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Abstract— Heterogeneous multiprocessor (HMP) systems 
using application processors and microcontrollers in the 
same SoCs are used extensively across a wide range of 
embedded markets. An increasing number of embedded 
applications now benefit from the combination of ultra-
low-power ARM® Cortex®-M processors alongside higher 
performance Cortex-A processors. Next-generation 
embedded applications require improved performance and 
security features without sacrificing the overall efficiency 
in the system. This paper highlights motivations, benefits 
and system design choices available to SoC architects. 
The software development considerations and solutions 
for such HMP systems are also discussed.	
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I.  INTRODUCTION 
We encounter more and more compute systems every day-
starting with the smartphone and perhaps a smart-watch 
tethered to the phone. In our homes, we interact with smart 
and connected televisions, refrigerators, washing machines 
and thermostats. In the gym, smart and connected equipment 
is becoming the norm. All these are transforming the way in 
which we live for better. 
 
A common requirement for all these devices is the variety of 
tasks expected from these devices in an energy-efficient 
manner. This requirement translates into architecting systems 
such that they can handle these diverse compute requirements.  
This key requirement to designing compute systems capable 
of handling diversity of workloads spans across several 
markets. Some common examples include embedded 
applications, in-vehicle-infotainment systems, healthcare and 
industrial applications.  

This means that modern compute systems must be designed to 
meet conflicting requirements. These must be designed to 
provide high performance for running several demanding 
applications while being able to respond quickly to a real-time 
event. These must be designed to handle general data 
processing as well as specialized multimedia processing tasks 
efficiently. These must be designed to support different 
software environments – for example running Linux on one 
compute element and running a RTOS on another. 
 
To meet these conflicting requirements, modern system 
designers rely heavily on building heterogeneous compute 
systems. Heterogeneous compute is fundamentally about using 
the right processor optimized for a set of tasks. Some of the 
benefits of such HMP systems include an increased overall 
system performance, increased system efficiency and reduced 
system cost due to integration of different compute elements.  

II. TERMINOLOGY FOR HMP SYSTEMS 

A. ARM processors-based HMP systems 
 There are several types of HMP systems. In a generic sense, 
HMP system refers to a complex system that combines several 
different compute elements like a general-purpose processor, a 
graphics processor, an image processor, a video processor, a 
display processor and possibly several accelerators. Fig. 1 
shows a typical  HMP compute system that includes several 
compute elements. “Heterogeneous multi-processor system” is 
also used to denote compute systems that use various 
combinations of ARM’s Cortex processors (e.g. Cortex-A, 
Cortex-R and Cortex-M).  
 



 

Fig. 1. A generic heterogeneous multiprocessor (HMP) compute system 

 
The scope of this paper is to discuss the heterogeneous 
compute systems using ARM Cortex processors. It is 
commonplace for several compute systems to use different 
combinations of Cortex-A, Cortex-R and Cortex-M processors 
to provide the right functionality for a given application. Table 
1 below depicts the different possible combinations of HMP 
systems using Cortex processors and lists the key differences 
between these systems.  
 
This paper discusses the HMP systems exhibiting functional 
symmetry. More specifically, this paper discusses the details 
of Cortex-A and Cortex-M processors-based HMP systems.  

TABLE I.  MULTI-CORE PROCESSORS TERMINOLOGY 

Multi-core  
Homogeneous Heterogeneous 

 Performance 
asymmetry 

Functional 
asymmetry 

   
Same ISA Same ISA Different ISA 

Same microarchitecture Different 
microarchitecture 

Different 
microarchitecture 

Same view of memory Same view of 
memory 

Different view of 
memory 

Same software Software 
symmetry 

Different software 
environments – 

software asymmetry 
 

B. ARM architecture for diverse computing needs 
The three different Cortex processor families from ARM are 
optimized for different compute requirements as shown in 
table 2.  

• The Cortex-A processors are optimized for running rich 
operating systems like Linux and Android and can 
provide high performance for demanding applications 
across a wide range of applications.  

• The Cortex-R processors are optimized for hard real-
time applications with high performance requirements.  

• The Cortex-M processors are optimized for ultra-low 
power, low-cost compute required for a wide variety of 
embedded applications with real time capabilities. 

Heterogeneous	 systems	 using	 all three Cortex	 processors	
are	common	today	and	used across many applications. Some 
common examples include smartphones, wearable devices 
with a rich GUI and Advanced Driver Assist Systems 
(ADAS). Furthermore, embedded systems that were 
traditionally based on simple MCUs are now increasingly 
required to support rich graphical user interfaces. 

TABLE II.  ARCHITECTURAL DIFFERENCES AMONGST ARM CORTEX 
PROCESSOR FAMILIES 

  Cortex-A Cortex-R Cortex-M 
Architecture 
profile 

ARMv7-A 
ARMv8-A 

ARMv7-R 
ARMv8-R 

ARMv7-M 
ARMv8-M 

Instruction set 32-bit/64-bit  32-bit 32-bit 
Interrupts Software 

managed 

Deterministic 
software 
managed 

Hardware 
managed 

Bus interface AMBA® AXI AMBA AXI AMBA 
AHB/AXI 

Operating 
system support 

Rich 
OS/RTOS RTOS RTOS 

 
Examples  

Cortex-A7 
Cortex-A35 

Cortex-R8 
Cortex-R52 

Cortex-M7 
Cortex-M33 

	
This requires the use of Cortex-A processors in addition to 
Cortex-M processors. Therefore, an increasing number of 
embedded systems use Cortex-A processors extensively to 
address the high performance, rich user interface and running 
a rich operating system (like Linux) requirements across 
general purpose embedded, industrial, consumer and medical 
applications. These applications also use Cortex-M processors 
to address deterministic, real-time control requirements in 
industrial, medical and consumer applications like intelligent 
thermostats. 

III. SYSTEM DESIGN CONSIDERATIONS 
This section discusses the pros and cons of various system 
design choices available for architecting Cortex-A and Cortex-
M processors-based HMP systems. First, the key architectural 
differences between the Cortex processor families are 
highlighted. Thereafter, the system design choices available to 
architect these systems are discussed. 

A. Key system design considerations 
To highlight the design considerations for such HMP systems, 
consider an example generic HMP compute subsystem using 
Cortex-A and Cortex-M processors as shown in figure 2. The 
Cortex-M subsystem uses a local memory. This allows the 
Cortex-M processor to run in the background without going 
through the main interconnect. This results in reduced bus 
transfers crossing the clock domains and thereby reduces 
system power consumption. The fundamental architectural 
differences between Cortex-A and Cortex-M processors are 
highlighted in Table II. The system designer needs to consider 
the following for architecting heterogeneous systems that 
combine Cortex-A and Cortex-M processors: 
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• How to address the impact of memory map differences 
between Cortex-A and Cortex-M processors at the 
system level? 

• How to manage and distribute interrupts across Cortex-
A and Cortex-M processors? 

• How to handle inter-processor communication between 
Cortex-A and Cortex-M processor subsystems? 

• How to handle security and secure/non-secure state 
communications between Cortex-A and Cortex-M 
processor subsystems? 

This paper discusses these design considerations in further 
detail.  

 
Fig. 2. A generic HMP system using Cortex-A, Cortex-R and Cortex-M 

processors 

B. Addressing differences in memory space addresses 
Table III enumerates the differences in address spaces between 
the Cortex-A and Cortex-M processors. The Cortex-A 
processors support a significantly larger physical memory 
address space as compared to Cortex-M processors. This 
section discusses two approaches to address these differences 
at the system level.  

TABLE III.  ADDRESS SPACE DIFFERENCES BETWEEN CORTEX-A AND 
CORTEX-M PROCESSORS 

 Cortex-A Cortex-M 
Physical 
addressing 

ARMv7-A: Upto 40-bits 
ARMv8-A: Upto 48-bits 

ARMv7-M, ARMv8-M:  
32-bits 

Addressing 
spaces Secure and Non-secure  

ARMv7-M: single 
ARMv8-M: Secure and 
Non-secure 

 

The first approach is to specify a shared memory address 
space for both the processors as shown in the Fig. 3. The 
Cortex-M subsystem has its own local memory to enable 
deterministic capabilities, and allows the main memory system 
to reduce power when the Cortex-A processor system is idle. 
Essentially, this approach bridges the Cortex-M subsystem to 
a point in the system hierarchy where it has access to a limited 
portion of the address space. The system can then be 
architected to connect peripherals in this shared address space 
thus enabling both the Cortex-A and Cortex-M systems to 

access the common peripherals when needed. However, this 
approach requires a design decision on what main system 
resources the Cortex-M subsystem should be able to access.   
 

 

Fig. 3. Sharing a region of memory space between Cortex-A and Cortex-M 
processors in an HMP system 

Another approach is to use a System Memory Management 
Unit (SMMU) to enable the Cortex-M subsystem to access the 
entire address space supported by the Cortex-A processor. The 
Cortex-M subsystem can be bridged to the top level of the 
main memory system, providing full access to system 
resources.  

 

 
Fig. 4. Using an SMMU allows more flexibility for a Cortex-M processor to 
access a wider memory addressing space 

The SMMU is used to overcome the address size and security 
state issues. The SMMU can be configured to provide one or 
more windows on to the main memory system.  These 
windows can be re-configured as different areas of the 
memory system are needed by the Cortex-M subsystem. Using 
the SMMU to perform stage 1 address translation also allows 
the security attribute for ARM TrustZone® security to be set. 
Using an SMMU might seem to be a costly addition to a 
Cortex-M subsystem, however, it is possible to share the 
SMMU with other masters that need an SMMU. For example, 
ARM’s CoreLink™ MMU-500 provides a modular design, 
allowing it to be shared by several masters or sub-systems. A 
single shared Translation Control Unit (TCU) is responsible 
for performing translation table walks.  The TCU can either 



have a dedicated connection to the interconnect for these 
walks, or share the connection of one of the masters. 
The Translation Buffer Units (TBUs) provide caches of 
translations recently used by that master or subsystem.  The 
TBUs can be individually sized, based on the requirements of 
the master or subsystem connected to them.  For the Cortex-M 
subsystem being considered here, access to the main memory 
system is likely to be infrequent and to limited address ranges.  
This implies that a relatively small TBU could be provided to 
keep area cost to a minimum. 
 

C. Managing interrupts in HMP systems 
The Cortex-A and Cortex-M processors manage interrupts in 
different ways. The Cortex-A processors typically support up 
to four cores in a processor cluster, sharing a common GIC 
(Generic Interrupt Controller).  As shown in Fig. 4, a GIC 
allows software to control the prioritization and distribution of 
interrupts. The Cortex-M processors include a Nested 
Vectored Interrupt Controller (NVIC), as shown in Fig. 5.  
The NVIC provides the same basic controls as a GIC, but is 
tailored to match the ARMv7-M and ARMv8-M exception 
models and without the ability to support multiple cores. 
When an interrupt is only of interest to software running on 
the Cortex-A processor cluster or a Cortex-M processor, the 
interrupt source can be directly connected to the GIC or the 
NVIC. 
 

 

Fig. 5. Interrupt handling in Cortex-A processors 

 

 
Fig. 6. Interrupt handling in Cortex-M processors 

However, for some use cases it is required to run the interrupt 
handlers on different processors at different times.  For 

example, the handling of a sensor interrupt might be handed 
over to a Cortex-M processor when the Cortex-A processor 
cluster is in retention or powered down. Two approaches can 
be considered to connect shared interrupts between the 
Cortex-A and Cortex-M systems 
One simple approach (Fig. 7) is to wire the interrupt sources to 
both processor subsystems i.e. connecting the interrupt sources 
to both the GIC and the WIC in the Cortex-A and Cortex-M 
processors respectively. This approach requires the software to 
ensure that the interrupt is serviced by only one of the 
processor subsystems.  
 
 
 

 
 
Fig. 7. Wired interrupt scheme for Cortex-A and Cortex-M processors 

 
Fig. 8. Managing interrupts across Cortex-A and Cortex-M processors using  

a custom-build interrupt distribution unit 

The second approach is to design a custom interrupt 
distribution unit in hardware to route the interrupts to the 
appropriate processor subsystem. (Fig. 8) Such a scheme can 
optionally benefit by using software level interrupt passing 
using a mail box scheme as shown in the figure. The first 
approach is simpler from a system design perspective. 
However, this also results in higher software overhead when 
switching the interrupt allocation from one processor 
subsystem to another. The second approach does incur a small 
hardware cost of the interrupt design unit, but results in 
significant reduction of software overhead for interrupt 
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allocation between the two processor subsystems. It also 
provides more flexibility in allocating interrupts to and from 
Cortex-A to Cortex-M subsystems  
 

D. Handling inter-processor communication in HMP systems 
The software running on the Cortex-A processors and Cortex-
M sub-system needs to be able to communicate with each 
other.  For example: 

• To initiate hand over of a shared peripheral from one 
system to the other. 

• Cortex-A processor requesting system control activities 
from a Cortex-M system controller. 

• Cortex-M sensor hub reporting sensor information to 
the Cortex-A processors. 

Such communication would typically be via mail boxes in 
shared memory.  This would need to be memory that is part of 
the main system’s address space, so that both the Cortex-A 
processors and the Cortex-M subsystem have visibility. 
Such mail boxes might be complimented by door-bell 
interrupts, to signal the presence of new messages or the 
completion of previous commands.  This requires a 
mechanism for each processor to generate interrupts in the 
other’s interrupt controller. 
 

 
Fig. 9. Handling inter-processor commuication between Cortex-A, Cortex-R 

and Cortex-M processor subsystems 

E. Security considerations for HMP systems 
Architecting security in modern compute systems is a 
necessary requirement to enable devices to counter specific 
threats that it might experience. ARM offers TrustZone 
technology as a foundation to architect system-wide hardware 
isolation for trusted software and critical resources. TrustZone 
technology has been supported by all the ARMv7-A and 
ARMv8-A processors and is commonly used to run trusted 
boot and a trusted OS to create a Trusted Execution 
Environment (TEE). Typical use cases include the protection 
of authentication mechanisms, cryptography, key material and 

digital rights management (DRM). Applications that run in the 
secure world are called Trusted Apps.  
 
At the heart of the TrustZone approach is the concept of 
secure and non-secure worlds that are hardware separated, 
with non-secure software blocked from accessing secure 
resources directly. Within the processor, software either 
resides in the secure world or the non-secure world; a switch 
between these two worlds is accomplished via software 
referred to as the secure monitor (Cortex-A) or by the core 
logic (Cortex-M). This concept of secure (trusted) and non-
secure (non-trusted) worlds extends beyond the processor to 
encompass memory, software, bus transactions, interrupts and 
peripherals within an SoC. 
 
The ARMv8-M architecture extends TrustZone technology to 
Cortex-M class systems enabling robust levels of protection at 
all cost points.  TrustZone for ARMv8-M has the same high-
level features as TrustZone on applications processors with the 
key benefit that context switching between secure and non-
secure worlds is done in hardware for faster transitions and 
greater power efficiency. There is no need for any secure 
monitor software.  
 
Designers planning to integrate Cortex-A and Cortex-M 
processors to build HMP systems need to consider the 
architectural differences between TrustZone technology 
supported by these processors. Table IV summarizes these 
differences.  

TABLE IV.  TRUSTZONE FOR ARMV7-A/ARMV8-A AND ARMV8-M 

 
TrustZone for 
ARMv7-A and ARMv8-A TrustZone for ARMv8-M 

Security 
states 

SEL0 – Trusted Apps 
SEL1 – Trusted OS 
EL3 – Trusted Boot and 
Firmware (ARMv8-A) 

Secure Thread – Trusted 
code/data 
Secure Handler – Trusted 
device drivers, RTOS,etc 

Secure 
interrupts Yes Yes (deterministic) 

State 
transition Software transition Hardware transition (fast) 

Memory 
management Virtual memory MMU with 

secure attributes 

Secure Attribution Unit 
(SAU) & MPU memory 
partitions 

System 
interconnect 
security 

Yes Yes 

Trusted Boot Yes Yes 
Secure code, 
data and 
memory 

Yes Yes 

Software ARM Trusted Firmware 
(and 3rd party TEEs) 

ARM Keil CMSIS, ARM 
mbed OS, mbed uVisor, 
3rd party software 

 

When integrating ARMv6-M or ARMv7-M processors (e.g 
Cortex-M0, Cortex-M7) within the HMP system, the designer 
needs to be mindful of a few things. Since ARMv6-M and 
ARMv7-M processors do not support TrustZone, the compute 



subsystem using Cortex-M processors must be defined as 
always secure (e.g. system control processor subsystem) or 
always non-secure (e.g. audio subsystem). The designer also 
needs to ensure that the debug system matches the security 
domains for each processor.  
 
Using ARMv8-M processors in HMP systems provides more 
flexibility and configurability for security features in the 
system. ARMv8-M processors like Cortex-M33 or Cortex-
M23, support TrustZone for ARMv8-M. This removes the 
restriction of defining the Cortex-M subsystem as always 
secure/non-secure. Furthermore, the designer also has the 
flexibility to either share the secure worlds or keep them 
separate between the Cortex-A and Cortex-M processor 
subsystems. It is also important to consider the system 
memory partitioning and interrupt distribution in the 
Secure/Non-secure worlds across the two processor 
subsystems.  
 
The designer also needs to ensure that Secure and non-secure 
memory partitioning must match between the Cortex-A and 
Cortex-M processor subsystems. In ARMv8-M processors, a 
certain address can only be Secure or Non-Secure (unlike 
Cortex-A processors). Therefore:  

• The Cortex-A processor’s MMU page setup needs to 
match the memory map observed by the Cortex-M 
processor (ARMv8-M) 

• When creating the memory map for Cortex-M, the 
designer needs to be aware of the MMU page size on 
Cortex-A processor (e.g. 4KB page size granularity) 

 
The interrupts also need to be managed appropriately between 
the Secure/Non-secure states across the Cortex-A and Cortex-
M processor subsystems. The interrupt distribution unit 
described in Fig. 8 needs to ensure the following are true:  

• Must route interrupt to the correct security domains 
(and be consistent between cores) 

• Interrupt’s security domain and peripheral’s security 
domain must match 

• Non-secure software must not be able to change Secure 
interrupt routing 

 

IV. SOFTWARE CONSIDERATIONS FOR HMP SYSTEMS 

A. Overview of software development requirements for HMP 
systems 

The presence of two functionally asymmetric compute 
subsystems in HMP systems poses some challenges for 
software development. The key challenge that needs to be 
addressed is developer productivity. Software developers 
would want their software to be portable across different HMP 
SoC platforms. It is common to see HMP systems running 
different software environments across the Cortex-A (running 
Linux, for example) and Cortex-M processors (RTOS). 

Therefore, making it easier to debug issues on HMP systems is 
important for developer productivity. 

B. Addressing software challenges for HMP systems  
The three key challenges faced by software developers for 
HMP systems are: 

• How to communicate between two different software 
environments running on the Cortex-A and Cortex-M 
processor subsystems? 

• How to debug issues across two different software 
environments? 

• How to identify performance hot-spots and improve 
performance for these HMP systems? 

To ensure that developers can efficiently develop programs for 
heterogeneous ARM SoCs, it is important to standardize some 
of the frameworks for communication between the different 
software environments running on Cortex-A and Cortex-M 
processor subsystems. The MCA working group is focused on 
standardizing the APIs, providing detailed documentation for 
the specification, and expanding the functionality on 
OpenAMP. More details can be found at [2] and [3]. 
 
With the Linux operating system, when the user wants to start, 
stop, or execute another task, the remoteproc command is 
used. When one application needs to communicate with 
another application, the rpmsg APIs are used, which are now a 
part of mainstream Linux and found in all current kernel 
distributions. This hides the complexities of managing 
heterogeneous hardware and software environments and 
provides a simplified application level interface to the user. 
The Cortex Microcontroller Software Interface Standard 
(CMSIS) is adopting the OpenAMP (Open Asymmetric Multi 
Processing) framework. 
 

 
 
Fig. 10.  Standardizing communication between different software 
environments running on Cortex-A and Cortex-M processor subsystems. 

The other challenge faced by developers working on HMP 
systems is debugging issues across different software 
environments. To enable the ease of debugging issues across 
different software environments, the debugger should support 
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capabilities to provide a detailed visibility into the HMP 
system. For example, ARM’s DS-MDK debugger offers 
complete visibility of all software applications running on 
Cortex-A and Cortex-M processors, thus making it easier to 
debug issues on such systems. 
 
The third challenge for developers is tuning for performance 
by identifying performance hotspots at the processor and the 
system level for these HMP systems. Having access to 
detailed performance metrics from the applications running on 
the HMP system is critical in spotting the performance 
bottlenecks for the processor subsystem. In addition, several 
other CPU performance counters such as cache hits/misses, 
branch prediction and memory usage are also collected to 
provide insights into performance issues at system level. The 
Streamline analyser within DS-MDK helps with performance 
tuning and hot-spot identification for ARM processors based 
HMP system. 
 

V. SUMMARY 
A clear majority of embedded applications are transitioning to 
heterogeneous multiprocessor systems (HMP) SoCs using 
Cortex-A and Cortex-M processors. This expands the reach of 
traditional embedded systems by providing rich functionality 

and higher performance in addition to meeting the 
deterministic, real-time control requirements for such systems. 
These systems also benefit from the two largest and growing 
embedded software ecosystems for Cortex-A and Cortex-M 
processors. This paper highlights the design considerations 
and different approaches to design such HMP systems. In 
addition, the introduction of ARMv8-M architecture expands 
the capabilities of such HMP systems making them more 
robust and flexible for covering a wide variety of current and 
future use cases.  
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