arm & cmsis

Z cMsIs ve

CMSIS-Stream and the
Synchronous Data Streaming (SDS) Framewg

Hans Schneebauer, Teo Mahnic, Matthias Hertel — A
27 February 2024

© 2024 Arm

2

CMSIS-Stream and Synchronous Data Streaming (SDS) Framework
Optimized block data streams of ML & DSP applications; verify with reproducible tests

What?

-- DSP and ML compute algorithms are already
validated. A modular design is easier to develop,
configure, and maintain.

-- Static scheduling of the algorithm call sequence
is typically the optimal approach. CMSIS-Stream
helps developers to minimize the overhead when
combining algorithms.

-~ Using the SDS framework allows you to record
data streams for input to ML training, DSP design
tools, and replay with AVH simulation models
during validation.

© 2024 Arm

Why?

-- Developers use DSP and ML compute algorithms

to compose complex applications. The
parameters and data block sizes require
configuration towards application requirements.

These algorithms work on data blocks, potentially
with different block sizes. Real-time constrains
and memory limitations require optimization of
the data stream between the algorithms.

Final integration tests require frequently real-
world data that are captured with physical
sensors. Reproducible tests on simulation models
allow iterative and agile development.

arm

3

Addressing a Wide Range of ML Edge Device Applications

Cortex-M with
Ethos NPU ML

acceleration

Cortex-M52, M55, M85
with Helium vector

instructions
Cortex-M7,

Cortex-M33
Cortex-MO+,

M3, M4

. . . o e oo
ME%ILTJLQ_ILﬁJL@LLO_I &

Vibration | Sensor | Keyword | Anomaly | Object | Gesture | Biometric | Speech | Object | Real-time
detection fusion i detection | detection | detection | detection | awareness : recognition : classification ! recognition

© 2024 Arm q r m

4

Unified Software Development: Fastest Path to Endpoint Al

Embedded DSP Code
Code

v v

NN Model

Multiple software development flows

@@

(v) More complex, longer time to market

Harder to program and debug

© 2024 Arm

Embedded
Code

DSP Code NN Model

v

Unified software development flow

@@ Works with common ML frameworks and existing tools

() More productivity, faster time to market

arm

Core Compute Capabilities for a Modern Development Flow
Access to DSP/ML capabilities without specialized tools simplifies development

Example: Cortex-M Processor with Helium running a predictive maintenance workload

:] ﬂl.

Signal conditioning Feature extraction ML classification

Filtering, sensor fusion, Spectral data Classical ML
Kalman filter Deep learning (NN)

5 ©2024Arm a rm

CMSIS-Stre

Optimized data streaming for ML and DSP
applications

© 2024 Arm

CMSIS-Stream

Methods, interfaces, and tools for data block streaming

-- Compute Graph: the decomposition of the application in a directed acyclic graph that
shows the data flow. It describes the data formats, FIFO buffers, data streams (arcs:),
and processing steps (nodes:). The Compute Graph is defined using a Python file.

-- Tools: to convert the Compute Graph to schedule processing steps at build-time based
on Python file information.

-- Interfaces: header files, templates, and methods for data management (that works also
on AMP systems).

-- Usage Examples: that help a software developer to get started (should provide also
examples using various DSP and ML eco-system tools).

7 ©2024 Arm a rm

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://github.com/ARM-software/CMSIS-Stream/tree/main/Examples

8

Compute Graph

Source

gql6

-- Nodes may have multiple inputs or outputs, produce different size buffers, or use
different data formats

—

Filter

(processing node)

gql6

—

Detector

2
f16

10

Sink

-- This requires FIFO buffering and potentially format conversions between node
inputs/outputs

-- Each node output can be recorded via SDS-Framework

© 2024 Arm

arm

Overview of generating a compute graph
https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp

Processing Nodes implement

the compute operations. Two C FunctFons generated/scheduler.cpp
ways to define it: unary / binary B ieme 6l i e generated/scheduler.h
. operations as ; d
* nodes.py class definition. Processing Nodes Processing Nodes -
« Class that integrates Optimized ca.II sequence for
C Functions processing nodes

The graph.py describes the Description of the
compute graph and effectively

connects the Processing
Nodes.

Compute Graph

Simple.dot
Graphical representation of the
Generation of the compute graph

Compute Graph

The create.py calls the Python create.py
scripts the generate the
compute graph.

9 ©2024 Arm a rm

https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp
https://github.com/ARM-software/CMSIS-DSP/blob/main/ComputeGraph/examples/simpledsp/nodes.py
https://github.com/ARM-software/CMSIS-DSP/blob/main/ComputeGraph/examples/simpledsp/graph.py

Example Description of a Compute Graph (graph.py)

https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp

Define data type 'float' used for all IOs # Create a Compute Graph object.

floatType=CType (F32) the graph = Graph()

A source processing node that creates 5 samples. # Connect output of src to input ia of processing.
The C function "source" generates 5 samples. the graph.connect(src.o,processing.ia)

src=Source ("source" , floatType, 5)
Connect constant offsetValue to input ib of processing.
A binary operation with 2 inputs and 1 output. the graph.connect (offsetValue,processing.ib)
C func "arm offset £32" consumes/produces 7 samples.
processing=Binary ("arm offset £32",6floatType,7) # Connect output of processing to input of sink.
the graph.connect (processing.o,sink.i)
A processing node that produces a constant value.

C identifier "OFFSET VALUE" is the constant value.

offsetValue=Constant ("OFFSET_ VALUE") source
(Source) [/—_ B2011) 7~ 7 1) | sink

| ® [arm_offset £32|° | =1 (Sink)
| (Function)

A Sink processing node that consumes 5 samples.

C function "sink" gets 5 samples as input. OFFSET_VALUE

sink=Sink ("sink",6 floatType, 5)

10 © 2024 Arm a rm

https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp

CMSIS-Stream Documentation
https://github.com/ARM-software/CMSIS-stream

-- How to get started -- API Details
- Simple graph creation example - Python API for creating a graph and its
-- How to write the Python script and the scheduling

- C++ default nodes for C++ wrappers

C++ wrappers
- Python default nodes for Python

- How to describe the graph in Python

- How to write the C++ wrappers to use wrappers
your functions in the graph -- Memory optimizations
- Nodes for working with CMSIS-DSP - Extensions
- Details about the generated C++ - Cyclo-static scheduling
scheduler - Dynamic / Asynchronous mode
-- Examples -- Maths principles
-- FAQs

11 © 2024 Arm a rm

SDS Framew

Capture multiple synchronous data streams
for algorithm analysis and ML training

© 2024 Arm

MLOps: deploy and maintain Machine Learning (ML) models

Combines machine learning data analytics with continuous development (DevOps)

-- ML models are tested and developed in

Data ~ Data .
A Ll \ isolated systems.
’ -- MLOps is an iterative process to transition
Collection — prepration the ML model to production systems.
Test Data
—_————
I T l -- Adding ML is an evolutionary process.
" -- Evaluation and validation require the
Model Training Data Model
Deployment Training model to run on target hardware.
\ * System * Model /
Validation _ Evaluation

* Supported by Arm Virtual Hardware and SDS Framework

13 © 2024 Arm a r m

Machine Learning (ML) Requires Real-World Data

Data collection requires frequently inputs of the final target system

Data ~ Data

Analysis Labeling
* Data pra——Ss Data
Collection Preparation
Test Data
Validation Data
Model Training Data Model
Deployment Training
* System * Model
Validation Evaluation

* Supported by Arm Virtual Hardware and SDS Framework
14 © 2024 Arm

Bgth towel (50%), paper towel (11%)

0 50 100 150 200

Source:

https://codewords.recurse.com/issues/five/
why-do-neural-networks-think-a-panda-is-a-vulture

arm

https://codewords.recurse.com/issues/five/%20why-do-neural-networks-think-a-panda-is-a-vulture
https://codewords.recurse.com/issues/five/%20why-do-neural-networks-think-a-panda-is-a-vulture

Arm Virtual Hardware — FVPs

-~ Precise simulation models of Cortex-M Arm Fixed Virtual Platforms (FVPs) Developer
device sub-systems designed for complex
L) of all Cortex-M Processors Resources
software verification and testing on desktop
or cloud systems Cortex-M Ethos-U65/U55 « 1/O drivers
Uikl microNPU * Test scripts
* SIMD
-- Runs any RTOS or bare metal code « Helium « CI/CD integration

* Usage examples

-~ Provides virtual peripheral interfaces for 1/0 * Test report tools

i ulati Memory Peripherals
simulation * Secure/ * GPIO
Non-secure * UART, SPI, I12C]
4~ Enables test automation of diverse software - oA " EEhernet Cloud Serwce
workloads, including unit, integration tests, Integration
and fault injection Virtual 1/O Debug Interface A D s
» Data values * MDK, DS C/Cat C '
. . * Streaming * GDB : ++ Lompiier
__
- Cloud service integration for ClI/CD and e e e .

MLOps development flows

15 © 2024 Arm a r m

https://arm-software.github.io/AVH/main/overview/html/index.html
https://arm-software.github.io/AVH/main/simulation/html/index.html

Virtual Streaming Interface (VSI)

Flexible I/O for a wide range of use cases, for example: sensors, audio, and video

Python scripts with callback functions for custom
Arm EVP model actions on read/write access to VSI registers.
For example: for audio file as input/output.

(Fixed Virtual Platform,
Application firmware example: Corstone-300 FVP)

Peripheral Virtual Streaming Vel ovih .
i Interface (VSI) i ic;rlpts
audio I/0 arm:vsil.py:

User

application

CPU peripheral with
register interface

Data files
Peripheral driver abstracts VSI register 8 VSl instances can be used in (‘test.wav’)
accesses for a specific use case. parallel for multi-channel I/O
For example: audio I/O driver.

16 © 2024 Arm a r m

https://arm-software.github.io/AVH/main/simulation/html/group__arm__vsi.html

17

Record real-world data with Synchronous Data Streaming (SDS)
Simplify Development of Embedded Applications that utilize DSP or ML algorithms with Sensor/Audio Input

Microcontroller Hardware

Algorithm under Development

Software on
Physical Board

MEMS Sensor Audio SDS Recorder
Interface Interface Interface

Gyroscope Microphone SDS Recorder
Sensor Input connects via

MCU
Device

The SDS framework provides methods to record real-world
data for analysis and development.

-- Input to Digital Signal Processing (DSP) development tools
such as filter designers

-~ Input to Machine Learning (ML) model classification, training,
and performance optimization.

SDS framework is an open-source project:
github.com/Arm-Software/SDS-Framework

Test Data

different channels
X
Yy
Z

Capture physical sensor (real-world) data using the original Microcontroller target hardware

© 2024 Arm

SDS Data Files SDS Data Files
*.gyroscope.sds * .microphone.sds

Data conversion At Dot
to ML training alidation Data

platform can be u

automated.

Training Data

arm

https://github.com/Arm-Software/SDS-Framework

SDS enables playback of real-world data for algorithm testing

Combined with AVH it enables repeatable test automation in Cl systems and MLOps cloud services

Microcontroller Hardware

Software on
Physical Board

MEMS Sensor
Interface

Gyroscope
Sensor

s
Z

MCU
Device

18 © 2024 Arm

Algorithm under Development

Interface

Microphone

Same algorithm is verified on
precise processor simulation model

SDS Recorder
Interface

SDS Recorder
connects via
different channels

SDS Data Files
*.microphone.sds

SDS Data Files
* gyroscope.sds

Arm Virtual Hardware (AVH)

Algorithm under Development

VSI Sensor VS| Audio

Software on
Arm Virtual Hardware

Interface Interface

Virtual Streaming |l Virtual Streaming
Interface #1 Interface #2

AVH
VSI

SDS Data Files
*.gyroscope.sds

SDS Data Files
*.microphone.sds

arm

SDS: flexible stream management for sensor and audio data
Supports the whole development cycle: data recording, analysis, ML training, playback

-~ Single or multiple data streams, including sensor fusion with clock deviations stt)
« Sensors may have independent clock sources with tolerances o

-- SDS Metadata file describes content of SDS data files

9 10 11 12 13

-- Python-based utilities for recording, playback, visualization, data conversion, o1 i 4 5 6 78 t
and algorithm verification with off-line tools

Gyrosco pe Gyroscope - 3D

<

audio signal capturing with 8kHz

Xe &6 6 6 o6 o o o o
s Yye ¢ ¢ 6 6 o o o o
206 6 6 6 o6 o o o o

—-1000

MEMS capturing with 3,5kHz *£5%

SDS Metadata File
‘SensorX.sds.yml’ 2000

10 1500 -1000

data block #1 data block #2

https://github.com/ARM-software/SDS-Framework a rm

19 © 2024 Arm

https://github.com/ARM-software/SDS-Framework

© 2024 Arm

MLOps workflow exemplified with TDK Qeexo AutoML

CAPTURE DATA IMPORT ML MODEL DEPLOY
DATA TO MLOPS TRAINING TO TARGET
--Add SDS framework to -~ Convert SDS data files --Data cleaning and --Integrate ML model
target application and label data preprocessing library in target project
-~ Define sensors channels --Upload data files to --Feature extraction --Validate ML model using
and capturing frequency MLOps system, for Arm Virtual Hardware
example Qeexo AutoML -~ ML model selection
--Create metadata files to -~ Final system test in target
describe sensordata | seroe -~ Parameter optimization hardware

Time-domain

-~ Capture SDS data files i -~ Model Validation

-- Model conversion and
download

-~ Verify SDS data files using
a viewer

21 © 2024 Arm a rm

TDK Qeexo ﬁutoMI:_

© 2024 Arm

© 2024 Arm

More Information

ASN Filter Designer

€D Arm SDS Framework

€) Application deployment) ASN Filter Designer

-— Design of AloT algorithms
with the ASN Filter Designer
and the Arm SDS Framework
and their deployment to
STM32 microcontrollers

24 © 2024 Arm

Qeexo AutoML

armESETEm ¢

Creating & Deploying Al Condition*‘

Based Monitoring Solutions fram.
Qeexo on'Arm Virtual Hardware =

e P <

-- Discover how to create

machine learning solutions
for industrial condition-
based monitoring (CbM),
predictive maintenance, and
anomaly detection.

Example Project

CMSIS-Stream and Synchronous Data Streaming (SDS)
Framework Example

This example demonstrates the usage of
recorder) in a graph.

iitered by an IIR filter to select a specific frequency range.

-ompute the energy, which is then compared to a

-~ This example demonstrates

the usage of Synchronous
Data Streaming (SDS)
Framework nodes (player
and recorder) in a CMSIS-
Stream graph.

arm

https://www.advsolned.com/design-of-aiot-algorithms-with-theasn-filter-designer-and-the-arm-sds-framework/
https://www.brighttalk.com/webcast/17792/598483
https://github.com/Arm-Examples/CMSIS-Stream_SDS_Demo

25

CMSIS Webinar Series

Check out our previous episodes

CMSIS v6 Overview

CMSIS - Fifteen Years of Software Evolution

e IE 5 a0
10,000 supported 900+ packs from 6 million GitHub Multiple
devices 60 vendors projects toolchains
2010 2012 2016 2023
CMSIS v2 Cl CMSIS v6

2008 2014
SSSSSSS M! CMSIS v4
Ac Real-time Enable middle

proce: re, peratiny with Driver and
interrupts, an d ms AP RTOS interfaces
peripherals Device suppd
nd softwar
delivered wit
CMSIS pack:

-- We explain what's new and

how to migrate to version 6.

-- The session consists of a
presentation and some
hands-on demos.

© 2024 Arm

CMSIS-View/Compiler

Event Recorder
Dynamic view to operation and timing of
software components

Filters can be set at debug or system level;
St information relevant to current situation

Application Code
Event Annotations

Event Recorder

1
Event Filter

| Event Buffer
. _

Event buffer is configurable in size
to cope with event bursts

1

arm

-— Learn how to use event
annotations and retargeting
for printf or file I/O in
combination with
middleware.

CMSIS-Toolbox

-- Learn how to use the new

YAML based project format
for IDE integration, Cl and
MLOps systems. It supports
portable builds on Linux,
MacOS, and Windows.

arm

https://on-demand.arm.com/flow/arm/devhub/sessionCatalog/page/pubSessCatalog/session/1705915235972001vEdN
https://on-demand.arm.com/flow/arm/devhub/sessionCatalog/page/pubSessCatalog/session/1706872120089001ictY
https://on-demand.arm.com/flow/arm/devhub/sessionCatalog/page/pubSessCatalog/session/1708432622207001feYV

Thank You
BEILE
Gracias
Grazie

157 151
HYNES

Asante

Merci
At Cf

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks

‘ featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

