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Introduction

This white paper focuses on how to tune a Spark application to run  

on a cluster of instances. We define the concepts for the cluster/Spark  

parameters and explain how to configure them given a specific set of resources. 

We use K-Means machine learning algorithm as a case study to analyze and tune 

the parameters to achieve the required performance, while optimally using the  

available resources.

Graviton3 only offers compute-optimized instances (C7g) at the time of writing, 

so we use Graviton2-based clusters because more instance types (M6g, R6g, C6g, 

etc.) are available based on requirements.
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Spark Concepts and Components

We are assuming that the reader already has a basic familiarity with  

Spark concepts and components. The reader also should have some 

experience with Spark coding and an understanding of resource usage  

and execution-time analysis through the Spark Web UI.

Environment Setup

This white paper uses the HiBench suite for Spark performance analysis. 

HiBench is designed for big-data analysis of Hadoop, Spark, and streaming 

data engines. It can run different patterns of workloads including micro 

benchmarks, such as sort, word count, and eDFSIO. It can also run SQL 

benchmarks, such as scan, join, and aggregation. Lastly, it can run machine 

learning benchmarks for K-Means clustering, gradient-boosted trees, and many 

more. The benchmarks can run on different data sizes from tiny to big data.

HiBench workloads run in two phases:

1. Store the datasets into an HDFS cluster (data preparation).

2. Run the benchmarks on the data that is stored.

We set up the cluster in AWS in the following way:

1. An instance to run Spark with a Yarn Hadoop cluster  

in pseudo-distributed mode. In this configuration, Hadoop  

daemons run in separate java processes. Such a configuration  

allows all the executors to run on a single machine which simulates  

a full cluster. This configuration also reduces the latency of shuffling  

the data between executors when moving to subsequent stages.

https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-sparkbench.md#4-run-a-workload
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Distributed_Operation
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Spark Tuning Best Practices

Different workloads may require different tunings based  

on the nature of the compute. For instance, data analysis 

problems may be compute intensive or memory intensive.  

An example of this is the K-Means clustering algorithm  

in machine learning, which is a compute-intensive algorithm,  

while word count is more memory intensive. For this white  

paper, we explore tuning parameters to run K-Means  

clustering in an efficient way on AWS instances.

We divide Spark tuning into two separate categories:

1. Cluster tuning

2. Spark configuration tuning

Cluster Tuning

Tuning at the cluster/workload level involves choosing  

runtime parameters for a Spark computation given a specific  

number of instances with fix resources (CPU cores and memory).  

For example, on HiBench, the following parameters can be set to  

run the workloads:

1. Executor cores in Yarn mode

2. Executor number in Yarn mode

3. Executor memory

2.  An HDFS cluster with a single replica on a separate instance and  

in the same placement group as the Spark cluster. The HDFS cluster  

is then configured for memory storage to increase read/write bandwidth 

compared to the relatively limited bandwidth of NVMe SSD storage.

https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-sparkbench.md#7-tuning


6W H I T E  P A P E R

4. Driver memory

5. Parallelism

6. Shuffle partition number 

Assuming that there are W worker nodes running on the cluster,  

each worker node has M gigabytes of memory and C CPU (vCPU)  

cores. The following explains how to calculate the above parameters:

Executor Number/Cores/Memory

There are multiple ways to consider the number of executors:

1. One executor per instance and assigning all available resources  

(memory and CPU cores) to that executor.

2. Multiple executors per instance and splitting available resources  

between them.

In principle, both approaches work in a similar manner when total  

resources and parallelism (number of parallel tasks) are set the same. 

However, there are some practical differences that make using a higher 

number of executors more suitable:

1. With a lower number of executors, if an executor fails,  

a higher number of parallelized running tasks will be interrupted.

2. Smaller executors are easier to get scheduled/rescheduled when 

instances with lower resources become available.

The downside for using a higher number of executors is that  

the broadcast data and caching are replicated on each executor.  

Therefore, if there are E executors on a node, the broadcast  

data/cache are replicated E times on the same node.

https://www.educba.com/spark-broadcast/
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Big-Small Principal

To reduce the negative effect of data shuffling between  

executors, try running the executors on a few large-sized  

instances, instead of many small-sized ones.

The following are suggestions on how to calculate the different  

Yarn/Spark parameters:

 — Executor cores: One (heuristic) rule of thumb suggested by several 

resources is to allocate five CPU cores to each executor, which means 

each executor can run five tasks or more in parallel. This is configured 

by setting yarn.scheduler.maximum-allocation-vcores in hadoop/etc/

hadoop/yarn-site.xml. It is possible to set the minimum number  

of cores per container if necessary.

 — It is common to assign the same number of CPUs and memory 

to the Spark driver, which must be considered in calculations. 

In Yarn mode, the Spark driver runs as the Application Master 

(in Kubernetes clustering, it runs as a separate container 

with permissions to launch executor containers).

Calculating the rest is straightforward:

 — Number of executors: floor((N * C – N) / 5)

 Ҍ In the above formula, each node should have at least one core 

available for the operating system and other running processes 

(subtracting total number of cores by N). This calculation assumes 

that executors do not run on the driver (application master) node.

 — The calculations are slightly different when running  

HiBench in pseudo-distributed single-node setup,  

since the resources allocated to the driver running  

on the same node must be considered.

https://sparkbyexamples.com/spark/what-is-apache-spark-driver/
https://medium.com/swlh/deep-dive-into-the-apache-spark-driver-on-a-yarn-cluster-89afeffcdb4a
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 — Executor memory: (M / executor per instance) * 0.9

 Ҍ This is the amount of memory that is assigned to an executor  

on the node. The total memory allocated by Yarn to each executor 

is executor memory plus memory overhead. The memory overhead 

is the non-heap memory used for interned strings, VM, and other 

types of overheads. This value is 10% of the total allocated  

memory by default.

 — Parallelism:

 Ҍ Defines the number of running tasks in parallel. The minimum  

value for this parameter should be the number of executor cores 

available. Some resources recommend the value to be equal  

to the total number of executor cores (the same as the default value 

for Spark). Spark documentation suggests that each CPU core can 

handle two to three parallel tasks, so, the number can be set higher 

(for example, twice the total number of executor cores). The input 

RDD is split into the same number of partitions when returned  

by operations like join, reduceByKey, and parallelize (Spark creates  

one task per partition).

 — This parameter only applies to the computations over  

raw RDDs. It is ignored when dataframes are used.

https://spark.apache.org/docs/latest/configuration.html#application-properties
https://docplayer.net/18523833-Hibench-introduction-carson-wang-carson-wang-intel-com-software-services-group.html
https://spark.apache.org/docs/2.3.0/configuration.html#execution-behavior
https://spark.apache.org/docs/latest/tuning.html
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 — Shuffle Partition Size

 Ҍ This is like the parallelism parameter but applies to dataframes. 

The default value is 200, but users can set the value to a different 

number. One option is to set the number to twice the number  

of cores as we do for the parallelism. However, some take  

a different approach to set the partition size:

 — Best partition sizes for tasks are 128MB or 256MB.  

So, divide input data size into 128MB (or 256MB) to find  

the right number of partitions. Note that you must always  

set the number of partitions a factor of the CPU cores to keep  

the symmetry of the workload inside the cluster. The downside 

of this approach is that users must be aware of the input data 

size after deserialization. Also, the data size is different at each 

shuffle stage. So, another approach is to increase the number  

of partitions until the performance starts to drop.

 — When reading from bucketed HDFS files, the initial  

number of partitions (tasks) depends on the size of HDFS 

partitions (128MB by default). So, total number of partitions 

would be total data size divided by the default partition size.  

The shuffle partition size takes effect during the first  

data shuffle when moving to the next stage.

Yarn Parameter-Naming Convention

The parameters that start with yarn.nodemanager refer to node  

settings, while those that start with yarn.scheduler are for single  

containers (executors) running on the nodes. 

Figure 1 shows how parameters define memory allocation for the cluster.

https://medium.com/analytics-vidhya/simple-method-to-choose-number-of-partitions-in-spark-75315c636a94
https://docplayer.net/18523833-Hibench-introduction-carson-wang-carson-wang-intel-com-software-services-group.html
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F I G .  1

Spark memory allocation  
parameters on Yarn cluster

Spark/HiBench Configuration Parameters

Spark parameters can be set inside the spark-defaults.conf file in the  

spark folder. For HiBench, spark parameters are set inside conf/spark.conf 

in the HiBench folder. The configuration parameters are as follows:

 — Number of executors

 Ҍ spark.executor.instances/hibench.yarn.executor.num

 — Executor memory

 Ҍ spark.executor.memory

 — Executor memory overhead factor (default is 0.10)

 Ҍ spark.executor.memoryOverheadFactor

 — Executor cores

 Ҍ spark.executor.cores/hibench.yarn.executor.cores

 — Parallelism

 Ҍ spark.default.parallelism

 — Shuffle partition size

 Ҍ spark.sql.shuffle.partitions

Similar parameters for the executors exist for the driver (application master).
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Yarn Configuration Parameters

Yarn-specific parameters are defined in core-site.xml:

 — yarn.nodemanager.resource.memory-mb

 Ҍ Memory available to Yarn executors on the (current) worker node

 — yarn.scheduler.maximum-allocation-mb

 Ҍ Maximum memory allocated to executor container (including 

memory overhead)

 — yarn.nodemanager.resource.cpu-vcores

 Ҍ Number of CPU cores available to Yarn executors on the (current) 

worker node

 — yarn.scheduler.maximum-allocation-vcores

 Ҍ Maximum number of cores allocated to executor container

Spark Configuration Tuning

Spark can be fine-tuned depending on the application that  

is running. It is up to the developer to tune the memory, garbage  

collection, and serialization based on the code, data structures,  

and other parameters. See Tuning Spark document for more details.

https://spark.apache.org/docs/latest/tuning.html
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Spark Resource Monitoring

Monitoring resources used for running a computation on a Spark cluster  

are highly important as they help find out if:

1. Enough resources are allocated to the job (or some tasks are failing), 

2. Resources are more than required and a smaller cluster or instances  

can do the same job with almost the same processing time.

It is possible to analyze Spark performance and metrics using  

Web UI. For deep dive analysis, all the data during one or more  

runs can be collected and viewed using the Spark history server.

Other ways to collect metrics such as memory/disk/CPU from the machine 

directly (specifically when running pseudo-distributed cluster on a single 

machine) includes using tools like the system activity report (SAR).

Spark Machine Learning Library

The Spark machine learning library is called MLlib. It implements  

ML algorithms, data transformations, and pipelines in a distributed  

fashion. MLlib allows users to save the trained models and load them back 

in the prediction phase. The new library (also known as Spark ML) is based 

on the Spark Dataframe API and applies optimizations to the data pipeline.  

This article demonstrates K-Means clustering benchmarking as a case  

study for Spark resource allocation and tuning analysis.

https://apache.googlesource.com/spark/+/master/docs/monitoring.md#web-interfaces
https://apache.googlesource.com/spark/+/master/docs/monitoring.md#viewing-after-the-fact
https://spark.apache.org/docs/latest/ml-guide.html
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Spark K-Means Resource Tuning

Introduction to K-Means Clustering

K-Means is an unsupervised clustering algorithm. Given K as the number  

of clusters, the algorithm first allocates K (semi)-random points (centroids) 

and iteratively refines their values until no further refinement is possible,  

or the maximum number of iterations is reached.

Spark implementations of K-Means run iterations over partitions 

independently and collects the results of each iteration back to the  

driver for centroid refinements. All iterations are over the same set  

of input data; so, it caches the data into the memory of each executor  

for faster computation.

Cluster Configuration

Our benchmarks run on m6gd.16xlarge EC2 instance, which has 64 vCPUs 

and 256GB of memory. Considering five cores per executor (scheduler 

maximum CPU allocation), the number of executors is set to 12, consuming 

60 vCPUs. For K-Means, we assign only one vCPU for the driver (default) 

but set the driver memory to be the same as the executors. The memory 

per executor is set to 16GB (analysis of the metrics shows that this value 

can be increased). The Yarn scheduler and node manager parameters are set 

accordingly. For instance, the scheduler’s maximum allocation of memory  

is defined to be 18022MB (1.1 * 16GB), and the node manager resources 

are set to 218264MB (12 executors + safeguard).

K-Means Benchmark Parameters

HiBench K-Means benchmarks default values are:

 — Number of clusters: 5

 — Maximum number of iterations: 5 (for up to the gigantic workload)

https://github.com/Intel-bigdata/HiBench/blob/master/conf/workloads/ml/kmeans.conf
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We run the K-Means algorithm on Hibench for three workloads  

of different sizes:

1. Large: 20m records, 3.7GB

2. Huge: 100m records, 18.5GB

3. Gigantic: 200m records, 37.1GB

K-Means is a compute-intensive algorithm. The following is the CPU usage 

of the K-Means algorithm running on large, huge, and gigantic data sizes  

of HiBench:

F I G .  2

CPU usage for large, huge,  
and gigantic workloads

The total CPU usage of all the executors is 93% based on the number  

of cores assigned per executor (60/64). Therefore, the gigantic workload 

uses most of the processing capacity.

Figure 3 shows the memory usage of all the three workloads.
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F I G .  3

Memory usage for large, huge,  
and gigantic workloads

The memory usage for all the workloads is below the maximum amount  

set in the configuration. The two graphs (CPU and memory usage) show 

that one tuning possibility is to use compute-optimized instances to run  

the computation. These instances are cheaper than general purpose (M) 

and memory-optimized (R) instances of the same size.

It is also important to note that the total data size for the gigantic workload 

is only 37.1GB. Even when considering the memory used during the centroid 

computation, using close to 200GB of memory looks excessive for K-Means. 

The reason is the in-memory caching that HiBench K-Means benchmark 

enforces, which can change the way we tune the cluster to run the code. 

https://github.com/Intel-bigdata/HiBench/blob/master/sparkbench/ml/src/main/scala/com/intel/sparkbench/ml/DenseKMeans.scala#L90-L95
https://github.com/Intel-bigdata/HiBench/blob/master/sparkbench/ml/src/main/scala/com/intel/sparkbench/ml/DenseKMeans.scala#L90-L95
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Caching

As mentioned in previous sections, best practices suggest  

assigning five cores per executor, calculating the number of executors  

to use and assigning memory to each executor based on the available 

memory on the instance. However, in the case that the Spark program  

uses in-memory caching, all the caches replicate on all the executors.  

So, if you run E executors on the same instance, your cache consumes  

E times more memory compared to running a single executor.

The following chart compares gigantic workload memory usage for:

1. 12 executors, 5 cores, 16GB of memory per executor

2. 6 executors, 10 cores, 32GB of memory per executor

And all the executors running on the same instance  

(pseudo-distributed configuration).

F I G .  4

Memory usage comparison for gigantic 
workloads for 12 and 6 executors 
running on the same machine
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The second configuration clearly consumes less memory due to the  

smaller number of cache replications. So, when caching a large chunk  

of data, reducing the number of executors with bigger sizes can help 

decrease memory usage. Analysis shows that except for the initial phase  

for data pre-processing, processing times of K-Means stages do not differ.

Shuffling in K-Means

The implementation of K-Means only requires shuffling a small amount  

of data (which is an expensive operation in distributed computing). 

Different stages are separated by collecting centroid-based calculations 

over each partition into the driver for final centroid computation, which has 

a very small data size. Therefore, distributing the workload into a cluster  

of instances will not have a considerable impact on the performance.

Conclusion

Tuning Spark computations is application specific and depends on different 

parameters, such as data storage, caching, and shuffling. In cases like caching 

and storage, it is possible to use disk storage when memory could become  

a bottleneck (this might considerably degrade the performance on AWS 

since SSD read/write throughputs are throttled).

For applications like K-Means that are CPU intensive and do not involve 

much shuffling, most of the tuning is done through memory management. 

Using a smaller number of executors of bigger size, caching on both disk 

and memory based on availability, and using compute-optimized instances  

are options to consider for performance and cost optimizations.

https://github.com/apache/spark/blob/v3.3.1/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala#L278-L318
https://github.com/apache/spark/blob/v3.3.1/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala#L278-L318
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