speed r
E-Device Settings
Max Endpoint 0 Packet Size 2 Bytes
Vendor ID xC251
Product 1D 00000
Device Release Number 00100
= Configuration Settings
Power Bus-powered
Remote Wakeup r
Maximum Power Consumption (in m&) 500
(=1 String Settings
Language ID Onc0409
Manufacturer String Keil Software
Preduct String Keil USB Device 0
[=--Serial Number [+
Serial Mumnber String 0001A0000000 —
(=105 Resources Settings
Core Thread Stack Size 512 j
USB Device 0

TextEditor _}, Configuration Wizard

Getting Started with MDK: Create Applications with pVision

97

The file USBD_Config_0.c contains a number of important settings for the
specific USB Device:

The file USBD_Config_HID_0.h contains device class specific Endpoint settings.

The setting Connect to Hardware via Driver_USBD# specifies the control
struct that reflects the peripheral interface, in this case, the USB controller

used as device interface. For microcontrollers with only one USB controller
the number is ‘0’. Refer to CMSIS-Driver on page 39 for more information.

Select High-Speed if supported by the USB controller. Using this setting
requires a driver that supports USB High-Speed communication.

Set the Vendor ID (VID) to a private VID. The USB Implementer’s Forum
http://www.usb.org/developers/vendor provides more information on how
to apply for a valid vendor ID.

Every device needs a unique Product ID. The host computer's operating
system uses it together with the VID to find a suitable driver for your device.

Set the Manufacturer and the Product String to identify the USB device in
PC operating systems.

For this example, no changes are required.

http://www.usb.org/developers/vendor

98 Using Middleware

Configure Drivers

Drivers have certain properties that define attributes such as 1/0 pin assignments,
clock configuration, or usage of DMA channels. For many devices, the
RTE_Device.h configuration file contains these driver properties. It typically
requires configuration of the actual peripheral interfaces used by the application.
Depending on the microcontroller device, you can enable different hardware
peripherals, specify pin settings, or change the clock settings for your
implementation.

The USB HID Device example requires the following settings:
= Enable USBO Controller and expand this section.

= Change the Pin Configuration as depicted below.

= Enable Device:High-speed.

_] RTE_Device.h v X
Bpand Al | Colapse Al | Help [~ Show Grid
Option Value

=1--USB0 Controller [Driver_USBDO and Driver_USEHD] [+

-)--Pin Configuration

| v

USBO_PPWR (Host) P6_3
USBO_PWR_FAULT (Host) P6_6
USBO_INDO P3_2
USBO_INDL P31

=--Device [Driver_USBDO]
High-speed I

Getting Started with MDK: Create Applications with pVision 929

Adjust System Resources

Every middleware component has certain memory and RTOS resource
requirements. The section “Resource Requirements” in the MDK Middleware
User’s Guide documents the requirements for each component.

3 Resource Reguirements X+ —

o
< O » = @ O

ARMKEIL USB Component Version 6.6

Microcontroller Tools MDK-Professional Middleware for USB Device and Host
General | File System Graphic | Network .!E:. Board Support |

X

Main Page Usage and Description Reference | Q" Search
USB Component USB Device Resource Requirements
Revision History

The following section documents the requirements for the USB Device component. The actual requirements depend

USB Device on the components used in the application and the configuration of these components.

USB Host .

USB Cancepts Stack Requirements

Supported USB Classes The USB Device Core receives events sent from the interrupt service routine (ISR) of the USB Device Driver. The
Resource Requirements stack requirements for the ISR are typically less than 512 Bytes. The total stack space required for ISR depends on

» USE Device Resource Require the interrupt nesting and therefore on the priority settings of these ISR. The stack requirements for ISR are
= ! configured in the startup_device.s file located under the Device component class.

USB Host Resource Requiremel

Reference Option (under section Stack Configuration) | Increase Value by
Data Structures

Stack Size (in Bytes) + 512 for USB Device Driver

Data Structure Index

Data Fields Note

When using a CMSIS-RTOS, the Stack Size in the startup_device.s file configures only the stack space that is
used by exception and interrupt service routines of the drivers. The stack size requirements depend on the
maximum nesting of exception and ISR execution and therefore on the prierity settings of the various
interrupt and exception sources.
User code that calls API functions of the USB Device Component should have a minimum of 512 Bytes of stack
space available. Since API functions are frequently called from threads, the thread stack size should be at least 512
Bytes (see below).
CMSIS-RTOS Requirements
The USB Device component uses CMSIS-RTOS threads. Each instance of a compoenent starts its own threads, for

Generated on Fri Oct 30 2015 11:38:57 for USB Component by ARM Ltd. All rights reserved.

Most middleware components use the CMSIS-RTOS. It is important that the
RTOS is configured to support the requirements.

For CMSIS-RTOS RTX, the RTX_Conf_CM.c file configures threads and stacks
settings. Refer to CMSIS-RTOS RTX Configuration on page 30 for more
information.

For the USB HID Device example, the following settings apply:

= The ::USB:Device component requires one thread (called
USBDn_CoreThread) and a user-provided stack of 512 bytes.

= The ::USB:Device:HID component also requires one thread (called
USBD_HIDn_Thread) and a user-provided stack of 512 bytes.

100

Using Middleware

Reflect these requirements with the settings in the RTX_Conf_CM.c file:

Number of concurrent running threads: 6 (default) is enough to run the
two threads of the USB Device component concurrently. Adjust this setting if
the user application executes additional threads.

Default Thread stack size [bytes]: This setting is not important as the USB
component runs on user-provided stack.

Main Thread stack size [bytes]: 512. Stack is required for the API calls that
initialize the USB Device component.

Number of threads with user-provided stack size: 2. Specifies the two threads
(for ::USB:Device and ::USB:Device:HID) with a user-provided stack.

Total stack size [bytes] for threads with user-provided stack size: 1024.
Specifies the total stack size of the two threads.

The Timer Clock value [Hz] needs to match the system clock (180000000).

_] RTX_Conf CM.c > X
Bpand Al | Collpse Al | Hip | T Show Grid
Option Value

=~ Thread Configuration

Murnber of concurrent running user threads
Default Thread stack size [bytes]

Main Thread stack size [bytes]

Murmnber of threads with user-provided stack size

Total stack size [bytes] for threads with user-provided stack size

Stack overflow checking
Stack usage watermark
Processor mode for thread execution
—I-RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer
RTOS Kernel Timer input clock frequency [Hz]

RTX Timer tick interval value [us]

6
200
512
2
1024
I

-

Privileged mode

v
180000000
1000

Implement Application Features

Now, create the code that implements the application specific features. This
includes modifications to the files main.c, LED.c, and LED.h that were created
initially for the project Blinky with CMSIS-RTOS RTX on page 45.

The middleware provides User Code Templates as starting point for the
application software.

Getting Started with MDK: Create Applications with pVision

101

& In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group. Select the user code template from
::USB:Device:HID - USB Device HID (Human Interface Device) and

click Add.

Add Mew ltem to Group 'Source Group 1' *

Cj CFile () Add template file(s) to the project.

* Component MName

(.| C++ File (.cpp) 2% CMmsis

A Asm Fie (5) =@ uss

Device USB Device

h | Header File (h) Device USE Device Serial Mumber

—n Device:HID USE Device HID (Human Interface Device)
=| Text File (bd) DeviceHID USB Device HID Mouse

@ Image File (%)

1@ User Code Template

Type: | User Code Template

Mame: | USBD_User_HID_0.c

Location: | C:\Workspaces\MDK\NXP\USE_HID

=
Add Close | Help

To connect the PC USB application to the microcontroller device, modify the
function USBD_HIDO_SetReport(), which handles data coming from the USB

Host. For this example, the data are created with the utility HIDClient.exe.

(7> Open the file USBD_User_HID_0.c in the editor and modify the code as

shown below. This will control the LEDs on the evaluation board.

#include "LED.h" // access functions to LEDs

bool USBD_HIDO_SetReport (uint8_ t rtype, uint8_t req, uint8_t rid,
const uint8 t *buf, int32_t len) {

uint8 t i;

switch (rtype) {
case HID REPORT OUTPUT:
for (1 = 0; i < 4; i++) {
if (*buf & (1 << i)) LED Omn (i);
else LED Off (i),
}
break;

case HID REPORT FEATURE:
break;
}

return true;

102 Using Middleware

Expand the functions in the file LED.c to control several LEDs on the board and
remove the thread that blinks the LED, as it is no longer required.

[Open the file LED.c in the editor and modify the code as shown below.

#include "SCU LPC18xx.h"
#include "GPIO_LPC18xx.h"

#include "cmsis_os.h" // BRM: :CMSIS:RTOS:Keil RTX
const GPIO_ID LED GPIO[] = { // LED GPIO definitions

{ 6, 24},

{ 6, 25 },

{ 6, 26 },

{6, 27 }

}i

void LED Initialize (void) {
GPIO_ PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN CFG_PULLDOWN_EN)) ;

GPIO_SetDir (6, 24, GPIO_DIR OUTPUT) ;

GPIO_ PinWrite (6, 24, 0);

SCU_PinConfigure (13, 11, (SCU_CFG MODE_FUNCA4|SCU_PIN_CFG_PULLDOWN_EN)) ;
GPIO_SetDir (6, 25, GPIO DIR OUTPUT) ;

GPIO_PinWrite (6, 25, 0);

SCU_PinConfigure (13, 12, (SCU_CFG MODE FUNC4|SCU_PIN CFG PULLDOWN EN));
GPIO_SetDir (6, 26, GPIO DIR OUTPUT);

GPIO_ PinWrite (6, 26, 0);

SCU_PinConfigure (13, 13, (SCU_CFG_MODE FUNC4|SCU_PIN CFG_PULLDOWN_EN)) ;
GPIO_SetDir (6, 27, GPIO_DIR OUTPUT) ;

GPIO_PinWrite (6, 27, 0);

}

void LED On (uint32_t num) {
GPIO_PinWrite (LED_GPIO[num] .port, LED GPIO[num].num, 1);
}

void LED Off (uint32_t num) {
GPIO_PinWrite (LED_GPIO[num] .port, LED GPIO [num].num, 0);
}

(> Open the file LED.h in the editor and modify it to coincide with the changes
to LED.c. The functions LED_On() and LED_Off() now have a parameter.

void LED Initialize (void);
void LED On (uint32_t num);
void LED Off (uint32_t num);

Getting Started with MDK: Create Applications with pVision 103

(> Change the file main.c as shown below. Instead of starting the thread that
blinks the LED, add code to initialize and start the USB Device Component.
Refer to the Middleware User’s Guide for further details.

S ——
* File main.c

K e */
#define osObjectsPublic // define objects in main module
#include "osObjects.h" // RTOS object definitions
#include "LPC18xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port
#include "rl usb.h" // Keil .MDK-Pro: :USB:CORE
/*

* main: initialize and start the system

*/
int main (void) {

osKernellInitialize () // Initialize CMSIS-RTOS

// initialize peripherals here

LED Initialize (); // Initialize LEDs
USBD_Initialize (0); // USB Device 0 Initialization
USBD_Connect (0) ; // USB Device 0 Connect
osKernelStart () // Start thread execution
while (1)

Build and Download

Build the project and download it to the target as explained in chapters Create
Applications on page 45 and Using the Debugger on page 64.

Verify and Debug

Connect the development board to your PC using another USB cable. This
provides the connection to the USB device peripheral of the microcontroller.

Once the board is connected, a notification appears |g Ho client X
that indicates the installation of the device driver Human Interface Device

for the USB HID DeVlce Device:uKeiIUSB Device 0 Lﬂ
The utility program HIDClient.exe that is part of e e 3 21 0
MDK enables testing of the connection between 0w)]] i]
the PC and the development board. This utility is Outputs (LEDs)

located the MDK installation folder T T] R

AKeilARM\ULtilities\HID_Client\Release.

104 Using Middleware

To test the functionality of the USB HID device run the HIDClient.exe utility
and follow these steps:

= Select the Device to establish the communication channel. In our example, it
is “Keil USB Device 0”.

= Test the application by changing the Outputs (LEDs) checkboxes. The
respective LEDs will switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the
debugger to find the root cause.

@ From the toolbar, select Start/Stop Debug Session.

KA C\Workspaces\MDK\NXP\Boards\Keil\MCB1800\Middleware\USB\Device\HID\HID. uvprojx - pVision - m} *
File Edit View Project Flash Debug Peripherals Tools SVYCS Window Help

=11 @ | [=@ | == = | @ dReg e oo el@-| A
WEO BEEu s ORBEoE-0-2-8- D @] 2
Registers o Ed Disassembly o E1 system and Thread Viewer » a2

:-Regisler Valus =||[oxiaooopoa 1200 DCW ~ Propety Value
= Core e | BT e L o sptem [EN . -
c>0x1A000D9C ETFE B =l

il 0<000000. Sesr tor (i): Tick Timer: 1.000 mSec
Ri 00001... : T (i) -
O0x1A000D3E ETEE B Round Rebin Timeout: 5,000 mSec
A2 D<DFO000... 200 .
A3 BO0O00D.. || T Tt ‘ Default Thread Stack Size: 20
R4 OeIADDBE... Thread Stack Overflow Check: Yes
iid Cel A0S, L) R ConfcMc (] HBe = X Thread Usage: Available: 7, Used: 4 + os_idle_demon
i 0000000 224 \brief The idle dm
R7 0<000000... 225 [[]void os_idle demon (v
A8 2000000 _idle_demor

L | - = ovesss S T S AT
F E: incl 1

R10 x000000. osTimerThread High Wait_MBX

228 * F nclude
R11 D<000000... \
000000 — 229 |3 2 main Nermal |wait O [
RI3(SP) Dx20D003.. ;z‘l’ F 3 USBD_HIDO Thread AboveNor... Wait OR 00000
RI4(LR) Dx0DDOOD.. 232 11 (0S_SYSTICK — 0) 4 USBDOCore Thread | AboveNor... Wait OR 0x0000
R15(PC) ___ DcIADDD... 233 255 os_idle_demon None Running
PSR Dx010000... ot v -
- Banked «||lf< 5 Al »
=l Project | = Registers Text Editor 4, _Configuration Wizard [I s
Command 2 H Call Stack ~ Locals nE
Load "C:\\Workspaces\\MDE\\NXP\\Boards\\Keil\\MCB1800\\Middle Mame Location/Value Type
B0 USBD_HIDO Thread : 3 [RALNOE] Task -
5@ osSignalWait 0x1A005774 struct <untagged> f(int,...
¢ signals <notin scope> param - int
* millisec <notin scope> param - unsigned int
@ ret <notin scope> auto - struct <untagged>
USBDO_Core Thread: 4| 0x1A0D37BC Task
@ osTimerThread: 1 0x1A00584C Task
< > % main:2 Ox1A000454 Task
> 5 osDelay 0x1A00563C enum (int) flunsigned int) -
ASS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet ‘ f;—‘jca\lstatk—mcals ﬂf\il\\m,l
ULINK Pro Cortex Debugger t1: 237312401 sec 1227

Use debug windows to narrow down the problem. Breakpoints help you to stop at
certain lines of code so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the
debugger or using breakpoints, communication protocol timeouts may exceed
making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target
hardware, run the application, and reconnect it to the PC.

Getting Started with MDK: Create Applications with pVision

Index

A System Viewer Window
Toolbar.......ccccovvnenne
Add New Item to Group........cccevvvverinnne. 101 Using Debugger
Applications Watch Window
Add Source COUEocovvviriiinirrinne, 50 Debug (printf) Viewer
Blinky with CMSIS-RTOS RTX.......... 45 DebUG tah ...oevveveeee e
BUId....oooiiiiii, 53 Define and refrence object definitions 29
Configure Device Clock Frequency48 DeVice Database........c..cvveeeereerreeeenrenes 10
Create ..o 45 Device Startup Variations
Customize RTX TimMerc.cccvvvrvnnene. 49 Change Clock Setup using DAVE 58
DebUQ ... 63 Setup the Projectccovvevvveneeen. 59, 61
Manage Run-Time Environment.......... 46 STMB32CUDE ...
Setup the Project..........coocvvveniinninins 46 Using DAVE
User Code Templatesccccovurvrnnne 50 DOCUMENEALION.......cocveeeeeeeeeecreee e
B E
Board SUPPOrt........ccocvviiiiiiiccas 44 Example Code
Breakpoints Clock setup for STM32Cube................ 60
ACCESS ..o, 67 Example Code
Command.........ocoeviiriiiinni 67 CMSIS-CORE layer.......ccc.........
EXECULION......coviiiiiicccc s 67 CMSIS-DSP library functions
Build Output..........ccvveeirenne. 14,15, 53, 64 CMSIS-RTOS RTX functions
BIiNKY....ooveiiiiiiiee e
C Macro Definitions for DAVE...............
CMSIS o 29 osObjectsExternalccccococvnnne.
CORE oo 23 Bllnky
DSP oo 37 Set PLL parameters..........ccccocvviienninne
Software COMPONENtS 22 Example Projectsccoocuuwnnnns
User code templateccooeeviviinenncns 32 E
CMSIS_0S.N .o 51
CMSIS-DAP......... File
Code Coverage CMSIS_0S.N..coiiciii 27,28, 29
Compare Memory areas.............coocuurieues 69 Consistent usage of header files 29
COreSight ... 71 ABVICE.N c.viviiiccce e 23
0SObjJectS. N 29
D RTE_Device.h.............. 39, 40, 59, 96, 98
DAVE oo 56 RTX_<C0re>.|ib 28
Debug RTX_Conf_CM.c....... 28, 30, 36, 49, 100
BreakpOiNTS ..vvvvvvveveeeerreresssseseesesseeeees 67 startup_<deviCe>.scocovveiiininiins 23
Breakpoints Window..............ccc.......... 67 _system_<device>C............. 23,32, 48,49
Command Windowccooe.omnee.e. 66 File System
Connection e 63 FAT e 84
Disassembly Window...............cco......... 66 FIash ..o 84
Memory Windowc.ccceevenneinnne, 69 G
Peripheral Registers.........cccooveevveninnnn. 70
Register Window............cccooevviiinininns 69 Graphics Component
Stack and Locals Window.................. 68 ANti-AlSING.. oo 86
Start SESSioNccveveceiiiicseceees 65 Bitmap SUPPOMtccoevvrvverecinieiine 86

105

DNS Client

106 Index

DEMO ..o 86 Ethernet........cc.cccoeeee
Dialogs ...cveeeeeeieieiieeee e 86 FTP o
Displaycoeveiiiiiieee 86 Modem.....c.coevviernenne
FONES ..ot 86 PPP..ooiiiiiiiiiii
JOYSHICK. ..vviveiviiiiiceec e 86 SLIP oo
TOUCh SCreen.......cccooevvvvirircciiiines 86 SMTP Client
User Interfaceocoeeveveneieienceenns 86 SNMP AQeNt.....ccoiiiiiiiiieereceeene
VNC SEIVEF ..ot 86 SNTP Client ..o
WIAQELS .o 86
Window Managercccccoeeereeeneennenn 86 Telnet Server.....iiciieneien

H

HIDCHENt.EXE ..o 103

L 0

Learning Platformc.cccocoveveieinnnnn 21 -

LeGACY SUPPOE evvrvvroeeeeeeeeeeeeseesssseesse 9 Options for Target.........cccceeereicrenens 14,64

M P

MDK Pack Installer...........ccocovrnnniiiennine, 10
CoreInstall o 9 Performance Analyzer...........ccocccoevveennan. 79
EdItioNS ..c.ovveveivciecice 8 Q
Installation Requirements............cc.cce.... 9
Introduction Quick Start GUIdES.........ccceevevvererceirenene. 21
License TYPES.....covevirveiereirieesienienes 8
Trial iCeNSevoveveeieiceseeeeee 11 R

MIdIWETEovvsrr 80 Retargeting 1/0 OULPULccoovvvrrrvrenn, 42
Add Software Components................... 94 RTOS
Adding Software Components.............. 24 Preemptive Thread Switching 35
Adjust System ReSOUTCes................ 92,99 Single Thread Program...........c...cco....... 35
CoNfigUre.......coovvvviiiiii 92, 96 System and Thread Viewer 36
Configure DIiVers..........cccoevvernenn. 92,98 Thread Management 34
Create an Application.........c.ccccevreernnes 91 RTOS Debugging
Debug.......... e 92, 103 Event Viewer
Example projects.........ccocevvvniennnnn, 91 ITM Stimulus
File System Componentccccccouee. 84 RTX o
FTP Server Exampleccccoceovinenncns 89 API functions
Graphics Component..........cccccecveenenne. 86 CONCEPLS..vvvvvvvvvrrrrrnen
Implement Application Features ..92, 100 Configuration
Migrating to Version 7cccccecveennne 88 RTOS Kernel advantages
Network Comp_onent 82 Timer Tick configuration
Resource _Reqmrements 91 Tread stack configuration
USB Device COomponentc.coceeune 85 USING RTX covoeeeeoeeeeeseeeerereereeeeseesss
USB HID Example..........coo.c.ccoevvsin 93 RTX_CONF_CM.Covverrrrreeeecrrressessssreren 99
USING ettt 91 - -
Using COMPONENtScccovrveeereeeeenenne 92 S

N Selecting Software Packs..........c..ccovvernee. 19

Software Component

Network Component Compiler 42

BSD. g COMPIT s

Software Components

Getting Started with MDK: Create Applications with pVision 107

OVEIVIEWveiveeeveecte et 18
Software Packs
Install......cooovviiiiiiiiccec e 10
Install manuallyccccooevveiiieinnnnn, 10
Manage VErSionS.........ccceevevveveveeieennens 19
Product Lifecyclecccoevveviivviiienns 18
SEIECE ...t 19
USE e 16
Verify Installationc.ccccoeiie. 12
Start/Stop Debug Session............ 15, 65, 104
{0 o] o o] ¢ S S TR TRR 20
T
TIACE ot 71
4-Pin Trace Output.......cccerveveinnne. 71,79
Data Watchpointsccoccoervererieinnnne. 71
Debug (printf) Viewerc.ccoccvvnene. 77
I SRR
Event Counters....
Event Viewer.......
EXCeption TracCe......ccceververieieenieienins
INStruction Tracecoceevveevveeeveecreenne,
Instrumented Trace.......cccoovevvvvreevernnane. 71

ITM Stimulusooveveeiiecieee 73,77

ULINKPIO.c.coveveieeesiee s 73,79
USB Device

HID

Vv

Version Control...........ccoceeeveieieiiciciennne 20
Versioning Software Packs.............ccccc..... 19

	Preface
	Chapter Overview

	MDK Introduction
	MDK Tools
	Software Packs
	MDK Editions
	License Types

	Installation
	Software and Hardware Requirements
	Install MDK Core
	Install Software Packs
	MDK-Professional Trial License
	Verify Installation using Example Projects
	Copy an Example Project
	Use an Example Application with µVision
	Build the Application
	Download the Application
	Run the Application

	Use Software Packs
	Software Component Overview
	Product Lifecycle Management with Software Packs
	Software Version Control Systems (SVCS)

	Access Documentation
	Request Assistance
	Learning Platform
	Quick Start Guides

	CMSIS
	CMSIS-CORE
	Using CMSIS-CORE
	Adding Software Components to the Project
	Source Code Example

	CMSIS-RTOS RTX
	Software Concepts
	Infinite Loop Design
	Advantages of an RTOS Kernel

	Using CMSIS-RTOS RTX
	Header File cmsis_os.h
	Define and Reference Object Definitions
	CMSIS-RTOS RTX Configuration
	Thread Stack Configuration
	RTX Kernel Timer Tick Configuration
	CMSIS-RTOS User Code Templates
	CMSIS-RTOS RTX API Functions
	Thread Management
	Single Thread Program
	Preemptive Thread Switching

	CMSIS-RTOS System and Thread Viewer

	CMSIS-DSP
	CMSIS-Driver
	Configuration
	Using RTE_Device.h
	Using STM32CubeMX

	Validation

	Software Components
	Compiler
	Board Support

	Create Applications
	Blinky with CMSIS-RTOS RTX
	Setup the Project
	Configure the Device Clock Frequency
	Customize the CMSIS-RTOS RTX Kernel
	Create the Source Code Files
	Build the Application Image

	Blinky with Infinite Loop Design
	Build the Application Image

	Device Startup Variations
	Example: Infineon XMC1000 using DAVE
	Change the Clock Setup using DAVE

	Example: STM32Cube
	Setup the Project using the Classic Framework
	Setup the Project using STM32CubeMX

	Debug Applications
	Debugger Connection
	Using the Debugger
	Debug Toolbar
	Command Window
	Disassembly Window
	Breakpoints
	Breakpoints Window

	Watch Window
	Call Stack and Locals Window
	Register Window
	Memory Window
	Peripheral Registers
	System Viewer

	Trace
	Trace with Serial Wire Output
	Trace Exceptions
	Event Viewer
	Logic Analyzer
	Debug (printf) Viewer
	Event Counters
	Trace with 4-Pin Output
	Trace with On-Chip Trace Buffer

	Middleware
	Network Component
	File System Component
	USB Component
	Graphics Component
	IoT Connectivity
	Migrating to Middleware Version 7
	Core Changes
	Configuration File Update
	API Changes

	FTP Server Example

	Using Middleware
	USB Device HID Example
	Add Software Components
	Configure Middleware
	Configure Drivers
	Adjust System Resources
	Implement Application Features
	Build and Download
	Verify and Debug

	Index

