
W H I T E P A P E R

Spark on AWS Graviton2:
Best Practices

Masoud Koleini
Principal Solutions Engineer

W H I T E P A P E R 2

Contents
Introduction

Spark Concepts and Components

Environment Setup

Spark Tuning Best Practices	

Cluster Tuning	

Executor Number/Cores/Memory

Big-Small Principal

Yarn Parameter-Naming Convention

Spark/HiBench Configuration Parameters

Yarn Configuration Parameters

Spark Configuration Tuning

Spark Resource Monitoring

Spark Machine Learning Library

Spark K-Means Resource Tuning

Introduction to K-Means Clustering

Cluster Configuration

K-Means Benchmark Parameters

Caching

Shuffling in K-Means

Conclusion

References

3

4

4

5

5

6

7

9

10

11

11

12

12

13

13

13

13

16

17

17

18

W H I T E P A P E R 3

Introduction

This white paper focuses on how to tune a Spark application to run

on a cluster of instances. We define the concepts for the cluster/Spark

parameters and explain how to configure them given a specific set of resources.

We use K-Means machine learning algorithm as a case study to analyze and tune

the parameters to achieve the required performance, while optimally using the

available resources.

Graviton3 only offers compute-optimized instances (C7g) at the time of writing,

so we use Graviton2-based clusters because more instance types (M6g, R6g, C6g,

etc.) are available based on requirements.

4W H I T E P A P E R

Spark Concepts and Components

We are assuming that the reader already has a basic familiarity with

Spark concepts and components. The reader also should have some

experience with Spark coding and an understanding of resource usage

and execution-time analysis through the Spark Web UI.

Environment Setup

This white paper uses the HiBench suite for Spark performance analysis.

HiBench is designed for big-data analysis of Hadoop, Spark, and streaming

data engines. It can run different patterns of workloads including micro

benchmarks, such as sort, word count, and eDFSIO. It can also run SQL

benchmarks, such as scan, join, and aggregation. Lastly, it can run machine

learning benchmarks for K-Means clustering, gradient-boosted trees, and many

more. The benchmarks can run on different data sizes from tiny to big data.

HiBench workloads run in two phases:

1.	Store the datasets into an HDFS cluster (data preparation).

2.	Run the benchmarks on the data that is stored.

We set up the cluster in AWS in the following way:

1.	An instance to run Spark with a Yarn Hadoop cluster

in pseudo-distributed mode. In this configuration, Hadoop

daemons run in separate java processes. Such a configuration

allows all the executors to run on a single machine which simulates

a full cluster. This configuration also reduces the latency of shuffling

the data between executors when moving to subsequent stages.

https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-sparkbench.md#4-run-a-workload
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html#Pseudo-Distributed_Operation

5W H I T E P A P E R

Spark Tuning Best Practices

Different workloads may require different tunings based

on the nature of the compute. For instance, data analysis

problems may be compute intensive or memory intensive.

An example of this is the K-Means clustering algorithm

in machine learning, which is a compute-intensive algorithm,

while word count is more memory intensive. For this white

paper, we explore tuning parameters to run K-Means

clustering in an efficient way on AWS instances.

We divide Spark tuning into two separate categories:

1.	Cluster tuning

2.	Spark configuration tuning

Cluster Tuning

Tuning at the cluster/workload level involves choosing

runtime parameters for a Spark computation given a specific

number of instances with fix resources (CPU cores and memory).

For example, on HiBench, the following parameters can be set to

run the workloads:

1.	Executor cores in Yarn mode

2.	Executor number in Yarn mode

3.	Executor memory

2.	 An HDFS cluster with a single replica on a separate instance and

in the same placement group as the Spark cluster. The HDFS cluster

is then configured for memory storage to increase read/write bandwidth

compared to the relatively limited bandwidth of NVMe SSD storage.

https://github.com/Intel-bigdata/HiBench/blob/master/docs/run-sparkbench.md#7-tuning

6W H I T E P A P E R

4.	Driver memory

5.	Parallelism

6.	Shuffle partition number

Assuming that there are W worker nodes running on the cluster,

each worker node has M gigabytes of memory and C CPU (vCPU)

cores. The following explains how to calculate the above parameters:

Executor Number/Cores/Memory

There are multiple ways to consider the number of executors:

1.	One executor per instance and assigning all available resources

(memory and CPU cores) to that executor.

2.	Multiple executors per instance and splitting available resources

between them.

In principle, both approaches work in a similar manner when total

resources and parallelism (number of parallel tasks) are set the same.

However, there are some practical differences that make using a higher

number of executors more suitable:

1.	With a lower number of executors, if an executor fails,

a higher number of parallelized running tasks will be interrupted.

2.	Smaller executors are easier to get scheduled/rescheduled when

instances with lower resources become available.

The downside for using a higher number of executors is that

the broadcast data and caching are replicated on each executor.

Therefore, if there are E executors on a node, the broadcast

data/cache are replicated E times on the same node.

https://www.educba.com/spark-broadcast/

7W H I T E P A P E R

Big-Small Principal

To reduce the negative effect of data shuffling between

executors, try running the executors on a few large-sized

instances, instead of many small-sized ones.

The following are suggestions on how to calculate the different

Yarn/Spark parameters:

	— Executor cores: One (heuristic) rule of thumb suggested by several

resources is to allocate five CPU cores to each executor, which means

each executor can run five tasks or more in parallel. This is configured

by setting yarn.scheduler.maximum-allocation-vcores in hadoop/etc/

hadoop/yarn-site.xml. It is possible to set the minimum number

of cores per container if necessary.

	— It is common to assign the same number of CPUs and memory

to the Spark driver, which must be considered in calculations.

In Yarn mode, the Spark driver runs as the Application Master

(in Kubernetes clustering, it runs as a separate container

with permissions to launch executor containers).

Calculating the rest is straightforward:

	— Number of executors: floor((N * C – N) / 5)

	Ҍ In the above formula, each node should have at least one core

available for the operating system and other running processes

(subtracting total number of cores by N). This calculation assumes

that executors do not run on the driver (application master) node.

	— The calculations are slightly different when running

HiBench in pseudo-distributed single-node setup,

since the resources allocated to the driver running

on the same node must be considered.

https://sparkbyexamples.com/spark/what-is-apache-spark-driver/
https://medium.com/swlh/deep-dive-into-the-apache-spark-driver-on-a-yarn-cluster-89afeffcdb4a

8W H I T E P A P E R

	— Executor memory: (M / executor per instance) * 0.9

	Ҍ This is the amount of memory that is assigned to an executor

on the node. The total memory allocated by Yarn to each executor

is executor memory plus memory overhead. The memory overhead

is the non-heap memory used for interned strings, VM, and other

types of overheads. This value is 10% of the total allocated

memory by default.

	— Parallelism:

	Ҍ Defines the number of running tasks in parallel. The minimum

value for this parameter should be the number of executor cores

available. Some resources recommend the value to be equal

to the total number of executor cores (the same as the default value

for Spark). Spark documentation suggests that each CPU core can

handle two to three parallel tasks, so, the number can be set higher

(for example, twice the total number of executor cores). The input

RDD is split into the same number of partitions when returned

by operations like join, reduceByKey, and parallelize (Spark creates

one task per partition).

	— This parameter only applies to the computations over

raw RDDs. It is ignored when dataframes are used.

https://spark.apache.org/docs/latest/configuration.html#application-properties
https://docplayer.net/18523833-Hibench-introduction-carson-wang-carson-wang-intel-com-software-services-group.html
https://spark.apache.org/docs/2.3.0/configuration.html#execution-behavior
https://spark.apache.org/docs/latest/tuning.html

9W H I T E P A P E R

	— Shuffle Partition Size

	Ҍ This is like the parallelism parameter but applies to dataframes.

The default value is 200, but users can set the value to a different

number. One option is to set the number to twice the number

of cores as we do for the parallelism. However, some take

a different approach to set the partition size:

	— Best partition sizes for tasks are 128MB or 256MB.

So, divide input data size into 128MB (or 256MB) to find

the right number of partitions. Note that you must always

set the number of partitions a factor of the CPU cores to keep

the symmetry of the workload inside the cluster. The downside

of this approach is that users must be aware of the input data

size after deserialization. Also, the data size is different at each

shuffle stage. So, another approach is to increase the number

of partitions until the performance starts to drop.

	— When reading from bucketed HDFS files, the initial

number of partitions (tasks) depends on the size of HDFS

partitions (128MB by default). So, total number of partitions

would be total data size divided by the default partition size.

The shuffle partition size takes effect during the first

data shuffle when moving to the next stage.

Yarn Parameter-Naming Convention

The parameters that start with yarn.nodemanager refer to node

settings, while those that start with yarn.scheduler are for single

containers (executors) running on the nodes.

Figure 1 shows how parameters define memory allocation for the cluster.

https://medium.com/analytics-vidhya/simple-method-to-choose-number-of-partitions-in-spark-75315c636a94
https://docplayer.net/18523833-Hibench-introduction-carson-wang-carson-wang-intel-com-software-services-group.html

10W H I T E P A P E R

F I G . 1

Spark memory allocation
parameters on Yarn cluster

Spark/HiBench Configuration Parameters

Spark parameters can be set inside the spark-defaults.conf file in the

spark folder. For HiBench, spark parameters are set inside conf/spark.conf

in the HiBench folder. The configuration parameters are as follows:

	— Number of executors

	Ҍ spark.executor.instances/hibench.yarn.executor.num

	— Executor memory

	Ҍ spark.executor.memory

	— Executor memory overhead factor (default is 0.10)

	Ҍ spark.executor.memoryOverheadFactor

	— Executor cores

	Ҍ spark.executor.cores/hibench.yarn.executor.cores

	— Parallelism

	Ҍ spark.default.parallelism

	— Shuffle partition size

	Ҍ spark.sql.shuffle.partitions

Similar parameters for the executors exist for the driver (application master).

11W H I T E P A P E R

Yarn Configuration Parameters

Yarn-specific parameters are defined in core-site.xml:

	— yarn.nodemanager.resource.memory-mb

	Ҍ Memory available to Yarn executors on the (current) worker node

	— yarn.scheduler.maximum-allocation-mb

	Ҍ Maximum memory allocated to executor container (including

memory overhead)

	— yarn.nodemanager.resource.cpu-vcores

	Ҍ Number of CPU cores available to Yarn executors on the (current)

worker node

	— yarn.scheduler.maximum-allocation-vcores

	Ҍ Maximum number of cores allocated to executor container

Spark Configuration Tuning

Spark can be fine-tuned depending on the application that

is running. It is up to the developer to tune the memory, garbage

collection, and serialization based on the code, data structures,

and other parameters. See Tuning Spark document for more details.

https://spark.apache.org/docs/latest/tuning.html

12W H I T E P A P E R

Spark Resource Monitoring

Monitoring resources used for running a computation on a Spark cluster

are highly important as they help find out if:

1.	Enough resources are allocated to the job (or some tasks are failing),

2.	Resources are more than required and a smaller cluster or instances

can do the same job with almost the same processing time.

It is possible to analyze Spark performance and metrics using

Web UI. For deep dive analysis, all the data during one or more

runs can be collected and viewed using the Spark history server.

Other ways to collect metrics such as memory/disk/CPU from the machine

directly (specifically when running pseudo-distributed cluster on a single

machine) includes using tools like the system activity report (SAR).

Spark Machine Learning Library

The Spark machine learning library is called MLlib. It implements

ML algorithms, data transformations, and pipelines in a distributed

fashion. MLlib allows users to save the trained models and load them back

in the prediction phase. The new library (also known as Spark ML) is based

on the Spark Dataframe API and applies optimizations to the data pipeline.

This article demonstrates K-Means clustering benchmarking as a case

study for Spark resource allocation and tuning analysis.

https://apache.googlesource.com/spark/+/master/docs/monitoring.md#web-interfaces
https://apache.googlesource.com/spark/+/master/docs/monitoring.md#viewing-after-the-fact
https://spark.apache.org/docs/latest/ml-guide.html

13W H I T E P A P E R

Spark K-Means Resource Tuning

Introduction to K-Means Clustering

K-Means is an unsupervised clustering algorithm. Given K as the number

of clusters, the algorithm first allocates K (semi)-random points (centroids)

and iteratively refines their values until no further refinement is possible,

or the maximum number of iterations is reached.

Spark implementations of K-Means run iterations over partitions

independently and collects the results of each iteration back to the

driver for centroid refinements. All iterations are over the same set

of input data; so, it caches the data into the memory of each executor

for faster computation.

Cluster Configuration

Our benchmarks run on m6gd.16xlarge EC2 instance, which has 64 vCPUs

and 256GB of memory. Considering five cores per executor (scheduler

maximum CPU allocation), the number of executors is set to 12, consuming

60 vCPUs. For K-Means, we assign only one vCPU for the driver (default)

but set the driver memory to be the same as the executors. The memory

per executor is set to 16GB (analysis of the metrics shows that this value

can be increased). The Yarn scheduler and node manager parameters are set

accordingly. For instance, the scheduler’s maximum allocation of memory

is defined to be 18022MB (1.1 * 16GB), and the node manager resources

are set to 218264MB (12 executors + safeguard).

K-Means Benchmark Parameters

HiBench K-Means benchmarks default values are:

	— Number of clusters: 5

	— Maximum number of iterations: 5 (for up to the gigantic workload)

https://github.com/Intel-bigdata/HiBench/blob/master/conf/workloads/ml/kmeans.conf

14W H I T E P A P E R

We run the K-Means algorithm on Hibench for three workloads

of different sizes:

1.	Large: 20m records, 3.7GB

2.	Huge: 100m records, 18.5GB

3.	Gigantic: 200m records, 37.1GB

K-Means is a compute-intensive algorithm. The following is the CPU usage

of the K-Means algorithm running on large, huge, and gigantic data sizes

of HiBench:

F I G . 2

CPU usage for large, huge,
and gigantic workloads

The total CPU usage of all the executors is 93% based on the number

of cores assigned per executor (60/64). Therefore, the gigantic workload

uses most of the processing capacity.

Figure 3 shows the memory usage of all the three workloads.

15W H I T E P A P E R

F I G . 3

Memory usage for large, huge,
and gigantic workloads

The memory usage for all the workloads is below the maximum amount

set in the configuration. The two graphs (CPU and memory usage) show

that one tuning possibility is to use compute-optimized instances to run

the computation. These instances are cheaper than general purpose (M)

and memory-optimized (R) instances of the same size.

It is also important to note that the total data size for the gigantic workload

is only 37.1GB. Even when considering the memory used during the centroid

computation, using close to 200GB of memory looks excessive for K-Means.

The reason is the in-memory caching that HiBench K-Means benchmark

enforces, which can change the way we tune the cluster to run the code.

https://github.com/Intel-bigdata/HiBench/blob/master/sparkbench/ml/src/main/scala/com/intel/sparkbench/ml/DenseKMeans.scala#L90-L95
https://github.com/Intel-bigdata/HiBench/blob/master/sparkbench/ml/src/main/scala/com/intel/sparkbench/ml/DenseKMeans.scala#L90-L95

16W H I T E P A P E R

Caching

As mentioned in previous sections, best practices suggest

assigning five cores per executor, calculating the number of executors

to use and assigning memory to each executor based on the available

memory on the instance. However, in the case that the Spark program

uses in-memory caching, all the caches replicate on all the executors.

So, if you run E executors on the same instance, your cache consumes

E times more memory compared to running a single executor.

The following chart compares gigantic workload memory usage for:

1.	12 executors, 5 cores, 16GB of memory per executor

2.	6 executors, 10 cores, 32GB of memory per executor

And all the executors running on the same instance

(pseudo-distributed configuration).

F I G . 4

Memory usage comparison for gigantic
workloads for 12 and 6 executors
running on the same machine

17W H I T E P A P E R

The second configuration clearly consumes less memory due to the

smaller number of cache replications. So, when caching a large chunk

of data, reducing the number of executors with bigger sizes can help

decrease memory usage. Analysis shows that except for the initial phase

for data pre-processing, processing times of K-Means stages do not differ.

Shuffling in K-Means

The implementation of K-Means only requires shuffling a small amount

of data (which is an expensive operation in distributed computing).

Different stages are separated by collecting centroid-based calculations

over each partition into the driver for final centroid computation, which has

a very small data size. Therefore, distributing the workload into a cluster

of instances will not have a considerable impact on the performance.

Conclusion

Tuning Spark computations is application specific and depends on different

parameters, such as data storage, caching, and shuffling. In cases like caching

and storage, it is possible to use disk storage when memory could become

a bottleneck (this might considerably degrade the performance on AWS

since SSD read/write throughputs are throttled).

For applications like K-Means that are CPU intensive and do not involve

much shuffling, most of the tuning is done through memory management.

Using a smaller number of executors of bigger size, caching on both disk

and memory based on availability, and using compute-optimized instances

are options to consider for performance and cost optimizations.

https://github.com/apache/spark/blob/v3.3.1/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala#L278-L318
https://github.com/apache/spark/blob/v3.3.1/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala#L278-L318

18

© A R M LT D . 2 0 2 3 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the
product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in
this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties
implied or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information
to the reader about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information in this document or any
error or omission in such information.	

References

[01]	 Tuning Spark

[02]	 HiBench Suite

[03]	 Hadoop: Setting up a Single Node Cluster

[04]	 Decoding Memory in Spark

https://spark.apache.org/docs/latest/tuning.html
https://github.com/Intel-bigdata/HiBench
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://medium.com/walmartglobaltech/decoding-memory-in-spark-parameters-that-are-often-confused-c11be7488a24

