

Getting Started with DS-MDK
Create Applications for Heterogeneous

ARM® Cortex®-A/Cortex-M Devices

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2016 ARM Germany GmbH

All rights reserved.

ARM, Keil, µVision, Cortex, and ULINK are trademarks or registered

trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Eclipse is a registered trademark of the Eclipse Foundation, Inc.

NOTE

We assume you are familiar with Microsoft Windows, the hardware, and the

instruction set of the ARM® Cortex®-A and Cortex-M processors.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started with DS-MDK 3

Preface
Thank you for using the DS-MDK Development Studio available from ARM. To

provide you with the very best software tools for developing ARM based

embedded applications we design our tools to make software engineering easy

and productive. ARM also offers therefore complementary products such as the

ULINK™ debug and trace adapters and a range of evaluation boards. DS-MDK

is expandable with various third party tools, starter kits, and debug adapters.

Chapter Overview

The book starts with the installation of DS-MDK and describes the software

components along with complete workflow from starting a project up to

debugging on hardware. It contains the following chapters:

DS-MDK Introduction provides an overview about the DS-MDK, the software

packs, and describes the product installation along with the use of example

projects.

Eclipse IDE explains the basic concepts of the IDE and the most frequently used

perspectives.

Create Cortex-M Applications guides you through the process of creating and

modifying projects using CMSIS and device-related software components for the

Cortex-M microcontroller.

Create Linux Applications shows you how to create and modify applications for

the Cortex-A processor running Linux.

Debug Applications describes the process of how to connect to the target

hardware and explains debugging applications on the target.

Store Cortex-M Image gives further details on how to store the application

image on the target and how to run it at start up time.

4 Preface

Contents
Preface .. 3

DS-MDK Introduction .. 7
Solution for Heterogeneous Systems .. 7

DS-MDK Licensing .. 8
License Types ... 8

Installation .. 9
Software and Hardware Requirements ... 9
Install DS-MDK.. 9
Manage Software Packs .. 11
Install the Linux Image ... 12
Hardware Connection ... 13
Verify Installation with Example Projects .. 14

Documentation and Support ... 17

Eclipse IDE .. 18
Perspectives .. 18

C/C++ Perspective .. 19
CMSIS Pack Manager Perspective ... 22
Remote System Explorer Perspective ... 23
DS-5 Debug Perspective ... 24

Create Cortex-M Applications ... 25
Blinky with CMSIS-RTOS RTX .. 25

Setup the Project ... 26
Select Software Components .. 28
Configure CMSIS-RTOS RTX Kernel ... 29
Create the Source Code Files .. 30
Adapt the Scatter File ... 32
Build the Cortex-M Image .. 33

Create Linux Applications ... 34
Setup the Project ... 34
Build the Application Image ... 35

Debug Applications ... 36
Prepare Terminal Views ... 37
Debug Cortex-M Application ... 39

Stop in U-Boot .. 39
Configure CMSIS DS-5 Debugger ... 40
Run Cortex-M Application ... 42

Debug Linux Application ... 42

Getting Started with DS-MDK 5

Setup RSE Connection ... 43
Boot Linux .. 43
Configure DS-5 Debugger .. 44
Run the Linux Application ... 46

Store Cortex-M Image .. 47
Create a Cortex-M Binary Image (BIN) ... 47
Store Cortex-M BIN File on SD Card .. 48
Run Cortex-M BIN File from U-Boot .. 49

Index ... 50

6 Preface

 NOTE
This user’s guide describes how to create applications with the Eclipse-based

DS-MDK IDE and Debugger for ARM Cortex-A/Cortex-M based NXP i.MX 6

and 7 series.

Refer to the Getting Started with MDK user’s guide for information how to

create projects for ARM Cortex-M microcontrollers with the µVision®

IDE/Debugger.

Getting Started with DS-MDK 7

DS-MDK Introduction
DS-MDK combines the Eclipse-based DS-5 IDE and Debugger with CMSIS-

Pack technology and uses software packs to extend device support for devices

based on 32-bit ARM Cortex-A processors or heterogeneous systems based on

32-bit ARM Cortex-A and ARM Cortex-M processors.

Initially, only NXP i.MX 6 and 7 series devices are supported that combine

computing power for application-rich systems with real-time responsiveness. For

such embedded systems, the DS-5 Debugger gives visibility to multi-processor

execution and allows optimization of the overall software architecture.

Solution for Heterogeneous Systems

Heterogeneous systems usually consist of a powerful ARM Cortex-A class

application processor and a deterministic ARM Cortex-M based microcontroller.

These systems combine the best of both worlds: the Cortex-A class processor can

run a feature-rich operating system such as Linux and enables the user to program

complex applications with sophisticated human-machine interfaces (HMI). The

Cortex-M class controller offers low I/O latency, superior power efficiency and a

fast system start-up time for embedded systems.

Usually, both processors have access to a set of communication peripherals and

shared memory. The biggest challenge with heterogeneous systems is the

synchronization and inter-processor communication.

8 DS-MDK Introduction

DS-MDK offers a complete software development solution for such systems:

 Manage Cortex-A Linux and Cortex-M RTOS projects in the same

development environment.

 Use the Cortex Microcontroller Software Interface Standard (CMSIS)

development flow for efficient Cortex-M programming. Add software packs

any time to DS-MDK to make new device support and middleware updates

independent from the toolchain. The IDE manages the provided software

components that are available for the application as building blocks.

 Debug multicore software development projects with the full visibility

offered by the DS-5 Debugger.

DS-MDK Licensing
DS-MDK is part of the Keil® MDK-Professional Edition and the product

requires a valid license for MDK-Professional Edition.

License Types

The following licenses types are available:

Single-User License (Node-Locked) grants the right to use the product by one

developer on two computers at the same time.

Floating-User License or FlexLM License grants the right to use the product on

several computers by a number of developers at the same time.

For further details, refer to the Licensing User’s Guide at

www.keil.com/support/man/docs/license.

http://www.keil.com/mdk5/cmsis/
http://www.keil.com/mdk5/editions/pro
http://www.keil.com/support/man/docs/license

Getting Started with DS-MDK 9

Installation

Software and Hardware Requirements

DS-MDK has the following minimum hardware and software requirements:

 A workstation running Microsoft Windows 64-bit

 Dual-Core Processor with > 2 GHz

 4 GB RAM and 8 GB hard-disk space

 1280 x 800 or higher screen resolution

Install MDK

Download MDK from www.keil.com/download - Product Downloads and run

the installer. It also adds the software packs for ARM CMSIS and MDK

Middleware.

Follow the instructions on

www.keil.com/support/man/docs/license/license_sul_install.htm to activate a

MDK-Professional license, which is required for DS-MDK.

Install DS-MDK

Download DS-MDK from www.keil.com/mdk5/ds-mdk/install and run the

installer. To start DS-MDK, use Eclipse for DS-MDK from the Start menu

(Windows 10: All apps  ARM DS-MDK  Eclipse for DS-MDK).

Initially, select your MDK installation for license purposes:

If required, change the installation destination.

http://www.keil.com/download
http://www.keil.com/support/man/docs/license/license_sul_install.htm
http://www.keil.com/mdk5/ds-mdk/install

10 DS-MDK Introduction

Specify a directory for your workspace (the area where your projects will be

stored). For most users, the default suggested directory is the best option.

The Eclipse-based IDE opens in the C/C++ Perspective:

NOTE

Refer to chapter Eclipse IDE on page 18 for more information on Eclipse

workbench concepts.

Getting Started with DS-MDK 11

Manage Software Packs

Use the CMSIS Pack Manager perspective to manage software packs on the

local computer.

Use Window  Open Perspective  CMSIS Pack Manager to open this

perspective. Install the software packs related to your target device or evaluation

board.

NOTE

Currently, only software packs for the NXP i.MX 6 and 7 series are qualified for

DS-MDK.

The Console window shows information about the Internet connection and the

installation progress.

TIP: The device database at www.keil.com/dd2 lists all available devices and

provides download access to the related software packs. If the Pack

Manager cannot access the Internet, you use the Import existing packs

icon or double-click on *.PACK files to manually install software packs.

http://www.keil.com/dd2

12 DS-MDK Introduction

Install the Linux Image

Currently, DS-MDK supports the following development board:

 NXP i.MX 7 SABRE development board: MCIMX7SABRE

For this development board, a pre-configured Linux image with DS-MDK

specific debug settings is available. Please download the zipped image file here:

www.keil.com/mdk5/ds-mdk/imx7reference

This website contains documentation that explains all steps to create a Linux

image for the MX7DSABRESD board to be able to debug applications with

ULINKpro.

Copy the Linux Image to an SD-Card

Once you have downloaded the zipped Linux Kernel image, unzip it before you

can flash it onto an SD-Card. Use the open source tool Win32 Disk Imager from

http://win32diskimager.sourceforge.net/.

Install and run the tool. To write the image to the memory card, specify the

location of the image file, select the Device letter of the SD card and press the

Write button:

http://www.keil.com/mdk5/ds-mdk/imx7reference
http://win32diskimager.sourceforge.net/

Getting Started with DS-MDK 13

Hardware Connection

i.MX 7 SABRE Board

 Insert the SD-Card with the Linux image into the slot labelled SD1 BOOT.

 Use the 10-pin ribbon cable to connect the ULINKpro debug adapter to

J12 JTAG.

 Connect your computer to the USB connector labelled DEBUG UART. Your

Windows workstation automatically detects a dual USB serial port

component and installs the required drivers.

 Connect the 5V power supply to J1.

14 DS-MDK Introduction

Verify Installation with Example Projects

Once you have selected, downloaded, and installed a software pack for your

device, you can verify your installation using one of the examples provided in the

software pack.

Remote Processor Messaging Protocol Example

The i.MX 7 Device Family Pack contains two example projects that show how

the two processors communicate with each other using the remote processor

messaging protocol (RPMSG) via a TTY serial device.

The Linux Application TTY runs on the Cortex-A7 processor and writes a

message to the TTY device. The terminal of the RPMSG TTY RTX application

running on the Cortex-M4 processor shows this message. The application

responds on the TTY device. The Linux application reads this message and shows

it in its App console.

Getting Started with DS-MDK 15

Copy the RPMSG TTY RTX Example Project

Click Copy next to the RPMSG TTY RTX example. Confirm your selection:

CMSIS Pack Manager copies the example into your workspace and switches to

the C/C++ perspective:

In the CMSIS Pack Manager perspective, select the Examples tab. Use

filters in the toolbar to narrow the list of examples.

16 DS-MDK Introduction

Build the Application

Build the project from the context menu in the Project Explorer:

The Console window shows information about the build process:

Getting Started with DS-MDK 17

Copy and Build the Linux Application TTY

Switch back to the CMSIS Pack Manager perspective and copy the

Linux Application TTY example project to your workspace.

Build the project from the context menu in the Project Explorer. The Console

should show an error-free build:

Continue with the chapter Debug Applications on page 36 that explains how to

debug both applications with the DS-5 Debugger.

Documentation and Support
DS-MDK provides online manuals and context-sensitive help. The Help menu

opens the main help system that includes the CMSIS C/C++ Development User’s

Guide, the ARM DS-MDK Documentation, the RSE User Guide, and other

reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation

and explain dialog options and settings.

If you have suggestions or you have discovered an issue with the software, please

report them to us. Support and information channels are accessible at

www.keil.com/support.

http://www.keil.com/support

18 Eclipse IDE

Eclipse IDE
DS-MDK is an Integrated Development Environment (IDE) that combines the

Eclipse IDE with the compilation and debug technology of ARM.

Use DS-MDK as a project manager to create, build, debug, monitor, and manage

projects for ARM targets. It uses a single folder called a workspace to store files

and folders related to specific projects.

Users can extend its abilities by installing plug-ins written for the Eclipse

platform, such as the CMSIS Pack Manager and Remote System Explorer,

included in DS-MDK.

Perspectives
DS-MDK contains multiple perspectives. Each perspective contains an initial set

and layout of views that help you to create, build and debug projects. While

working with DS-MDK, you will switch perspectives frequently. It is always

possible to change a perspective layout and to add new views to it.

DS-MDK uses mainly these perspectives:

 C/C++ Perspective

 CMSIS Pack Manager Perspective

 Remote System Explorer Perspective

 DS-5 Debug Perspective

Getting Started with DS-MDK 19

C/C++ Perspective

By default, this perspective consists of the Project Explorer, an editor area and

views for tasks, properties, and a message console.

The editor area shows C/C++ source code as well as graphical representations of

various configuration files such as the Run-Time Environment configuration file,

the AXF file, the scatter file, and files with CMSIS configuration wizard

annotations.

Project Explorer Manage Run-Time EnvironmentDependency Check Console

For more information, refer to the C/C++ Development User’s Guide and the

CMSIS C/C++ Development User’s Guide available from the Eclipse help

system (Help  Help Contents).

20 Eclipse IDE

AXF File Viewer

An AXF file is the executable image generated by the ARM linker that contains

object code and debug information. Open it from the Project Explorer to inspect

the contents of the image.

CMSIS Configuration Wizard

Right-click on a file in the Project Explorer and select Open With  CMSIS

Configuration Wizard to modify files with CMSIS configuration wizard

annotations in a graphical editor. Verify and adapt the contents directly in the

graphical representation of the text file.

Getting Started with DS-MDK 21

Scatter File Viewer

Scatter files (*.sct) are used to specify the memory map of an image to the linker.

The Scatter File Viewer lets you inspect this text file in a graphical

representation. Use the filename.sct tab to edit the scatter file contents (refer to

Adapt the Scatter File on page 32).

22 Eclipse IDE

CMSIS Pack Manager Perspective

The Pack Manager perspective offers the following functionality:

 Install or update software packs.

 List devices and boards supported by software packs.

 List example projects from software packs.

Use the icon and select CMSIS Pack Manager, to open this perspective.

Device Database Available Packs/Examples Pack Properties

For more information, refer to the CMSIS C/C++ Development User’s Guide

available from the Eclipse help system (Help  Help Contents).

Getting Started with DS-MDK 23

Remote System Explorer Perspective

The Remote System Explorer (RSE) is a workbench perspective that allows you

to connect and work with a variety of remote systems. With predefined plug-ins,

you can look at remote file systems, transfer files between hosts, do remote

search, execute commands and work with processes.

File/System Properties Source Code EditorRemote Systems Remote System Details

For more information, refer to the RSE User Guide in the Eclipse help system

(Help  Help Contents).

24 Eclipse IDE

DS-5 Debug Perspective

The DS-5 Debugger allows you to debug bare-metal, RTOS, and Linux

applications with comprehensive and intuitive views, including synchronized

source and disassembly, call stack, memory, registers, expressions, variables,

threads, breakpoints, and trace.

VariablesTarget ConnectionDebug Control DisassemblySource Code Editor

For more information, refer to the ARM DS-5 Debugger Documentation in the

ARM DS-MDK Documentation available from the Eclipse help system (Help 

Help Contents).

Getting Started with DS-MDK 25

Create Cortex-M Applications
This chapter guides you through the steps required to create and modify projects

for the Cortex-M target in a heterogeneous system.

Blinky with CMSIS-RTOS RTX
Follow these steps to create a project called Blinky using the real-time operating

system CMSIS-RTOS RTX:

 Setup the Project: create a project and select the microcontroller device

along with the relevant CMSIS components.

 Select Software Components: choose the required software components for

the application.

 Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.

 Create the Source Code Files: add and create the application files.

 Build the Application Image: compile and link the application.

For the Blinky project, you will create and modify the main.c source file which

contains the main() function that initializes the RTOS kernel, the peripherals, and

starts thread execution. In addition, you will configure the system clock and the

CMSIS-RTOS RTX.

26 Create Cortex-M Applications

Setup the Project

From the Eclipse menu bar, choose File  New  C Project:

Select CMSIS RTE C/C++ Project, enter a project name (for example Blinky)

and click Next. In the following window, you can select to create a default main.c

file. Do not use this option. We will add a main.c template file later from a

software pack, so click again Next.

Getting Started with DS-MDK 27

Select your target device:

Select the NXP  i.MX 7 Series  i.MX Dual  MCIMX7D:Cortex-M4

device and click Finish. The C/C++ Perspective opens and shows the project:

28 Create Cortex-M Applications

Select Software Components

For the Blinky project based on CMSIS-RTOS RTX, you need to select the

following components:

 CMSIS:RTOS (API):Keil RTX.

 Device:i.MX7D HAL:CCM

 Device:i.MX7D HAL:RDC

 Device:i.MX7D HAL:UART

 Compiler:I/O:STDERR configured as variant User

 Compiler:I/O:STDIN configured as variant User

 Compiler:I/O:STDOUT configured as variant User

 Board Support:iMX7D SABRE Board:HW INIT

 Board Support:iMX7D SABRE Board:User I/O Redirect

Use the Resolve button to add other required components automatically. Finally,

save your selection:

NOTE

Saving the RTE configuration triggers a project update and the selected software

components become instantly visible in the Project Explorer.

Getting Started with DS-MDK 29

Configure CMSIS-RTOS RTX Kernel

In the project, expand the group RTE:CMSIS, right-click on the file

RTX_Conf_CM.c, and select Open With  CMSIS Configuration Wizard.

Change the following settings:

 Default Thread stack size [bytes] 512

 Main Thread stack size [bytes] 512

 RTOS Kernel Timer input clock frequency [Hz] 240000000

Save the file.

NOTE

If you have opened a file with the CMSIS Configuration Wizard once, your choice

is stored and the file will be opened in this view automatically next time.

30 Create Cortex-M Applications

Create the Source Code Files

Pre-configured user code templates contain routines that resemble the

functionality of a software component. Right-click on the project and select New

 Files from CMSIS Template.

Expand the software component CMSIS and select the template CMSIS-RTOS

'main' function. Click Finish. Add application specific code to the file main.c:

/*---

 * CMSIS-RTOS 'main' function template

 ---/

#define osObjectsPublic // define objects in main module

#include "osObjects.h" // RTOS object definitions

#ifdef _RTE_

 #include "RTE_Components.h" // Component selection

#endif

#ifdef RTE_CMSIS_RTOS // when RTE component CMSIS RTOS is used

 #include "cmsis_os.h" // CMSIS RTOS header file

#endif

#include "system_iMX7D_M4.h"

#include "retarget_io.h"

#include "board.h"

#include <stdio.h>

Getting Started with DS-MDK 31

osThreadId tid_threadA; /* Thread id of thread A */

/*---

 * Thread A

 ---/

void threadA (void const *argument) {

 volatile int a = 0;

 for (;;) {

 osDelay(750);

 printf("Blinky threadA: Hello World!\n");

 }

}

osThreadDef(threadA, osPriorityNormal, 1, 0);

/*

 * main: initialize and start the system

 */

int main (void) {

 /* Board specific RDC settings */

 BOARD_RdcInit();

 /* Board specific clock settings */

 BOARD_ClockInit();

 SystemCoreClockUpdate();

 InitRetargetIOUSART();

 tid_threadA = osThreadCreate(osThread(threadA), NULL);

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelInitialize (); // initialize CMSIS-RTOS

#endif

 /* Initialize device HAL here */

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelStart (); // start thread execution

#endif

 /* Infinite loop */

 while (1)

 {

 /* Add application code here */

 osDelay(1000);

 printf("Blinky main loop: Hello World!\n");

 // initialize peripherals here

 // create 'thread' functions that start executing,

 // example: tid_name = osThreadCreate (osThread(name), NULL);

 osKernelStart (); // start thread execution

 }

}

32 Create Cortex-M Applications

Adapt the Scatter File

On the i.MX 7 devices, several types of memory are available. For deterministic,

real-time behavior, the Cortex-M4 provides local Tightly Coupled Memory

(TCM), which provides low-latency access. Multiple on-chip RAM areas

(OCRAM) are available, which are larger, but not as fast.

The following table shows the memories and their load addresses for the different

processors:

Region Size Cortex-A7 Cortex-M4 (Code Bus)

OCRAM 128 KB 0x00900000-0x0091FFFF 0x00900000-0x0091FFFF

TCMU 32 KB 0x00800000-0x00807FFF

TCML 32 KB 0x007F8000-0x007FFFFF 0x1FFF8000-0x1FFFFFFF

OCRAM_S 32 KB 0x00180000-0x00187FFF 0x00000000-0x00007FFF/

0x00180000-0x00187FFF

By default, the scatter file template uses the start address 0x0 for the load region

command. To put the Cortex-M4 code into the TCM, change the address of the

load region to 0x1FFF8000:

; ***

; ** Scatter-Loading Description File generated by RTE CMSIS Plug-in **

; ***

LR_IROM1 0x1FFF8000 0x00008000 { ; load region size_region

 ER_IROM1 0x1FFF8000 0x00008000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 }

 RW_IRAM1 0x20000000 0x00008000 {

 .ANY (+RW +ZI)

 }

}

Getting Started with DS-MDK 33

Build the Cortex-M Image

Right-click on the project name and select Build Project to build the application.

This step compiles and links all related source files. The Console shows

information about the build process. An error-free build displays program size

information:

Debug Cortex-M Application on page 37 guides you through the required steps

to connect your evaluation board to the workstation and to debug the application

on the target hardware.

34 Create Linux Applications

Create Linux Applications
This chapter guides you through the steps required to create and modify projects

for an ARM Cortex-A class device running Linux:

 Setup the Project: create a project.

 Build the Application Image: compile and link the application.

Setup the Project
From the Eclipse menu bar, choose File  New  C Project. Select the Hello

World ANCI C Project:

Enter a project name (for example Hello_World) and make sure that the GCC

[...] (built-in) toolchain is selected before clicking Finish.

Getting Started with DS-MDK 35

The C/C++ Perspective opens and shows the current project:

Build the Application Image
Right-click on the project name and select Build Project. This step compiles and

links all related source files. The Console shows information about the build

process:

The chapter Debug Linux Application on page 42 guides you through the

required steps to connect your evaluation board to the workstation and to

download the application to the target hardware.

36 Debug Applications

Debug Applications
The DS-5 Debugger can verify all software applications that execute on a

heterogeneous computer system. It enables complete system visibility using

multiple simultaneous debug connections:

 The Cortex-M application is debugged using a ULINKpro debug unit (refer

to www.keil.com/ulink for more information). Users can analyze the

microcontroller application with RTOS aware-debugging and peripheral

views.

 The Cortex-A Linux kernel is also debugged using a ULINKpro debug unit.

The debugger lists kernel threads and processes.

 The Cortex-A Linux application is debugged via gdbserver across a

TCP/IP network link The debugger supports multi-threaded application

debugging and shows pending breakpoints on loadable modules and shared

libraries.

http://www.keil.com/ulink
https://en.wikipedia.org/wiki/Gdbserver

Getting Started with DS-MDK 37

Prepare Terminal Views
Many applications use a serial connection to display messages. A Terminal

window shows these messages from serial COM ports.

The i.MX 7 SABRE development board contains a dual USB serial port device

with two independent COM ports. Connect the board to your computer. Windows

installs the drivers automatically and adds two new USB Serial Ports to your

system. Check the exact numbers in the Windows Device Manager (to open it,

type “device manager” in the Windows search bar):

The smaller number is the COM port of the Cortex-A processor, while the larger

number is the COM port of the Cortex-M processor. To open a Terminal view, go

to Window  Show View  Other… Select Terminal  Terminal and click

OK.

Open the settings dialog from the toolbar of the Terminal 1 window:

Set the following:

 View Title: Terminal Linux

 Connection Type: Serial

 Port: Use the first of the new COM ports

 Baud Rate: 115200

38 Debug Applications

Click OK. Press the RST button on the development board to observe the boot

process in the Terminal window. Send any keyboard key to the terminal window

to interrupt the boot process:

NOTE

You must halt the boot loader at this point to be able to launch the Cortex-M

debug session.

Add another Terminal view to display the output of the Cortex-M processor.

Simply use the drop-down selector next to the New Terminal Connection in

Current View… icon and select New terminal View:

Select the larger COM port number and leave the other settings as they are. Name

the Terminal view Terminal M4.

Getting Started with DS-MDK 39

Debug Cortex-M Application
This section explains how to debug the microcontroller application running on the

Cortex-M microcontroller. If you are debugging the Blinky application from the

previous chapter, execute the following steps using that project. Here, we will

continue with the RPMSG_TTY_RTX_M4 project from the Verify Installation

with Example Project chapter.

Stop in U-Boot

Stop in U-Boot to be able to connect to the target. Restart/reset the device and

observe the bootloader output on the Terminal Linux. Press any key before the

autoboot countdown expires:

40 Debug Applications

Configure CMSIS DS-5 Debugger

Right-click the RPMSG_TTY_RTX_M4 project and select Debug As 

CMSIS DS-5 Debugger to launch the debug configurations dialog:

Connection

Verify the Connection Settings and ensure that ULINKpro is correctly detected.

If in doubt, use Browse… to list available debug adapters.

Click on Target Configuration… to setup the Debug and Trace Services Layer

(DTSL).

Getting Started with DS-MDK 41

 On the Cortex-A7 tab, disable all trace options to avoid buffer overflows.

 On the Cortex-M4 tab, Enable Cortex-M4 core trace.

OS Awareness

In the OS Awareness tab select the real-time operating system used in your

application from the drop-down menu.

Click Debug.

NOTE

The error message “Failed to launch debug server” most likely indicates that an

incorrect ULINKpro connection address is selected.

42 Debug Applications

Run Cortex-M Application

DS-MDK switches to the DS-5 Debug perspective.

The application loads and runs until main. To start the Cortex-M4 application

click Run in the Debug Control view.

Observe the output of the application in the Terminal M4 window.

NOTE

You can add another Terminal view to the debug perspective by using Window 

Show View  Terminal.

Debug Linux Application
This section explains how to debug the Linux application running on the

Cortex-A7. If you are debugging the Hello_World application from the previous

chapter, execute the following steps using that project. Here, we will continue

with the Linux Application TTY project from the Verify Installation with

Example Project chapter.

The DS-5 Debugger uses gdbserver for debugging Linux on the target hardware.

Before connecting, you must:

 Set up the target with Linux installed and booted. Refer to Install the Linux

Image on page 12.

 Obtain the target IP address or name for the connection between the debugger

and the debug hardware adapter. If the target is in your local subnet, click

Browse and select your target.

Next, you should set up a Remote Systems Explorer (RSE) connection to the

target to download the application onto the target’s file system.

Getting Started with DS-MDK 43

Setup RSE Connection

Go to Window  Open

Perspective  Other..., then select

Remote System Explorer. Use the

 button to create a new

connection. Select SSH Only and

click Next.

RSE communicates with the target

using TCP/IP. Thus, you need to

enter the target's IP address into the

Host Name field. Enter a

meaningful name in the Connection

name box:

Click Finish to show your connection in the Remote

Systems window:

Boot Linux

NOTE

If you are debugging a microcontroller application simultaneously, you need to

run the Cortex-M application, otherwise the Linux Terminal will not be

accessible and you will not be able to boot Linux.

In the Terminal Linux enter “boot” to start the Linux system:

44 Debug Applications

When the boot process has finished, log in as root (no password required).

Configure DS-5 Debugger

Right-click on the project Linux Application TTY and select Debug As  Debug

Configurations… . In the Debug Configurations window, select DS-5 Debugger

and then press the icon to create a new debug configuration. Name it GDB

Debug and select in the Connection tab Linux Application Debug 

Application Debug  Connections via gdbserver  Download and debug

application. The RSE connection from the previous step shows up:

Getting Started with DS-MDK 45

On the Files tab, in Target Configuration, select the workspace build target for

Application on host to download. Select an existing directory on the target file

system, e.g. /home/root/tmp as the Target download directory.

Select an existing directory on the target file system, e.g. /home/root/tmp as

the Target working directory (use the same directory as for Target download

directory).

On the Debugger tab, under Run Control select Debug from symbol “main”.

Click Debug.

46 Debug Applications

Run the Linux Application

In the Terminal Linux, load the kernel module that communicates with the

Cortex-M4 application with this command:

root@imv7dsabresd:~# modprobe -v imx_rpmsg_tty

The kernel module should be loaded as shown below:

insmod /lib/modules/4.1.15-

1.1.0+ga4d2a08/kernel/drivers/rpmsg/imx_rpmsg_tty.ko

imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x0!

Install rpmsg tty driver!

Use the Continue button to run the Linux application. The App Console

shows the application’s messages:

Similarly, the Terminal M4 shows the output of the microcontroller application:

NOTE

You can add another Terminal view to the debug perspective by using Window 

Show View  Terminal.

Getting Started with DS-MDK 47

Store Cortex-M Image
To store the Cortex-M image for execution at start up use the following steps:

1. Create a binary image (BIN) with the fromelf utility application.

2. Store this BIN image on SD card in the boot partition

3. Setup the U-Boot environment to start-up the BIN image file.

Create a Cortex-M Binary Image (BIN)

Right-click the project and select Properties  C/C++ Build  Settings. In the

the Build Steps enter under Post-build steps the Command:

fromelf --bin --output "Blinky.bin" "Blinky.axf"

NOTE

This example shows the steps for the Blinky application from section Blinky with

CMSIS-RTOS RTX on page 22.

Click OK and rebuild the project to get the BIN file generated.

48 Store Cortex-M Image

Store Cortex-M BIN File on SD Card

The SD Card has two partitions:

 The Linux file system partition.

 The FAT32 boot partition.

List the partitions with the fdisk command:

~# fdisk –l

…

Device Boot Start End Sectors Size Id Type

/dev/mmcblk0p1 8192 24575 16384 8M c W95 FAT32 (LBA)

/dev/mmcblk0p2 24576 1236991 1212416 592M 83 Linux

Store the Cortex-M binary image in the FAT32 boot partition to be able to

execute it at system startup:

1. Create a sub-directory on the Linux file system, for example:

~# mkdir /media/sd0

2. Mount the Linux file system partition for access with RSE.

~# mount –t vfat /dev/mmcblk0p1 /media/sd0

3. Use RSE to copy the BIN file from your workspace to the /media/sd0

directory.

4. Unmount the partition to ensure that the file is written correctly:

~# umount /media/sd0

5. Reboot the system and halt in U-Boot.

Getting Started with DS-MDK 49

Run Cortex-M BIN File from U-Boot

At this point, the Cortex-M BIN file is stored in the boot partition. Use the

setenv command to change the boot image to the new BIN file:

=> setenv m4image Blinky.bin; save

The printenv command shows the boot setup:

=> printenv

…

loadm4image=fatload mmc ${mmcdev}:${mmcpart} 0x7F8000 ${m4image}

m4boot=run loadm4image; bootaux 0x7F8000

m4image=Blinky.bin

Run m4boot to start the Blinky application:

=> run m4boot

NOTE

For more information refer to the U-Boot Command Line Interface in the U-Boot

user's manual (www.denx.de/wiki/DULG/UBoot).

http://www.denx.de/wiki/DULG/UBoot

50 Index

Index
A
Applications

Add Source Code 31

Blinky with CMSIS-RTOS RTX 25

Build ... 33

Build Cortex-M Image 33

Create ... 25

Create BIN File 47

Create Source Files 30

Customize RTOS 29

Debug ... 36

Run from U-Boot 49

Select Software Components 28

Setup the Project 26

Store BIN File 48

C
Console ... 16

D
Debug

OS Awareness 41

Device Database .. 11

Documentation .. 17

DS-MDK

Install .. 9

Installation Requirements 9

Introduction .. 7

License Types ... 8

Licensing .. 8

E
Eclipse

IDE ... 18

Perspectives .. 18

Example Project

Install .. 14

F
Flash Programmig

Scatter File ... 32

I
i.MX7 SABRE

Hardware Connection 13

L
Linux

Create Image .. 12

Install Image ... 12

Linux Applications

Build Application Image 35

Development .. 34

Project Set Up 34

P
Perspective

C/C++ ... 19

CMSIS Pack Manager 22

DS-5 Debug.. 24

Remote System Explorer 23

R
Remote System Explorer........................... 43

S
Software Packs

Manage ... 11

T
Terminal View .. 37

	Preface
	Chapter Overview

	DS-MDK Introduction
	Solution for Heterogeneous Systems
	DS-MDK Licensing
	License Types

	Installation
	Software and Hardware Requirements
	Install DS-MDK
	Manage Software Packs
	Install the Linux Image
	Copy the Linux Image to an SD-Card

	Hardware Connection
	i.MX 7 SABRE Board

	Verify Installation with Example Projects
	Remote Processor Messaging Protocol Example
	Copy the RPMSG TTY RTX Example Project
	Build the Application
	Copy and Build the Linux Application TTY

	Documentation and Support

	Eclipse IDE
	Perspectives
	C/C++ Perspective
	AXF File Viewer
	CMSIS Configuration Wizard
	Scatter File Viewer

	CMSIS Pack Manager Perspective
	Remote System Explorer Perspective
	DS-5 Debug Perspective

	Create Cortex-M Applications
	Blinky with CMSIS-RTOS RTX
	Setup the Project
	Select Software Components
	Configure CMSIS-RTOS RTX Kernel
	Create the Source Code Files
	Adapt the Scatter File
	Build the Cortex-M Image

	Create Linux Applications
	Setup the Project
	Build the Application Image

	Debug Applications
	Prepare Terminal Views
	Debug Cortex-M Application
	Stop in U-Boot
	Configure CMSIS DS-5 Debugger
	Connection
	OS Awareness

	Run Cortex-M Application

	Debug Linux Application
	Setup RSE Connection
	Boot Linux
	Configure DS-5 Debugger
	Run the Linux Application

	Store Cortex-M Image
	Create a Cortex-M Binary Image (BIN)
	Store Cortex-M BIN File on SD Card
	Run Cortex-M BIN File from U-Boot

	Index

