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1	 Introduction
The Arm Neoverse ecosystem is growing substantially with many Arm hardware and software 

partners developing applications and porting their workloads onto Arm-based cloud instances. 

With Neoverse N1 based systems becoming widely available, many real-world workloads are 

showing	very	competitive	performance	and	significant	cost	savings	when	compared	to	legacy	

systems. Some recent examples include: H.264 video encoding, memcached, Elasticsearch, 

NGINX and more.

To maximize their execution performance, developers use performance analysis and

workload characterization techniques to study performance characteristics of applications.

Server class systems support a wide range of performance monitoring techniques to measure 

workload	efficiency,	evaluate	their	resource	requirements,	and	track	resource	utilization.

Such measurements are useful to tune both software and hardware and also help guide

future system design requirements.

The Arm Neoverse micro-architecture has been developed with both high performance and power 

efficiency	in	mind.	As	such,	our	philosophy	to	performance	monitoring	might	differ	slightly	from	

what software developers have used to analyze systems based on other architectures. This paper 

outlines a methodology for workload characterization using the Performance Monitoring Unit 

(PMU) capabilities on the Neoverse N1 CPU to identify and eliminate performance bottlenecks. 

The intended audience is software developers and performance analysts working on software 

optimizations, tuning, and development.

The content of this paper is divided into four chapters:

  The	first	chapter	introduces	the	hardware	PMU	on	Neoverse	N1	with	a	list	of

 most relevant PMU events for workload characterization.

 The second chapter presents a workload characterization methodology using

 Neoverse N1 core PMU events.

 The third chapter illustrates how the Linux perf tool can be used to collect 

 Neoverse N1 PMU events.

 The	final	chapter	demonstrates	a	workload	characterization	and	hot	spot	analysis 

 with an example workload case study. 

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/thirty-six-percent-better-video-encoding-with-aws-graviton2_2d00_based-c6g
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/memcached-benchmarking-aws-graviton2-50-p-p-gains
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/optimize-elasticsearch-deployment-arm-amazon-ec2-m6g
https://www.nginx.com/blog/optimize-nginx-plus-deployment-arm-based-amazon-ec2-m6g-instances/
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2 Neoverse N1 Performance Monitoring Events
Performance monitoring requires collecting application execution information on a given 

system which can be obtained by software or hardware means. Software monitoring 

techniques provide software traces and events counted by system software. Hardware 

monitoring techniques work by collecting hardware events directly from the CPU/

System. For collecting hardware events, modern processors implement a dedicated 

Performance Monitoring Unit (PMU) which facilitates the measurement of a wide range 

of	hardware	execution	related	events.	Profiling	hardware	events	can	provide	insight	into	

the code execution behavior on the various micro-architectural units. Multiple events can 

be monitored and correlated with software execution in order to identify optimization 

opportunities and evaluate whether the workload is taking advantage of the underlying 

micro-architecture in an optimal way. Some of the events that are supported include 

instructions retired, elapsed CPU cycles, cache/TLB accesses, and branch predictions.

Arm Performance Monitoring Unit 

Arm architecture supports PMU capability via an optional extension to the architecture 

called Performance Monitors Extension. An Arm PMU hardware design (Figure 1) consists of 

the following components:

 PMU	configuration	registers	for	control	and	event	selection

 PMU event counters

 Dedicated function counters

Arm	PMU	hardware	employs	multiple	configuration	registers	including	the	PMCR 

and PMEVTYPER registers, for unit control and measurement selection respectively1. 

The PMU hardware also incorporates a set of event counters to count the raw hardware 

events as requested by the user. Each event has a unique hex eventcode associated with it 

designed by the hardware vendor, which gets set in the PMEVTYPER register. Apart from 

configurable	counters,	AArch64	has	a	dedicated	counter	for	CPU	cycles	which	is	a	required	

functionality on all Arm compatible designs. Implementation of the PMU hardware is 

implementation	specific	in	regard	to	the	number	of	counters	available	and	event	types 

that can be counted including the respective event codes.

Figure 1: Performance Monitoring Unit
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When	a	PMU	event	is	configured,	one	of	the	event	counters	is	assigned	to	the	digital	logic	

associated with the event being measured. PMU events can be measured using the Linux 

perf tool, either using the software listed event names for common “hardware events” or 

the	dedicated	hex	event	code	associated	with	the	raw	“PMU	hardware	events”	specified

by the architecture. A typical processor might support hundreds of events for both 

performance and debug purposes, but a subset can be selected for a workload 

characterization exercise to study high level execution bottlenecks and resource utilization. 

The	rest	of	the	events	specific	to	core	subsystem	units	can	be	used	for	root	causing	a	

performance	issue	in	depth,	once	the	performance	limiting	unit	has	been	identified	from 

the characterization exercise.

Arm Performance Monitoring Unit Implementation References

PMU	events	implemented	by	a	specific	core	implementation	are	listed	in	the	Technical	

Reference	Manual	for	that	product.	The	behavior	of	these	events	are	defined	in	the	

respective Arm Architecture Reference Manual1 as “Common Events”. The Common Events 

are	generic	definitions	that	apply	to	all	micro-architectures,	however	most	of	them	are	soft	

requirements and may not necessarily be implemented.

Neoverse N1 Performance Monitoring Unit

The Neoverse N1 CPU implements the PMU extensions of the Arm v81 with support for 

100+	hardware	events.	The	Neoverse	N1	PMU	has	6	configurable	counter	registers	and 

1 dedicated function counter to count CPU cycles.

The PMU events implemented by the Neoverse N1 core are listed in the ARM Neoverse N1 

Core Technical Reference Manual (TRM) Part D2.	These	events	are	defined	in	the	Arm	v81 

as “Common Events”. In addition to the TRM, we also provide Neoverse N1 PMU Guide3, 

a supplementary guide to the hardware PMU events implemented by the core. This PMU 

Guide provides detailed descriptions of PMU events categorized per CPU block. 

Micro-architectural	and	architectural	definitions	required	for	better	understanding	each	

PMU	event	is	included,	with	relevant	definitions	marked	as	reference	to	each	PMU	event	

description.	The	Neoverse	N1	PMU	Guide	also	adds	an	exclusive	CPU	execution	flow 

chapter	that	demonstrates	key	CPU	execution	flows	that	the	memory	subsystem, 

with depiction of PMU events being counted in each stage.

We recommend using the N1 PMU Guide3 as the go-to reference manual for event 

descriptions for performance analysis activities using PMU events.
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Figure 2: Neoverse N1 PMU Events Cheatsheet

Neoverse N1 Core PMU Events Cheat Sheet for Workload Characterization

Though the Neoverse N1 core supports 100+ hardware counters, not all are needed for 

an initial characterization of the workload execution. Figure 2 is a cheat sheet of major 

Performance	Monitoring	Events	for	a	first	pass	workload	characterization	exercise	on	a	

Neoverse N1 CPU.
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3 Neoverse N1 Performance Analysis Methodology
Performance optimization and software tuning is more challenging than ever today. 

Modern high-end processors typically have high core counts with complex instruction sets, 

various	levels	of	parallelism,	and	deeper	memory	hierarchies.	Also,	a	significant	proportion 

of large-scale cloud workloads run on virtual machines, which makes it even harder to trace 

the	workload	execution	behavior	to	evaluate	the	power-performance	efficiency	in	the	data	

centers. However, correlating the software execution with the micro-architectural behavior

is	critical	in	optimizing	software	for	efficient	execution	on	the	underlying	hardware.

A single core forms the fundamental execution block of the processor. These cores get 

combined	in	multiple	configurations	with	memory	subsystems	to	form	a	computing	system.	

In this chapter, we will look into the high-level details of a single Neoverse N1 core and a 

methodology for workload characterization using the hardware PMU events of the core.

Neoverse N1 Core

The Neoverse N1 core is an out-of-order super scalar machine which can dispatch/retire up 

to 8 instructions per cycle4. A super scalar processor has three major phases in its pipeline: 

in-order fetch and decode of the instruction stream, out of order execution of operations, 

and	a	final	in-order	commit/retirement	of	the	instruction.	The	in-order	fetch/decode	part	is	

called the Front End and the out of order execution part is called the Back End. The CPU also 

has a memory subsystem that is responsible for all the memory operations and their ordered 

execution. Design details of all these major CPU blocks vary across micro-architectures.

In this document, we will describe the blocks that are common in most super-scalar 

architectures and highlight the performance metrics associated as they apply to the N1 

implementation. For detailed explanations for the Neoverse N1 micro-architecture, 

please refer to the Neoverse N1 Technical Reference Manual2 and Neoverse Software 

Optimization Manual5. Figure 3 below shows the high level block diagram of the

Neoverse N1 CPU. 

Figure 3:  Arm Neoverse N1 CPU Building Blocks
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Front End

The Front End of the CPU is an in-order pipeline that handles fetching instructions from the 

I-Cache, decoding those instructions, and queuing them for the execution engine in the 

Back End. The architectural instructions can get broken down into micro-operations in the 

decode stage. These micro-operations are queued and dispatched to the execution engines 

according to their availability. Apart from the fetch, decode and dispatch units, there is a 

rename	block	that	keeps	track	of	the	operational	dataflow	and	dependencies	to	make	sure	

that the executed operations are committed in-order. Another important unit in the Front 

End is the Branch Predictor. This unit predicts both the direction of branches as well as target 

addresses for indirect branches. Note that an out of order processor can fetch multiple 

instructions	in	advance	to	fill	the	pipeline	and	execute	them	speculatively.	Branch	prediction	

techniques help with fetching the instructions in the right program order as much as possible, 

as	branch	mis-predictions	lead	to	pipeline	flushes	and	wasted	cycles.	

Neoverse N1 can fetch up to 4 instructions per cycle and dispatch a maximum 8 micro-

operations per cycle.

Back End

The Back End of the CPU handles the execution of the micro-operations which are dispatched 

to the relevant execution units for processing. Neoverse N1 supports multiple execution units 

including the Branch unit, Load/Store unit and Arithmetic units including the advanced vector 

engines. The number of execution units and cycles taken for the execution of an instruction 

can vary per micro-architecture; therefore, instruction execution latency and throughput

are implementation dependent. Once instruction execution is complete, the results are stored 

and committed in-order when dependencies are resolved. 

Neoverse N1 has 4 integer execution units, 2 Floating point/SIMD pipelines and 2 load/store 

pipelines, which allows up to 8 micro-operations to be dispatched into the execution pipeline 

every cycle.

Memory Subsystem

The Memory subsystem of the CPU handles the execution of load and store operations which 

relies heavily on the memory hierarchy levels. Neoverse N1 has a dedicated L1/L2 cache per 

core, where the L2 cache is shared between the L1 Data cache and the L1 Instruction cache. 

The	Load	Store	Unit	controls	the	data	flow	between	the	caches	and	to	memory.

Neoverse N1 has two load/store units, which can both handle read and write operations. 

The L1 Data Cache is a 64kB 4-way set associative design and L2 Cache is an 8-way set 

associative	cache	with	up	to	1	MB	in	size	which	is	configurable	per	implementation. 

The private L2 cache of the core connects to the rest of the system via an AMBA 5 CHI 

interface.



9

Neoverse N1 Cluster Configurations 

The	Neoverse	N1	systems	come	in	different	configurations,	depending	on	the	implementation	

choices made in the interconnect and cluster/system level last level caches. Some of the 

optional	configurations	in	Neoverse	N1	systems	are	depicted	below	in	figures	4	and	5.

Figure	4	shows	a	configuration	in	which	multiple	cores	can	be	configured	in	a	Dynamic	

Sharing Unit (DSU) based cluster system with two cores in a single cluster. This DSU cluster 

contains	a	snoop	filter	and	an	optional	L3	cluster	cache	that	can	be	shared	by	the	cores	within	

the cluster. This optional L3 Cache can be up to 2 MB in size in design.

An	alternate	configuration	is	a	direct	connect	system	as	in	figure	5,	where	as	the	name	

suggests, the cores are directly connected to the Coherent Mesh Interconnect interface 

called CAL. These systems don’t support an L3 Cache as there is no DSU cluster present. 

All systems with the coherent mesh interconnect support a shared system-level cache 

which	can	be	up	to	256	MB	in	size.	Understanding	the	cache	hierarchy	and	configuration	of	

the system being analyzed is crucial in deriving insights from the cache effectiveness PMU 

events. It is always best to check with the Silicon Provider for details on the system

configuration	for	the	underlying	system	including	the	cache	sizes.

Figure 4: Neoverse N1 DSU Cluster System with Optional L3

Figure 5: Neoverse	N1	System	with	Direct	Connect	Configuration
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Performance Analysis Methodology

For workload analysis, both raw hardware events as well as some useful metrics derived 

from them can be used for characterization. Understanding all the events and deciding 

which events to use is a non-trivial task as each workload has unique behaviors and potential 

bottlenecks.	Moreover,	to	pin-point	to	a	specific	hardware	problem,	one	may	need	to	have	

in-depth knowledge of the micro-architecture. To make this process easier, we will highlight 

some of the raw events and derived metrics that can help conduct an initial characterization 

of the workload. Following this process should help with formulating the top-level 

characteristics of a workload and root-cause a performance issue later in the deep

dive process.

A basic top-level analysis methodology that can be followed starts with an accounting of the 

cycle usage for execution as in Figure 6.

Instructions Per Cycle

The combination of cycles spent, and instructions executed give an overview of the CPU 

workload and execution time on any architecture. The number of instructions represents 

the amount of work that CPU does, and cycles represent the total time it took to do it. 

Instructions Per Cycle (IPC) is a key metric for evaluating the performance of a workload

on a micro-architecture, which can be derived as below:

In a non-stalled pipeline, the IPC will be the highest and can be a direct measurement of the 

instruction level parallelism the processor supports. The higher the IPC achieved, the better 

the	pipeline	efficiency	during	the	workload	execution.	If	the	IPC	is	very	low,	it	means	the	

cycles spent are stalled hugely which could point to potential performance issues.

Neoverse N1 pipeline has a maximum IPC of 4, as it can fetch 4 instructions per cycle.

For instruction count, Neoverse N1 supports INST_RETIRED and INST_SPEC events,

both counting the instructions executed but in different stages of the pipeline.

Whilst INST_RETIRED counts the total instructions that are architecturally executed in a 

program, INST_SPEC counts the total number of instructions decoded speculatively to the 

processor. INST_SPEC can give a better indication of the total utilization of the execution unit, 

as it counts instructionswhich could have been executed but were not necessarily committed. 

A large difference between INST_SPEC and INST_RETIRED usually indicates that high 

branch misprediction rate or other faults that would cancel speculative instructions that

have	been	decoded	which	is	inefficient.

Note that INST_RETIRED for a workload will be same on all implementations of an 

architecture, where as cycles vary depending on the micro-architectural implementation

and	system	configuration.whether	or	not	it’s	connected	to	the	cloud.
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Cycle Accounting/Pipeline Stalls

As discussed above [Neoverse N1 Core], an out of order CPU has an in-order Front End 

unit which fetches instructions and decodes them into micro-operations which are issued 

to the Back End for execution. The fetch unit in the Front-End fetches instructions from the 

L1I Cache, which requires accesses to the L1I TLB for getting the physical addresses as well 

as a branch prediction unit to speculatively fetch subsequent instructions. While the Back 

End may execute micro-operations out-of-order all instructions are committed in-order with 

respect to dependencies.

The pipeline described above allows for high throughput of instruction execution. However, 

stalls in the pipeline may occur due to a variety of reasons, such as fetching wrong code path 

due to branch mispredictions or waiting for data from memory or L2/L3 caches. In addition, 

executing excessive wrong path code reduces the number of useful cycles spent by the CPU. 

To	evaluate	the	efficiency	of	pipeline	execution,	Neoverse	N1	supports	two	top	level	STALL	

events to evaluate the number of cycles stalled in the Front End and the Back End of the CPU.

The STALL_FRONTEND and STALL_BACKEND events can be used to provide an indication 

of the major bottlenecks during the execution of the workload. Using these two events, 

we can derive the relative percentage of stalled cycles in the Front End and Back End 

respectively:

Figure 6: Cycle Effectiveness Evaluation Methodology
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A relatively high Front End stall rate indicates that cycles are being wasted due to pipeline 

stalls in the in-order Front End division, while a relatively high Back End stall rate shows 

cycles are wasted due to pipeline stalls in the Back End. This breakdown helps to narrow 

down the dominating blocks that can be further analyzed to identify performance

bottlenecks as demonstrated in Figure 6. Below is a list of CPU blocks/units to analyze for 

further decomposition of a Front End Bound workload: 

 ITLB events

 I-Cache Events: L1I + L2/Last level Cache events

 Branch Effectiveness events

Below is a list of CPU blocks/units to analyze for further decomposition of a Back End Bound 

workload:

 DTLB events

 Memory System related events

 D-Cache Counters: L1D + L2/Last level Cache events 

  Instruction Mix

The N1 PMU Guide3 details all the raw hardware events that can be referred for each 

of these CPU blocks. We will cover select events recommended from the N1 PMU 

CheatSheet[Chapter 2] including some of the metrics that can be derived for characterization 

of CPU blocks next.

Branch Effectiveness

Branch	mispredictions	are	costly	in	a	deeply	pipelined	CPU,	causing	frequent	pipeline	flushes	

and wasted cycles. As a general rule, workloads typically contain on average, 1 branch in every 

6 instructions. Though modern CPUs have optimized branch prediction units, there are many 

use cases like ray tracing, decision tree algorithms, etc. that are branch heavy and hard to 

predict. In some of these applications there can be hundreds of unique branch paths to take

and the target may be input data dependent. 

Branch prediction performance can be evaluated by using the two raw PMU events, 

BR_MIS_PRED_RETIRED and BR_RETIRED. BR_MIS_PRED_RETIRED gives an account of 

the total branches executed but were mis-predicted. This means that the direction of code 

path in the mis-predicted basic block was wrong and the following operations in the path 

were	wasted,	causing	a	pipeline	flush.	BR_RETIRED	counts	the	total	branches	architecturally	

executed by the CPU.

Two performance metrics that can be derived for a high level evaluation of the branch 

execution performance with respect to the overall program execution are:
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Branch MPKI provides total branch mis-predictions per kilo instructions and Branch 

Mis-prediction Rate gives an indication of the ratio of branches that were mis-predicted to 

overall branches. Both the metrics ,can be used to further investigate using perf record, to 

determine which functions are causing the increase branch miss rates [Chapter 4].

Branch Mix/Prediction Performance

Branch prediction units work differently depending on the branch type. There are three main 

components :

 Branch History Table (BHT) that stores the history of conditional branches, taken or not.

 Branch Target Buffer (BTB) that stores the target address for indirect branches

 Return Address Stack (RAS) that stores the function return branches.

Neoverse N1 supports three events, BR_IMMED_SPEC, BR_RETURN_SPEC and 

BR_INDIRECT_SPEC, to categorize immediate, indirect and return branches executed 

respectively. Getting a break down of the branch type helps to deep dive into the 

performance of each of these sub blocks within the branch prediction unit. Note that these 

events count both correctly predicted and mis-predicted branches. Corresponding events 

that only count mis-predicted branches are not supported. On Neoverse N1, Statistical 

Profiling	Extensions	(SPE)	2 6 can be used to attribute branch –mis-predicts to individual 

branches, giving a more targeted analysis than PMU events alone can.

TLB/MMU Effectiveness

Another important performance evaluation step is to check the virtual memory system 

performance, that affects the instruction fetch performance in front-end and memory access 

performance on the data side. The processor needs to translate a virtual address to physical 

address for any instruction/data memory access before it accesses the respective cache.

Note that a program’s view of memory is virtual address, but the processor works with the 

physical address when accessing cache or memory.

Virtual	to	physical	mappings	are	defined	in	the	page	translation	tables	which	reside	in	

system memory. Accessing these tables requires one or more memory accesses which take 

many cycles to complete – this is referred to as a page table walk. However, to make these 

translations faster, Translation Lookaside Buffers (TLBs) cache translation table walks, 

greatly reducing the number of accesses to system memory.

 

Neoverse	N1	implements	a	two	level	TLB	hierarchy.	The	first	level	contains	separate,	

dedicated TLBs for the instruction and data (load/store) address translations. Total accesses 

to these TLBs are counted by L1I_TLB and L1D_TLB respectively. The second level contains 

a	unified	L2	TLB	that	is	shared	by	both	I-side	and	D-side	accesses.	There	are	corresponding	

REFILL	counters,	that	count	the	refills	in	these	TLB	levels.	Those	accesses	that	cause	a	page	

table walk due to misses in the I-side and D-side TLBs are counted by events, ITLB_WALK 

and DTLB_WALK respectively.
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For evaluating the TLB effectiveness, there are four metrics that can be derived from 

the raw events:

ITLB MPKI and DTLB MPKI provide the rate of TLB Walks per kilo instructions for instruction 

and data accesses respectively. These derived metrics help to evaluate and correlate the TLB 

efficiency	with	respect	to	the	total	instructions.	DTLB	Walk	Rate	provides	rate	of	DTLB	Walks	

to the overall TLB lookups made by the program. Note that this is same as DTLB_WALK/

MEM_ACCESS as every MEM_ACCESS causes a L1D_TLB access. ITLB walk rate provides a 

percentage of ITLB walks to the overall TLB lookups initiated from the instruction side.

Instruction Mix

The	Neoverse	N1	micro-architecture	has	8	execution	units	which	can	process	five	types	of	

operations: branch, single cycle integers, multi-cycle integers, load/store unit with address 

generation,	and	advanced	floating	point/SIMD	operations.	Instructions	that	are	issued	to	

these execution units can be counted by the following PMU events:

 LD_SPEC: Load instructions issued

 ST_SPEC: Store instructions issued

 ASE_SPEC: Advanced SIMD instructions issued

 VFP_SPEC: Floating point instructions issued

 DP_SPEC: Integer data processing instructions issued

 BR_IMMED_SPEC: Immediate branch instructions issued

 BR_INDIRECT_SPEC: Indirect branch instructions issued 

  BR_RETURN_SPEC : Return branch instructions issued

Note that these are speculatively executed counts as these instructions are counted at 

the issue stage and give an estimate of the execution unit utilization, but not the retired 

instruction mix of a program. Neoverse N1 does not support retired event counters for 

counting the architectural instruction mix. Neoverse N1 supports events to further

break down the branch operations into immediate, indirect and return branches, counted 

by events BR_IMMED_SPEC, BR_INDIRECT_SPEC, and BR_RETURN_SPEC respectively. 

Sum of these three branch operation events can be used to compute the total branches. 

For evaluating the load on the execution units of the CPU, it is best to derive percentage 

of each types of operation with respect to the INST_SPEC counter, which counts the total 

instructions issued for execution.

Example:
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Core Memory Traffic

The MEM_ACCESS event counts the total number of memory operations that were issued 

by	the	Load	Store	Unit	(LSU)	of	the	core.	As	these	operations	first	get	looked	up	in	the 

L1D_CACHE, both the events L1D_CACHE and MEM_ACCESS count at the same rate. 

Neoverse N1 also supports two additional events, MEM_ACCESS_RD and MEM_ACCESS_WR, 

that	can	provide	the	read	and	write	traffic	breakdown	respectively.	Note	that	these	events	

are not the same as LD_SPEC and ST_SPEC since they count memory instructions issued,

but not necessarily executed.

Cache Effectiveness

The	Neoverse	N1	implements	a	multi-level	cache	hierarchy.	The	first	level	(L1)	includes 

a dedicated cache for instructions and a separate dedicated cache for data accesses. 

The	second	level	(L2)	is	a	unified	L2	cache	that	is	shared	between	code	and	data. 

Further down the hierarchy, the system could have an optional L3 cache in the core cluster 

and an optional shared system level cache (SLC) in the interconnect. L3 and SLC caches are 

implementation options.

The Neoverse N1 core supports hierarchical PMU events for all the cache hierarchy levels. 

For	each	level	of	caches,	there	are	total	access	counts	and	refill	counts.	Note	that	AArch64 

do not support cache MISS counters, but only REFILLs. A cache miss could lead to multiple 

cache	line	refills	if	the	access	is	on	a	cache	line	boundary	or	multiple	cache	misses	could	be	

satisfied	by	a	single	REFILL.	Refer	to	the	N1	PMU	Guide3 for details on the cache event 

counter descriptions. Cache policies and associativity details can also be referred to for

more details in the Chapter Micro-architecture details in the N1 PMU Guide3.

For all the cache hierarchy levels of the core, a set of useful metrics can be derived to study 

the cache behavior. For an example, L1 data cache metrics can be derived as:

Cache REFILL Characterization

For Neoverse N1 systems with a DSU cluster, N1 also supports two cache REFILL variants 

that	can	be	used	to	measure	if	the	cache	refill	data	came	from	inside	the	cluster	or	outside 

the	cluster.	In	this	configuration	REFILL	counts	can	be	divided	into	INNER	and	OUTER 

refill	operations3.

Remote Cache Access

For Neoverse N1 systems with multiple sockets or SOCs, N1 supports the REMOTE_

ACCESS event which counts the memory transactions that were handled by the data source 

from another chip.
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Last Level Cache Counter Usage

As we saw in [Chapter 3]	N1	System	Configurations	section,	Neoverse	N1	systems	could	

support cluster level L3 caches and a shared system level cache. Neoverse N1 implements 

two sets of cache hierarchical events for L3 and LL (Last Level).

L3 cache is an optional cache and the respective events are counted only if the core 

implements the L3 cache. This means that if the core does not have an L3 cache, this event 

should	count	zero.	However,	if	system	is	configured	in	a	dual-core	cluster	system,	

this	event	could	count	the	peer	core	traffic	from	snooping	within	the	cluster.

[Check	your	SOC	specification	for	details]

On systems which support a shared system level cache, LL_CACHE_RD counts the total 

accesses	to	the	SLC.	In	a	system	that	has	the	SLC	configured	to	count	LL_CACHE_RD	events,	

LL_CACHE_RD counter counts total SLC accesses made by the core and LL_CACHE_MISS_

RD counts the access missed at SLC.

To study the last level read behavior, Last level cache read miss metrics can be derived as:

Another	useful	metric	to	measure	the	SLC	hit	percentage	for	the	read	traffic	is	the 

SLC Read Hit%.

Last level cache events do not have a write variant in Neoverse N1 since SLC is only used as 

an eviction cache for the core.
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4 Performance Analysis Using Linux Perf Tool
The Linux perf tool7 is a widely used open source tool for collecting software and

hardware performance events from different sources within the hardware and system 

software. The kernel employs a perf_event subsystem to collect measurable events including 

the hardware PMU events from the processor itself. As shown in Figure7, each core has its 

own dedicated PMU hardware and the kernel perf driver collects events from each core 

PMU separately.

The Linux perf_event system provides an interface between Linux kernel and user space 

performance monitoring tools to collect the raw hardware events as needed. Linux perf tool 

is such an open source tool available in Linux that it can be used for performance monitoring, 

which supports two types of measurement techniques: 

Counting: Counting method collects overall statistics of an event during a workload’s 

execution, where the counter assigned with each event produce an aggregate of the overall 

event count. This event statistics help to characterize the overall workload execution 

behavior, without providing any details on where in the program a particular event occurred. 

This method is the best approach for an initial workload characterization exercise to identify 

performance limitations of the workload.

Event Based sampling:	Event	sampling	is	a	profiling	method	where	each	event	is	sampled,	

by	configuring	the	PMU	counter	to	overflow	after	a	preset	number	of	events.	This	overflow	

interrupt records the event count and also the instruction pointer address and register 

information.	Such	sampled	data	is	used	to	construct	profiling	information	about	the	

application, including stack trace and function level annotations. With this data, it is easy

to locate the libraries and code portions that contribute to the large portion of the

sampled event.

Figure 7: Performance Monitoring System
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All the above listed performance measurement techniques within Linux perf tool for both 

counting and event sampling mode are available the below functionalities:

 stat: provide performance counter statistics for overall execution of the program

 record: record the execution performance with percentage of samples for each event per  

 libraries and functions

 report: generate a report of the recorded sample using record

 annotate: annotate a report with samples % on the disassembly of the code

When	high	accuracy	is	needed,	for	example	when	profiling	hot	loops	or	significant	portions	of	

code, the “Counting” mode should be preferred for its accuracy – noting that it might require 

multiple	profiling	iterations	whenever	many	different	events	must	be	logged.	For	Neoverse	

N1 CPU, it is best to count maximum 6 events at a time to get a dedicated counter for each 

event. When number of events is more than the total number of counters available, the

counter	is	time	multiplexed	between	events	and	the	the	final	count	is	scaled	for	the	total	time	

period. This multiplexed counting could cause accuracy issues but is usually reliable unless

a precise measurement is needed.

Event Sampling mode is highly useful for hot spot analysis on a large portion of code, which 

relies on a statistical approach to sample different events over a large portion of time or code. 

It is important to be aware that this method has some limitations causing accuracy issues. 

Sampling	delay,	i.e.,	between	the	counter	overflow	and	interrupt	handler,	which	causes	skid	in	

the data obtained, that is, data stored during the sampling process and may not be the exact

point where the event occurred. Another issue comes from the speculative execution style of 

the processor, where some instructions that executed and triggered events may not be valid

if they were on the wrong code path. Though this approach has some accuracy limitations, 

it is still the best way to get closer to identifying the hot spots in the code execution. 

Linux perf allows tuning the sampling frequency, which helps to study variations in the event

counts if the data shows large inconsistencies across runs.

For more details and examples on how to use Liux perf tool, refer to https://www 

brendangregg.com/linuxperf.html

We will cover how to use Linux perf tool functionalities for workload characterization 

and hot spot analysis in Chapter 4.

Collecting Hardware PMU Events for Arm Architecture using Linux Perf Tool

In order to enable PMU event collection, the Linux Kernel must be built with CONFIG_HW_

PERF_EVENTS	enabled	in	the	kernel	config.	Most	of	the	production	builds	have	this	config	

option checked enabled, but if you are building a custom kernel remember to enable this 

config	option.	In	addition,	there	are	two	system	settings	which	need	to	be	configured	as	root	

user in order to obtain kernel symbols and add extra privileges:

https://www.brendangregg.com/linuxperf.html
https://www.brendangregg.com/linuxperf.html
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The perf_event_paranoid control affects privilege checks in the kernel, and setting this to

-1 permits opening events that might reveal sensitive information or could impact the stability 

of the system. See the details from kernel documentation at:

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html#unprivileged-users

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#perf-event-paranoid

The kptr_restrict control affects whether kernel addresses are exposed (e.g. via /proc/

kallsyms). Some developers use this technique to get kernel symbol resolution when they 

don’t have the vmlinux to hand (or where KASLR is in use). See the details from kernel 

documentation on kptr_restrict: https://www.kernel.org/doc/html/latest/admin-guide/

In	both	the	cases,	there	are	potential	security	implication	so	please	check	the	official	kernel	

documentations and consult your system administrator before enabling them.

An easy test to verify that PMU events are being counted properly is to use the perf 

stat functionality of Linux perf tool to count instructions and cycles. Perf stat counts the 

total	count	of	a	specified	event,	provided	as	the	hex	register	code.	0x8	is	the	hex	code	for	

instructions retired and 0x11 is the hex code for CPU cycles on the Arm architecture.

These	events	are	provided	to	the	perf	stat	-e	option	with	a	prefix	‘r’	to	it.

The above command should count total count of instructions and cpu cycles on all the 

CPU for 10 seconds. Linux perf allows to count for a particular CPU, per process, per thread 

etc, which can be found in the perf stat man page. Result from the above perf stat run gives:

Note that sometimes perf will silently fail if an event is not supported or enabled. Check with 

your CPU TRM for the event support on your system.

The examples in the following sections use the raw event numbers to indicate which events 

should be monitored. However, Linux kernel versions 4.17 and later support accessing N1 

core PMU events using named values. For earlier versions, the raw event number must be 

used. Refer to the Arm Neoverse N1 PMU Guide for mapping named events to numbers. 

For automation tools for PMU event measurement, Arm provides machine readable JSON 

files	with	all	the	events	and	their	event	codes	in	the	Github repository at ARM-Software/

PMU-Data9.

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html#unprivileged-users 
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#perf-event-paranoid
https://www.kernel.org/doc/html/latest/admin-guide/
https://github.com/ARM-software/data


20

Collecting Hardware PMU Events using Counting Mode

For	counting	mode,	use	the	‘perf	stat’	command	from	Linux	Perf	tool	as	shown	below. 

To count all events for characterization, as recommended in the cheatsheet [Chapter 2], 

typical solution is to capture events in batches of the total counter registers available in 

the platform.

An example run on the command line for instructions and cycles using event names

(using hex code is added below):

Collecting Hardware PMU Events using Sampling Mode

For	sampling	events,	use	the	‘perf	record’	command	from	Linux	Perf	tool	as	below.

For more details on how to conduct sampling and analyze the sampled data with these 

command lines, refer to these Linux perf Examples8.

Once a workload characterization is performed collecting events using counting mode and 

following the methodology outlined in Chapter 3, a subset of events can be shortlisted for 

sampling and hot spot analysis as demonstrated in the upcoming [Chapter 5].
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5 Performance Analysis on Neoverse N1: Case Study
In this section, we will demonstrate how to use the performance analysis methodology 

outlined in section [Chapter 3] for workload characterization and hot-spot analysis with

core PMU metrics captured from Neoverse N1 systems using Linux perf. We present 

an example workload characterization case study running on the Neoverse N1 Software 

Development Platform(N1SDP), which has 4 Neoverse N1 cores. The PMU events 

recommended [Chapter 2] are collected in batches of 6 events at a time using 

Linux Perf tool, “perf stat”.

Case Study: DynamoRIO Strided Benchmark

For our case study, we run the Stride Benchmark from the DynamoRIO tests. [Source 

Reference  https://github.com/DynamoRIO] The stride micro-benchmark10 is a pointer 

chasing benchmark that accesses values in a 16MB array, with array position being 

determined by the pointer being chased. The pointer position is a function of a constant 

value set in the array before the pointer chasing kernel runs.

Experiment Setup

Phase 1: Workload Characterization using Counting Mode

IPC	is	the	first	metric	to	look	at	in	order	to	evaluate	the	overall	workload	execution	efficiency.

Observation Note (Table 1): The obtained IPC of 0.22 is much lower than those

measured for most workloads on the Neoverse N1. For comparison, a large benchmark like

SPEC CPU(r) 201711 (estimated) workloads that are intended to stress the system manages 

to achieve at least an average IPC > 1 on this CPU. The maximum achievable IPC is 4 on 

Neoverse N1, which is typically achieved by small & heavily optimized kernels rather than 

large applications.

Feature  ****

Platorm Noeverse N1 Software Development Platform(N1SDP)

Frequency 2.6 GHz

OS Ubuntu 20.04.2 LTS

Metrics  Value

Instructions 10,040,907,789

Cycles 43,809,490,290

IPC 0.22

Table 1: IPC

https://github.com/DynamoRIO/
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Cycle Accounting

As	first	step	to	identify	performance	bottlenecks	of	the	workload,	let	us	look	at	the	distribution	

of cycles spent using the Cycle Accounting related events (Table 2), following the methodology 

in Figure 6.

The	overall	cycle	distribution	percentage	(Figure	8)	shows	that	the	workload	is	significantly	

Back End bound.

Observation Note (Figure 8): 83% of the total cycles are stalled in the Back End and 0% 

are stalled in the Front End, which accounts for 83% of the overall execution time wasted by 

pipeline stalls.

As the workload is heavily Back End bound, we will now drill down the Back End events one 

by	one.	We’ll	first	look	at	cache	performance	and	instruction	mix	to	see	if	the	workload

is core or memory bound. We already have a hint that it could be memory bound from

looping pointer chase code which essentially performs accesses to CPU caches in this case.

Next, we will look at the cache performance and instruction mix since they can reveal 

if something has caused our application to become core-bound or if we have cache 

performance issues.

Figure 8: Stride Benchmark: Cycle Accounting

Table 2: Cycle Accounting Metrics

Metrics  Value

Cycles 43,809,490,290

Stall Front End 4,020,406

Stall Back End 36,777,347,524
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D-Cache Effectiveness

The D-Cache effectiveness events (Figure 9) show misses in all levels of the data cache 

hierarchy	with	significant	last	Level	cache	read	misses	compared	to	total	reads.	This	suggests	

that the workload is memory bound.

On	a	side	note,	as	L2	is	a	unified	cache	to	L1	D-Cache	and	L1-I	Cache,	the	L2	and	last	level	

cache misses can also be caused by instruction misses in the Front End. It would always make 

sense to check for L1-I misses numbers while evaluating your caches performance. However, 

for this workload, we do not expect L1-I misses because of negligible Front End stalls.

A few detailed cache effectiveness metrics can be derived as below in Table 3: 

Figure 9: 
Strided Benchmark:
D-Cache Effectiveness

Table 3: D-Cache Effectiveness Metrics

Metric  MPKI Value

L1 I-Cache MPKI 0

L1 D-Cache MPKI 106

L2 Cache MPKI 78

LL Cache Read MPKI 195

Metric
Miss Rate 
Value

L1 D-Cache Miss Rate 0.53

L2 Cache Miss Rate 0.18

LL Cache Read Miss Rate 0.99

Metric
 Miss Rate 
Value

L1 I-Cache Miss Rate 0
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Observation Note (Table 3):	L1	D-Cache	MPKI	is	significantly	high	at	106,	with	53%	of	

the	L1	D-Cache	accesses	resulting	in	refill.	Instruction	cache	record	show	no	L1-I	missed	

instructions and L1 I-Cache MPKI and miss rates are negligible, as expected. L2 Cache 

MPKI	is	high	as	well	at	78,	with	53%	of	accesses	requiring	a	refill.	Additionally,	last	level 

cache read MPKI show very strong pressure on our memory bandwidth resources because 

99%	of	the	read	requests	were	not	satisfied	and	required	an	LL	request	back	to	main	memory. 

With no L1-I misses, L2 and last level cache pressure is only coming from the Back End 

memory system.

Let us look at the instruction mix next to see the percentage of memory instructions 

being executed.

Instruction Mix

Figure 10: Strided Benchmark: Instruction Mix

Table 4: Instruction Mix Metrics

Metrics  Value

INST_SPEC 10045062230

LD_SPEC 2009270409

ST_SPEC 6033560

DP_SPEC 6022101605

ASE_SPEC 480

VFP_SPEC 0

CRYPTO_SPEC 0

BR_IMMED_SPEC 2006033840

BR_RETURN_SPEC 1231654

BR_INDIRECT_SPEC 1338354



25

Observation Note (Figure 10): The instruction mix shows 60% integer operations, 20% load 

instructions	and	20	%	branches.	As	we	see	significant	cache	misses	in	our	workload,	this	tells	

us that the work is memory bound and needs optimization on improving its cache pressure to 

improve performance.

Though the workload is not Front End bound, it is still worthwhile to check the Branch 

Effectiveness counts as the workload also constitutes 20% branches.

Branch Effectiveness

To evaluate the branch prediction effectiveness, mis-prediction rates and MPKI metrics are 

derived below in Table 5:

Observation Note (Figure 11): Branch mispredictions look negligible for this workload. 

We would have seen Front End stalls otherwise; it’s as expected.

Figure 11: Stride Benchmark: Branch Effectiveness

Table 5: Branch Effectiveness Metrics

Metrics  Value

Branch MPKI 0

Branch PKI 200

Branch Misprediction Rate 0
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As	we	have	identified	the	workload	is	memory	bound,	let	us	also	look	at	how	the	TLBs 

are performing. We would not expect L1I TLB performance issues as we have negligible 

Front End Stalls. 

TLB Effectiveness

To evaluate the TLB effectiveness, table walk MPKI metrics are derived below in Table 6:

Observation Note (Table 6, Figure 12): Instruction side TLB misses are negligible as 

expected, while data side TLBs exhibit notable walk counts. This suggests that the workload 

does incur data-side page misses resulting in page table walks for some memory accesses.

Figure 12:
Stride Benchmark:
TLB Effectiveness

Table 6: TLB MPKI metrics

Metrics  Value

ITLB MPKI 0

DTLB MPKI 14
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Workload Characterization Summary

Figure 13 and 14 show a summary of all the MPKI and Miss rates on one chart.

Figure 14: Stride Benchmark: Miss Rate

Figure 13: Stride Benchmark: MPKI
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Workload Execution Remarks

The strided micro benchmark is poorly performing with a very low IPC of 0.22, as measured 

on the N1SDP platform. From the characterization data, the workload is heavily Back End 

bound with a very high Back End stall rate of 83%. The workload is has 60% integers,

20%	branches	and	20%	load	operations.	The	workload	exhibits	significant	Back	End	pressure	

in the data cache side, with L1D MPKI of 106, L2 MPKI of 78 and Last Level Cache Read 

MPKI of 195. The Front End of the CPU is operating smoothly with stats like Branch MPKI,

L1I MPKI and ITLB MPKI being negligible, which corresponds to the zero Front End stalls.

The characterization evidence supports the workload behaviour (as mentioned in the test 

source code remarks) that there is a memory bottleneck in our system and we should next 

investigate how to address it.

Events for Hotspot Analysis

To identify the code execution bottlenecks for optimizing the code, we should further 

deep dive into two aspects: Back End stalls and hierarchical D-Cache events. For further 

investigation, the short listed events for hot spot analysis apart from INST_RETIRED and 

CPU_CYCLES include:

 L1D_CACHE

 L1D_CACHE_REFILL

 L2D_CACHE

 L2D_CACHE_REFILL

 LL_CACHE_RD

 LL_CACHE_MISS_RD

Phase 2: Hot spot Analysis using Perf Event Sampling Mode

We collected perf sample data for all the short listed events for hot spot analysis and studied 

the annotated disassembly code.

Stride Benchmark Source Code
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Stride Benchmark Main Function Disassembly

Figure 15: Stride Benchmark  Source Code

Figure 16: Stride Benchmark Main Function Disassembly 
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Observation Note (Figure 16): Sampling cycles and instructions show 99% samples at ldrb 

instruction, which is the load instruction that access array elements by pointer chasing. 

The hot code region for instruction and cache miss events is also from the same instruction, 

and 99% of samples are taken there as well, sampled at the “subs” instruction after the load 

which accesses the array elements by pointer chasing. The annotated disassembly code 

in Figure 16 shows the “ldrb” and “subs” instructions highlighted. Note that perf sampling 

can introduceskid and hence hot code line is on the subs instruction after the load that is 

the bottleneck. This suggests that the main bottleneck in this application comes down to 

performance issues with the array access.

Phase 3: Code Optimization

One well known optimization for reducing memory pressure is prefetching, which can be 

done by hardware or software. In this case, the algorithm is chasing pointers in every seventh 

cache line and from close observation, it is clear that the stride has a pattern. We tried 

software preloading on the workload and obtained much better performance, which indicates

that	hardware	prefetcher	is	not	efficient	with	this	pattern	on	the	platform	under	test.

The code for prefetcher tuning is in the source code in Figure 15 (highlighted green). 

A preprocessor directive is added inside the loop which enables  software pre-loading and 

help tune the prefetch distance.

For the __builtin_prefetch tuning, we have used the option (0,0) to tune for read access and 

to prefetch into L1 Data Cache respectively, as we are only loading the array elements once, 

and the data is not reused for being stored in other hierarchy levels. Subsequently, we also 

trained the software preloader for multiple prefetch distance values until we got a saturated 

high performance at DIST = 40 as shown in Figure 17.

Figure 17: Speedup obtained for different prefetch distances
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Optimized Code Characterization Summary

With software preloading, we achieved a performance uplift of 2x- execution time reduced 

from 16 seconds to 8 seconds. Let us now look at how we observe the performance uplift in 

PMU	events	for	optimized	code,	and	measure	it	against	non-optimized	code.	We	will	first 

look at the IPC change.

Observation Note (Table 7): With the optimization applied, we have reduced cycles by half 

which matches the 2x performance lift obtained. We also have ~3x improvement in IPC, 

with 193% change. Note that, the additional code for prefetching has also increased the 

total instructions retired by 39.7%. Let us check the instruction additions comparing the the 

disassembly for the optimized code with the baseline code. A diff between the baseline and 

optimized code shows us the extra instructions executed as below:

Let	us	see	if	the	instruction	mix	reflects	these	changes	in	Table	7.

Observation Note (Table 8): As expected, the load operations doubled, as the software 

preload instruction(prfm) is counted for the LD_SPEC event. Other instructions get counted 

with the DP_SPEC event, which is increased by 33%. 

Metrics Baseline Optimized % Change

Instructions 10,040,907,789 14,031,047,062 +39.7%

Cycles 43,809,490,290 20,858,281,670 -52.4%

IPC 0.22 0.67 +193%

Metrics Baseline Optimized % Change

Integer operations 6,022,101,605 8,016,721,840 +33%

Load operations 2,009,270,409 4,006,679,514 +99%

Table 8: Instruction Count% Change

Table 7: Cycle Accounting% Change
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As our major performance bottleneck was the memory pressure, let us look at the 

improvements in the Cache Effectiveness metrics. MPKI is not an apple-apple comparison 

between the two runs as the workload executes ~40% more instructions with software

pre-loading. Therefore, we will just look at the miss rates and access count change as shown 

in Table 9.

Observation Note (Table 9): L1 D-Cache accesses are doubled as the optimized code 

executes twice the load operations with prefetch instruction counted as a load. As we 

prefetched	into	L1	specifically	in	read	mode,	we	have	been	able	to	reduce	the	L1	D-Cache	

misses	significantly	by	68%,	which	attributes	to	the	performance	uplift	of	2x	obtained.	

L2 cache accesses and LL cache read accesses remain the same, as we did not prefetch into 

any of these hierarchy levels.

Final Summary

This case study has demonstrated how to use hardware PMUs of Neoverse N1 core  

or workload characterization based on the selected PMU events from [Chapter 2] and

following the methodology in [Chapter 3]. Though this example was fairly straight-forward

it demonstrates a methodology for isolating the cause of performance bottlenecks,

correcting the issue, and verifying that the optimizations corrected the behavior causing  

the	performance	degradation.	This	basic	flow	may	be	applied	to	more	sophisticated	

workloads to analyze performance issues.

Metrics Baseline Optimized % Change

L1 D-Cache Accesses 2,015,180,109 4,011,259,164 +99.4%

L1 D-Cache Refills 1,069,353,328 331,828,745 -68.96%

L2 Cache Accesses 4,196,187,760 4,195,830,182 -0.008%

L2 Cache Refills 785,969,088 966,401,485 +22.95%

LL Cache Reads 1,956,721,560 1,960,623,393 +0.19%

LL Cache Read Misses 1,956,637,893 1,960,505,782 +0.2%

Table 9: Cache Metrics% Change
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Glossary

Term Meaning

CMO Cache Maintenance Operations

CPU Central Processing Unit

LSU Load Store Unit

MMU Memory Management Unit

PE Processing Element

PMU Performance Monitoring Unit

SiP Silicon Provider

SLC System Level Cache

TLB Translation Lookaside Buffer
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