
© 2024 Arm

Hans Schneebauer, Teo Mahnic, Matthias Hertel – Arm
27 February 2024

v6

CMSIS-Stream and the
Synchronous Data Streaming (SDS) Framework

2 © 2024 Arm

CMSIS-Stream and Synchronous Data Streaming (SDS) Framework
Optimized block data streams of ML & DSP applications; verify with reproducible tests

What?

DSP and ML compute algorithms are already
validated. A modular design is easier to develop,
configure, and maintain.

Static scheduling of the algorithm call sequence
is typically the optimal approach. CMSIS-Stream
helps developers to minimize the overhead when
combining algorithms.

Using the SDS framework allows you to record
data streams for input to ML training, DSP design
tools, and replay with AVH simulation models
during validation.

Why?

Developers use DSP and ML compute algorithms
to compose complex applications. The
parameters and data block sizes require
configuration towards application requirements.

These algorithms work on data blocks, potentially
with different block sizes. Real-time constrains
and memory limitations require optimization of
the data stream between the algorithms.

Final integration tests require frequently real-
world data that are captured with physical
sensors. Reproducible tests on simulation models
allow iterative and agile development.

3 © 2024 Arm

Addressing a Wide Range of ML Edge Device Applications

Cortex-M52, M55, M85
with Helium vector

instructions

Cortex-M with
Ethos NPU ML
acceleration

Sensor
fusion

Keyword
detection

Speech
recognition

Object
classification

Anomaly
detection

Real-time
recognition

Biometric
awareness

Object
detection

Gesture
detection

Vibration
detection

Cortex-M7,
Cortex-M33

Cortex-M0+,
M3, M4

4 © 2024 Arm

Unified Software Development: Fastest Path to Endpoint AI

Multiple software development flows
Harder to program and debug
More complex, longer time to market

Unified software development flow
Works with common ML frameworks and existing tools
More productivity, faster time to market

Embedded
Code

NN ModelDSP Code

Cortex-M DSP NPU

Embedded
Code

NN ModelDSP Code

Cortex-M optionally with Ethos-U

5 © 2024 Arm

Example: Cortex-M Processor with Helium running a predictive maintenance workload

Core Compute Capabilities for a Modern Development Flow

Signal conditioning
Filtering, sensor fusion,
Kalman filter

Feature extraction
Spectral data

ML classification
Classical ML
Deep learning (NN)In Out

Access to DSP/ML capabilities without specialized tools simplifies development

© 2024 Arm

CMSIS-Stream

Optimized data streaming for ML and DSP
applications

7 © 2024 Arm

CMSIS-Stream
Methods, interfaces, and tools for data block streaming

Compute Graph: the decomposition of the application in a directed acyclic graph that
shows the data flow. It describes the data formats, FIFO buffers, data streams (arcs:),
and processing steps (nodes:). The Compute Graph is defined using a Python file.
Tools: to convert the Compute Graph to schedule processing steps at build-time based
on Python file information.
Interfaces: header files, templates, and methods for data management (that works also
on AMP systems).
Usage Examples: that help a software developer to get started (should provide also
examples using various DSP and ML eco-system tools).

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://github.com/ARM-software/CMSIS-Stream/tree/main/Examples

8 © 2024 Arm

Compute Graph

Nodes may have multiple inputs or outputs, produce different size buffers, or use
different data formats
This requires FIFO buffering and potentially format conversions between node
inputs/outputs
Each node output can be recorded via SDS-Framework

Source Filter
(processing node)

Detector Sinkq16
5

q16 f16
7

7

6

2

10

9 © 2024 Arm

Overview of generating a compute graph
https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp

nodes.py
Definitions of the
Processing Nodes

graph.py
Description of the
Compute Graph

create.py
Generation of the
Compute Graph

generated/scheduler.cpp
generated/scheduler.h

Optimized call sequence for
processing nodes

Simple.dot
Graphical representation of the

compute graph

C Functions
unary / binary
operations as

Processing Nodes

Processing Nodes implement
the compute operations. Two
ways to define it:
• nodes.py class definition.
• Class that integrates

C Functions

The graph.py describes the
compute graph and effectively
connects the Processing
Nodes.

The create.py calls the Python
scripts the generate the
compute graph.

https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp
https://github.com/ARM-software/CMSIS-DSP/blob/main/ComputeGraph/examples/simpledsp/nodes.py
https://github.com/ARM-software/CMSIS-DSP/blob/main/ComputeGraph/examples/simpledsp/graph.py

10 © 2024 Arm

Example Description of a Compute Graph (graph.py)
https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp

Define data type 'float' used for all IOs

floatType=CType(F32)

A source processing node that creates 5 samples.

The C function "source" generates 5 samples.

src=Source("source",floatType,5)

A binary operation with 2 inputs and 1 output.

C func "arm_offset_f32" consumes/produces 7 samples.

processing=Binary("arm_offset_f32",floatType,7)

A processing node that produces a constant value.

C identifier "OFFSET_VALUE" is the constant value.

offsetValue=Constant("OFFSET_VALUE")

A Sink processing node that consumes 5 samples.

C function "sink" gets 5 samples as input.

sink=Sink("sink",floatType,5)

Create a Compute Graph object.

the_graph = Graph()

Connect output of src to input ia of processing.

the_graph.connect(src.o,processing.ia)

Connect constant offsetValue to input ib of processing.

the_graph.connect(offsetValue,processing.ib)

Connect output of processing to input of sink.

the_graph.connect(processing.o,sink.i)

https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph/examples/simpledsp

11 © 2024 Arm

CMSIS-Stream Documentation
https://github.com/ARM-software/CMSIS-stream

How to get started
• Simple graph creation example

How to write the Python script and the
C++ wrappers
• How to describe the graph in Python
• How to write the C++ wrappers to use

your functions in the graph
• Nodes for working with CMSIS-DSP
• Details about the generated C++

scheduler
Examples

API Details
• Python API for creating a graph and its

scheduling
• C++ default nodes for C++ wrappers
• Python default nodes for Python

wrappers
Memory optimizations
Extensions
• Cyclo-static scheduling
• Dynamic / Asynchronous mode

Maths principles
FAQs

© 2024 Arm

SDS Framework

Capture multiple synchronous data streams
for algorithm analysis and ML training

13 © 2024 Arm

MLOps: deploy and maintain Machine Learning (ML) models
Combines machine learning data analytics with continuous development (DevOps)

ML models are tested and developed in
isolated systems.

MLOps is an iterative process to transition
the ML model to production systems.

Adding ML is an evolutionary process.

Evaluation and validation require the
model to run on target hardware.

Training Data

Validation Data

Test Data

Data
Labeling

Data
Preparation

Model
Training

* Model
Evaluation

* System
Validation

Model
Deployment

* Data
Collection

Data
Analysis

* Supported by Arm Virtual Hardware and SDS Framework

14 © 2024 Arm

Machine Learning (ML) Requires Real-World Data
Data collection requires frequently inputs of the final target system

Source:
https://codewords.recurse.com/issues/five/
why-do-neural-networks-think-a-panda-is-a-vulture

Training Data

Validation Data

Test Data Decision:
A
B

Data
Labeling

Data
Preparation

Model
Training

* Model
Evaluation

* System
Validation

Model
Deployment

* Data
Collection

Data
Analysis

* Supported by Arm Virtual Hardware and SDS Framework

https://codewords.recurse.com/issues/five/%20why-do-neural-networks-think-a-panda-is-a-vulture
https://codewords.recurse.com/issues/five/%20why-do-neural-networks-think-a-panda-is-a-vulture

15 © 2024 Arm

Arm Virtual Hardware – FVPs

Precise simulation models of Cortex-M
device sub-systems designed for complex
software verification and testing on desktop
or cloud systems

Runs any RTOS or bare metal code

Provides virtual peripheral interfaces for I/O
simulation

Enables test automation of diverse software
workloads, including unit, integration tests,
and fault injection

Cloud service integration for CI/CD and
MLOps development flows

Arm Fixed Virtual Platforms (FVPs)
of all Cortex-M Processors

Cortex-M
• TrustZone
• SIMD
• Helium

Ethos-U65/U55
microNPU

Memory
• Secure/

Non-secure
• DMA

Peripherals
• GPIO
• UART, SPI, I2C
• Ethernet

Virtual I/O
• Data values
• Streaming
• BSD-Socket

Debug Interface
• MDK, DS
• GDB
• Event Recorder

Developer
Resources

Cloud Service
Integration

• I/O drivers

• Test scripts

• CI/CD integration

• Usage examples
• Test report tools

• Arm FVP models

• C/C++ Compiler

• Build utilities

https://arm-software.github.io/AVH/main/overview/html/index.html
https://arm-software.github.io/AVH/main/simulation/html/index.html

16 © 2024 Arm

Arm FVP model
(Fixed Virtual Platform,

example: Corstone-300 FVP)

Audio file
‘test.wav’

Application firmware

Virtual Streaming Interface (VSI)
Flexible I/O for a wide range of use cases, for example: sensors, audio, and video

Virtual Streaming
Interface (VSI)

CPU peripheral with
 register interface

VSI python scripts
arm_vsi0.py,

 arm_vsi1.py, …

Peripheral
Driver

Example:
audio I/O

User
application

Data files
(’test.wav’)

Python scripts with callback functions for custom
actions on read/write access to VSI registers.
For example: for audio file as input/output.

Peripheral driver abstracts VSI register
accesses for a specific use case.
For example: audio I/O driver.

8 VSI instances can be used in
parallel for multi-channel I/O

https://arm-software.github.io/AVH/main/simulation/html/group__arm__vsi.html

17 © 2024 Arm

Record real-world data with Synchronous Data Streaming (SDS)
Simplify Development of Embedded Applications that utilize DSP or ML algorithms with Sensor/Audio Input

M
CU

De

vi
ce

So
ft

w
ar

e
on

Ph

ys
ic

al
 B

oa
rd

Microcontroller Hardware

SDS Recorder
Interface

SDS Recorder
connects via

different channels

Algorithm under Development

Capture physical sensor (real-world) data using the original Microcontroller target hardware

SDS Data Files
*.gyroscope.sds

Audio
Interface

Microphone
Input

SDS Data Files
*.microphone.sds

z
yx

Training Data

Validation Data

Test Data

Data conversion
to ML training
platform can be
automated.

The SDS framework provides methods to record real-world
data for analysis and development.

Input to Digital Signal Processing (DSP) development tools
such as filter designers

Input to Machine Learning (ML) model classification, training,
and performance optimization.

SDS framework is an open-source project:
github.com/Arm-Software/SDS-Framework

MEMS Sensor
Interface

Gyroscope
Sensor

https://github.com/Arm-Software/SDS-Framework

18 © 2024 Arm

AV
H

VS
I

So
ft

w
ar

e
on

Ar

m
 V

irt
ua

l H
ar

dw
ar

e

So
ft

w
ar

e
on

Ph

ys
ic

al
 B

oa
rd

M
CU

De

vi
ce

SDS enables playback of real-world data for algorithm testing
Combined with AVH it enables repeatable test automation in CI systems and MLOps cloud services

MEMS Sensor
Interface

Gyroscope
Sensor

Microcontroller Hardware

SDS Recorder
Interface

SDS Recorder
connects via

different channels

Algorithm under Development

SDS Data Files
*.gyroscope.sds

Audio
Interface

Microphone
Input

SDS Data Files
*.microphone.sds

z
yx

VSI Sensor
Interface

Virtual Streaming
Interface #1

Arm Virtual Hardware (AVH)

Algorithm under Development

VSI Audio
Interface

Virtual Streaming
Interface #2

SDS Data Files
*.gyroscope.sds

SDS Data Files
*.microphone.sds

Same algorithm is verified on
 precise processor simulation model

19 © 2024 Arm

SDS: flexible stream management for sensor and audio data
Supports the whole development cycle: data recording, analysis, ML training, playback

X l l l l l l l l l
Y l l l l l l l l l
Z l l l l l l l l l

t
SDS Metadata File

‘SensorX.sds.yml’

SDS Data Files
‘SensorX<idx0>.sds’
‘SensorX<idx1>.sds’

data block #1 data block #2

MEMS capturing with 3,5kHz ±5%

audio signal capturing with 8kHz

Single or multiple data streams, including sensor fusion with clock deviations
• Sensors may have independent clock sources with tolerances

SDS Metadata file describes content of SDS data files

Python-based utilities for recording, playback, visualization, data conversion,
and algorithm verification with off-line tools

https://github.com/ARM-software/SDS-Framework

https://github.com/ARM-software/SDS-Framework

© 2024 Arm

Demo

CMSIS-Stream and the SDS Framework

21 © 2024 Arm

MLOps workflow exemplified with TDK Qeexo AutoML

C A P T U R E
D ATA

D E P L O Y
T O TA R G E T

D ATA I M P O R T
T O M L O P S

M L M O D E L
T R A I N I N G

Add SDS framework to
target application

Define sensors channels
and capturing frequency

Create metadata files to
describe sensor data

Capture SDS data files

Verify SDS data files using
a viewer

Convert SDS data files
and label data

Upload data files to
MLOps system, for
example Qeexo AutoML

Data cleaning and
preprocessing

Feature extraction

ML model selection

Parameter optimization

Model Validation

Model conversion and
download

Integrate ML model
library in target project

Validate ML model using
Arm Virtual Hardware

Final system test in target
hardware

© 2024 Arm

Demo

TDK Qeexo AutoML

© 2024 Arm

Summary

24 © 2024 Arm

More Information

Design of AIoT algorithms
with the ASN Filter Designer
and the Arm SDS Framework
and their deployment to
STM32 microcontrollers

ASN Filter Designer

Discover how to create
machine learning solutions
for industrial condition-
based monitoring (CbM),
predictive maintenance, and
anomaly detection.

This example demonstrates
the usage of Synchronous
Data Streaming (SDS)
Framework nodes (player
and recorder) in a CMSIS-
Stream graph.

Qeexo AutoML Example Project

https://www.advsolned.com/design-of-aiot-algorithms-with-theasn-filter-designer-and-the-arm-sds-framework/
https://www.brighttalk.com/webcast/17792/598483
https://github.com/Arm-Examples/CMSIS-Stream_SDS_Demo

25 © 2024 Arm

CMSIS Webinar Series
Check out our previous episodes

We explain what's new and
how to migrate to version 6.
The session consists of a
presentation and some
hands-on demos.

CMSIS v6 Overview

Learn how to use event
annotations and retargeting
for printf or file I/O in
combination with
middleware.

Learn how to use the new
YAML based project format
for IDE integration, CI and
MLOps systems. It supports
portable builds on Linux,
MacOS, and Windows.

CMSIS-View/Compiler CMSIS-Toolbox

https://on-demand.arm.com/flow/arm/devhub/sessionCatalog/page/pubSessCatalog/session/1705915235972001vEdN
https://on-demand.arm.com/flow/arm/devhub/sessionCatalog/page/pubSessCatalog/session/1706872120089001ictY
https://on-demand.arm.com/flow/arm/devhub/sessionCatalog/page/pubSessCatalog/session/1708432622207001feYV

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

ధన#$ాదమ(ల*
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

