
www.embedded-world.eu

Optimizing ARM Cortex-A and Cortex-M Based
Heterogeneous Multiprocessor Systems for Rich

Embedded Applications

Kinjal Dave
Senior Product Manager

CPU Group, ARM

Abstract— Heterogeneous multiprocessor (HMP) systems
using application processors and microcontrollers in the
same SoCs are used extensively across a wide range of
embedded markets. An increasing number of embedded
applications now benefit from the combination of ultra-
low-power ARM® Cortex®-M processors alongside higher
performance Cortex-A processors. Next-generation
embedded applications require improved performance and
security features without sacrificing the overall efficiency
in the system. This paper highlights motivations, benefits
and system design choices available to SoC architects.
The software development considerations and solutions
for such HMP systems are also discussed.	

Keywords— Heterogeneous processing, Cortex-A, Cortex-M,
HMP, low-power, multi-core, ARM

I. INTRODUCTION
We encounter more and more compute systems every day-
starting with the smartphone and perhaps a smart-watch
tethered to the phone. In our homes, we interact with smart
and connected televisions, refrigerators, washing machines
and thermostats. In the gym, smart and connected equipment
is becoming the norm. All these are transforming the way in
which we live for better.

A common requirement for all these devices is the variety of
tasks expected from these devices in an energy-efficient
manner. This requirement translates into architecting systems
such that they can handle these diverse compute requirements.
This key requirement to designing compute systems capable
of handling diversity of workloads spans across several
markets. Some common examples include embedded
applications, in-vehicle-infotainment systems, healthcare and
industrial applications.

This means that modern compute systems must be designed to
meet conflicting requirements. These must be designed to
provide high performance for running several demanding
applications while being able to respond quickly to a real-time
event. These must be designed to handle general data
processing as well as specialized multimedia processing tasks
efficiently. These must be designed to support different
software environments – for example running Linux on one
compute element and running a RTOS on another.

To meet these conflicting requirements, modern system
designers rely heavily on building heterogeneous compute
systems. Heterogeneous compute is fundamentally about using
the right processor optimized for a set of tasks. Some of the
benefits of such HMP systems include an increased overall
system performance, increased system efficiency and reduced
system cost due to integration of different compute elements.

II. TERMINOLOGY FOR HMP SYSTEMS

A. ARM processors-based HMP systems
 There are several types of HMP systems. In a generic sense,
HMP system refers to a complex system that combines several
different compute elements like a general-purpose processor, a
graphics processor, an image processor, a video processor, a
display processor and possibly several accelerators. Fig. 1
shows a typical HMP compute system that includes several
compute elements. “Heterogeneous multi-processor system” is
also used to denote compute systems that use various
combinations of ARM’s Cortex processors (e.g. Cortex-A,
Cortex-R and Cortex-M).

Fig. 1. A generic heterogeneous multiprocessor (HMP) compute system

The scope of this paper is to discuss the heterogeneous
compute systems using ARM Cortex processors. It is
commonplace for several compute systems to use different
combinations of Cortex-A, Cortex-R and Cortex-M processors
to provide the right functionality for a given application. Table
1 below depicts the different possible combinations of HMP
systems using Cortex processors and lists the key differences
between these systems.

This paper discusses the HMP systems exhibiting functional
symmetry. More specifically, this paper discusses the details
of Cortex-A and Cortex-M processors-based HMP systems.

TABLE I. MULTI-CORE PROCESSORS TERMINOLOGY

Multi-core
Homogeneous Heterogeneous

 Performance
asymmetry

Functional
asymmetry

Same ISA Same ISA Different ISA

Same microarchitecture Different
microarchitecture

Different
microarchitecture

Same view of memory Same view of
memory

Different view of
memory

Same software Software
symmetry

Different software
environments –

software asymmetry

B. ARM architecture for diverse computing needs
The three different Cortex processor families from ARM are
optimized for different compute requirements as shown in
table 2.

• The Cortex-A processors are optimized for running rich
operating systems like Linux and Android and can
provide high performance for demanding applications
across a wide range of applications.

• The Cortex-R processors are optimized for hard real-
time applications with high performance requirements.

• The Cortex-M processors are optimized for ultra-low
power, low-cost compute required for a wide variety of
embedded applications with real time capabilities.

Heterogeneous	 systems	 using	 all three Cortex	 processors	
are	common	today	and	used across many applications. Some
common examples include smartphones, wearable devices
with a rich GUI and Advanced Driver Assist Systems
(ADAS). Furthermore, embedded systems that were
traditionally based on simple MCUs are now increasingly
required to support rich graphical user interfaces.

TABLE II. ARCHITECTURAL DIFFERENCES AMONGST ARM CORTEX
PROCESSOR FAMILIES

 Cortex-A Cortex-R Cortex-M
Architecture
profile

ARMv7-A
ARMv8-A

ARMv7-R
ARMv8-R

ARMv7-M
ARMv8-M

Instruction set 32-bit/64-bit 32-bit 32-bit
Interrupts Software

managed

Deterministic
software
managed

Hardware
managed

Bus interface AMBA® AXI AMBA AXI AMBA
AHB/AXI

Operating
system support

Rich
OS/RTOS RTOS RTOS

Examples

Cortex-A7
Cortex-A35

Cortex-R8
Cortex-R52

Cortex-M7
Cortex-M33

	
This requires the use of Cortex-A processors in addition to
Cortex-M processors. Therefore, an increasing number of
embedded systems use Cortex-A processors extensively to
address the high performance, rich user interface and running
a rich operating system (like Linux) requirements across
general purpose embedded, industrial, consumer and medical
applications. These applications also use Cortex-M processors
to address deterministic, real-time control requirements in
industrial, medical and consumer applications like intelligent
thermostats.

III. SYSTEM DESIGN CONSIDERATIONS
This section discusses the pros and cons of various system
design choices available for architecting Cortex-A and Cortex-
M processors-based HMP systems. First, the key architectural
differences between the Cortex processor families are
highlighted. Thereafter, the system design choices available to
architect these systems are discussed.

A. Key system design considerations
To highlight the design considerations for such HMP systems,
consider an example generic HMP compute subsystem using
Cortex-A and Cortex-M processors as shown in figure 2. The
Cortex-M subsystem uses a local memory. This allows the
Cortex-M processor to run in the background without going
through the main interconnect. This results in reduced bus
transfers crossing the clock domains and thereby reduces
system power consumption. The fundamental architectural
differences between Cortex-A and Cortex-M processors are
highlighted in Table II. The system designer needs to consider
the following for architecting heterogeneous systems that
combine Cortex-A and Cortex-M processors:

www.embedded-world.eu

• How to address the impact of memory map differences
between Cortex-A and Cortex-M processors at the
system level?

• How to manage and distribute interrupts across Cortex-
A and Cortex-M processors?

• How to handle inter-processor communication between
Cortex-A and Cortex-M processor subsystems?

• How to handle security and secure/non-secure state
communications between Cortex-A and Cortex-M
processor subsystems?

This paper discusses these design considerations in further
detail.

Fig. 2. A generic HMP system using Cortex-A, Cortex-R and Cortex-M

processors

B. Addressing differences in memory space addresses
Table III enumerates the differences in address spaces between
the Cortex-A and Cortex-M processors. The Cortex-A
processors support a significantly larger physical memory
address space as compared to Cortex-M processors. This
section discusses two approaches to address these differences
at the system level.

TABLE III. ADDRESS SPACE DIFFERENCES BETWEEN CORTEX-A AND
CORTEX-M PROCESSORS

 Cortex-A Cortex-M
Physical
addressing

ARMv7-A: Upto 40-bits
ARMv8-A: Upto 48-bits

ARMv7-M, ARMv8-M:
32-bits

Addressing
spaces Secure and Non-secure

ARMv7-M: single
ARMv8-M: Secure and
Non-secure

The first approach is to specify a shared memory address
space for both the processors as shown in the Fig. 3. The
Cortex-M subsystem has its own local memory to enable
deterministic capabilities, and allows the main memory system
to reduce power when the Cortex-A processor system is idle.
Essentially, this approach bridges the Cortex-M subsystem to
a point in the system hierarchy where it has access to a limited
portion of the address space. The system can then be
architected to connect peripherals in this shared address space
thus enabling both the Cortex-A and Cortex-M systems to

access the common peripherals when needed. However, this
approach requires a design decision on what main system
resources the Cortex-M subsystem should be able to access.

Fig. 3. Sharing a region of memory space between Cortex-A and Cortex-M
processors in an HMP system

Another approach is to use a System Memory Management
Unit (SMMU) to enable the Cortex-M subsystem to access the
entire address space supported by the Cortex-A processor. The
Cortex-M subsystem can be bridged to the top level of the
main memory system, providing full access to system
resources.

Fig. 4. Using an SMMU allows more flexibility for a Cortex-M processor to
access a wider memory addressing space

The SMMU is used to overcome the address size and security
state issues. The SMMU can be configured to provide one or
more windows on to the main memory system. These
windows can be re-configured as different areas of the
memory system are needed by the Cortex-M subsystem. Using
the SMMU to perform stage 1 address translation also allows
the security attribute for ARM TrustZone® security to be set.
Using an SMMU might seem to be a costly addition to a
Cortex-M subsystem, however, it is possible to share the
SMMU with other masters that need an SMMU. For example,
ARM’s CoreLink™ MMU-500 provides a modular design,
allowing it to be shared by several masters or sub-systems. A
single shared Translation Control Unit (TCU) is responsible
for performing translation table walks. The TCU can either

have a dedicated connection to the interconnect for these
walks, or share the connection of one of the masters.
The Translation Buffer Units (TBUs) provide caches of
translations recently used by that master or subsystem. The
TBUs can be individually sized, based on the requirements of
the master or subsystem connected to them. For the Cortex-M
subsystem being considered here, access to the main memory
system is likely to be infrequent and to limited address ranges.
This implies that a relatively small TBU could be provided to
keep area cost to a minimum.

C. Managing interrupts in HMP systems
The Cortex-A and Cortex-M processors manage interrupts in
different ways. The Cortex-A processors typically support up
to four cores in a processor cluster, sharing a common GIC
(Generic Interrupt Controller). As shown in Fig. 4, a GIC
allows software to control the prioritization and distribution of
interrupts. The Cortex-M processors include a Nested
Vectored Interrupt Controller (NVIC), as shown in Fig. 5.
The NVIC provides the same basic controls as a GIC, but is
tailored to match the ARMv7-M and ARMv8-M exception
models and without the ability to support multiple cores.
When an interrupt is only of interest to software running on
the Cortex-A processor cluster or a Cortex-M processor, the
interrupt source can be directly connected to the GIC or the
NVIC.

Fig. 5. Interrupt handling in Cortex-A processors

Fig. 6. Interrupt handling in Cortex-M processors

However, for some use cases it is required to run the interrupt
handlers on different processors at different times. For

example, the handling of a sensor interrupt might be handed
over to a Cortex-M processor when the Cortex-A processor
cluster is in retention or powered down. Two approaches can
be considered to connect shared interrupts between the
Cortex-A and Cortex-M systems
One simple approach (Fig. 7) is to wire the interrupt sources to
both processor subsystems i.e. connecting the interrupt sources
to both the GIC and the WIC in the Cortex-A and Cortex-M
processors respectively. This approach requires the software to
ensure that the interrupt is serviced by only one of the
processor subsystems.

Fig. 7. Wired interrupt scheme for Cortex-A and Cortex-M processors

Fig. 8. Managing interrupts across Cortex-A and Cortex-M processors using

a custom-build interrupt distribution unit

The second approach is to design a custom interrupt
distribution unit in hardware to route the interrupts to the
appropriate processor subsystem. (Fig. 8) Such a scheme can
optionally benefit by using software level interrupt passing
using a mail box scheme as shown in the figure. The first
approach is simpler from a system design perspective.
However, this also results in higher software overhead when
switching the interrupt allocation from one processor
subsystem to another. The second approach does incur a small
hardware cost of the interrupt design unit, but results in
significant reduction of software overhead for interrupt

www.embedded-world.eu

allocation between the two processor subsystems. It also
provides more flexibility in allocating interrupts to and from
Cortex-A to Cortex-M subsystems

D. Handling inter-processor communication in HMP systems
The software running on the Cortex-A processors and Cortex-
M sub-system needs to be able to communicate with each
other. For example:

• To initiate hand over of a shared peripheral from one
system to the other.

• Cortex-A processor requesting system control activities
from a Cortex-M system controller.

• Cortex-M sensor hub reporting sensor information to
the Cortex-A processors.

Such communication would typically be via mail boxes in
shared memory. This would need to be memory that is part of
the main system’s address space, so that both the Cortex-A
processors and the Cortex-M subsystem have visibility.
Such mail boxes might be complimented by door-bell
interrupts, to signal the presence of new messages or the
completion of previous commands. This requires a
mechanism for each processor to generate interrupts in the
other’s interrupt controller.

Fig. 9. Handling inter-processor commuication between Cortex-A, Cortex-R

and Cortex-M processor subsystems

E. Security considerations for HMP systems
Architecting security in modern compute systems is a
necessary requirement to enable devices to counter specific
threats that it might experience. ARM offers TrustZone
technology as a foundation to architect system-wide hardware
isolation for trusted software and critical resources. TrustZone
technology has been supported by all the ARMv7-A and
ARMv8-A processors and is commonly used to run trusted
boot and a trusted OS to create a Trusted Execution
Environment (TEE). Typical use cases include the protection
of authentication mechanisms, cryptography, key material and

digital rights management (DRM). Applications that run in the
secure world are called Trusted Apps.

At the heart of the TrustZone approach is the concept of
secure and non-secure worlds that are hardware separated,
with non-secure software blocked from accessing secure
resources directly. Within the processor, software either
resides in the secure world or the non-secure world; a switch
between these two worlds is accomplished via software
referred to as the secure monitor (Cortex-A) or by the core
logic (Cortex-M). This concept of secure (trusted) and non-
secure (non-trusted) worlds extends beyond the processor to
encompass memory, software, bus transactions, interrupts and
peripherals within an SoC.

The ARMv8-M architecture extends TrustZone technology to
Cortex-M class systems enabling robust levels of protection at
all cost points. TrustZone for ARMv8-M has the same high-
level features as TrustZone on applications processors with the
key benefit that context switching between secure and non-
secure worlds is done in hardware for faster transitions and
greater power efficiency. There is no need for any secure
monitor software.

Designers planning to integrate Cortex-A and Cortex-M
processors to build HMP systems need to consider the
architectural differences between TrustZone technology
supported by these processors. Table IV summarizes these
differences.

TABLE IV. TRUSTZONE FOR ARMV7-A/ARMV8-A AND ARMV8-M

TrustZone for
ARMv7-A and ARMv8-A TrustZone for ARMv8-M

Security
states

SEL0 – Trusted Apps
SEL1 – Trusted OS
EL3 – Trusted Boot and
Firmware (ARMv8-A)

Secure Thread – Trusted
code/data
Secure Handler – Trusted
device drivers, RTOS,etc

Secure
interrupts Yes Yes (deterministic)

State
transition Software transition Hardware transition (fast)

Memory
management Virtual memory MMU with

secure attributes

Secure Attribution Unit
(SAU) & MPU memory
partitions

System
interconnect
security

Yes Yes

Trusted Boot Yes Yes
Secure code,
data and
memory

Yes Yes

Software ARM Trusted Firmware
(and 3rd party TEEs)

ARM Keil CMSIS, ARM
mbed OS, mbed uVisor,
3rd party software

When integrating ARMv6-M or ARMv7-M processors (e.g
Cortex-M0, Cortex-M7) within the HMP system, the designer
needs to be mindful of a few things. Since ARMv6-M and
ARMv7-M processors do not support TrustZone, the compute

subsystem using Cortex-M processors must be defined as
always secure (e.g. system control processor subsystem) or
always non-secure (e.g. audio subsystem). The designer also
needs to ensure that the debug system matches the security
domains for each processor.

Using ARMv8-M processors in HMP systems provides more
flexibility and configurability for security features in the
system. ARMv8-M processors like Cortex-M33 or Cortex-
M23, support TrustZone for ARMv8-M. This removes the
restriction of defining the Cortex-M subsystem as always
secure/non-secure. Furthermore, the designer also has the
flexibility to either share the secure worlds or keep them
separate between the Cortex-A and Cortex-M processor
subsystems. It is also important to consider the system
memory partitioning and interrupt distribution in the
Secure/Non-secure worlds across the two processor
subsystems.

The designer also needs to ensure that Secure and non-secure
memory partitioning must match between the Cortex-A and
Cortex-M processor subsystems. In ARMv8-M processors, a
certain address can only be Secure or Non-Secure (unlike
Cortex-A processors). Therefore:

• The Cortex-A processor’s MMU page setup needs to
match the memory map observed by the Cortex-M
processor (ARMv8-M)

• When creating the memory map for Cortex-M, the
designer needs to be aware of the MMU page size on
Cortex-A processor (e.g. 4KB page size granularity)

The interrupts also need to be managed appropriately between
the Secure/Non-secure states across the Cortex-A and Cortex-
M processor subsystems. The interrupt distribution unit
described in Fig. 8 needs to ensure the following are true:

• Must route interrupt to the correct security domains
(and be consistent between cores)

• Interrupt’s security domain and peripheral’s security
domain must match

• Non-secure software must not be able to change Secure
interrupt routing

IV. SOFTWARE CONSIDERATIONS FOR HMP SYSTEMS

A. Overview of software development requirements for HMP
systems

The presence of two functionally asymmetric compute
subsystems in HMP systems poses some challenges for
software development. The key challenge that needs to be
addressed is developer productivity. Software developers
would want their software to be portable across different HMP
SoC platforms. It is common to see HMP systems running
different software environments across the Cortex-A (running
Linux, for example) and Cortex-M processors (RTOS).

Therefore, making it easier to debug issues on HMP systems is
important for developer productivity.

B. Addressing software challenges for HMP systems
The three key challenges faced by software developers for
HMP systems are:

• How to communicate between two different software
environments running on the Cortex-A and Cortex-M
processor subsystems?

• How to debug issues across two different software
environments?

• How to identify performance hot-spots and improve
performance for these HMP systems?

To ensure that developers can efficiently develop programs for
heterogeneous ARM SoCs, it is important to standardize some
of the frameworks for communication between the different
software environments running on Cortex-A and Cortex-M
processor subsystems. The MCA working group is focused on
standardizing the APIs, providing detailed documentation for
the specification, and expanding the functionality on
OpenAMP. More details can be found at [2] and [3].

With the Linux operating system, when the user wants to start,
stop, or execute another task, the remoteproc command is
used. When one application needs to communicate with
another application, the rpmsg APIs are used, which are now a
part of mainstream Linux and found in all current kernel
distributions. This hides the complexities of managing
heterogeneous hardware and software environments and
provides a simplified application level interface to the user.
The Cortex Microcontroller Software Interface Standard
(CMSIS) is adopting the OpenAMP (Open Asymmetric Multi
Processing) framework.

Fig. 10. Standardizing communication between different software
environments running on Cortex-A and Cortex-M processor subsystems.

The other challenge faced by developers working on HMP
systems is debugging issues across different software
environments. To enable the ease of debugging issues across
different software environments, the debugger should support

www.embedded-world.eu

capabilities to provide a detailed visibility into the HMP
system. For example, ARM’s DS-MDK debugger offers
complete visibility of all software applications running on
Cortex-A and Cortex-M processors, thus making it easier to
debug issues on such systems.

The third challenge for developers is tuning for performance
by identifying performance hotspots at the processor and the
system level for these HMP systems. Having access to
detailed performance metrics from the applications running on
the HMP system is critical in spotting the performance
bottlenecks for the processor subsystem. In addition, several
other CPU performance counters such as cache hits/misses,
branch prediction and memory usage are also collected to
provide insights into performance issues at system level. The
Streamline analyser within DS-MDK helps with performance
tuning and hot-spot identification for ARM processors based
HMP system.

V. SUMMARY
A clear majority of embedded applications are transitioning to
heterogeneous multiprocessor systems (HMP) SoCs using
Cortex-A and Cortex-M processors. This expands the reach of
traditional embedded systems by providing rich functionality

and higher performance in addition to meeting the
deterministic, real-time control requirements for such systems.
These systems also benefit from the two largest and growing
embedded software ecosystems for Cortex-A and Cortex-M
processors. This paper highlights the design considerations
and different approaches to design such HMP systems. In
addition, the introduction of ARMv8-M architecture expands
the capabilities of such HMP systems making them more
robust and flexible for covering a wide variety of current and
future use cases.

VI. REFERENCES
[1] ARM TrustZone,

https://developer.arm.com/technologies/trustzone
[2] Open Asymmetric Multiprocessing (OpenAMP) overview

http://www.multicore-association.org/workgroup/oamp.php
[3] OpenAMP overview on github

https://github.com/OpenAMP/open-amp/wiki
[4] Programmer’s guide for ARMv8-A

http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A
_v8_architecture_PG.pdf

[5] ARMv8-M architecture reference manual

