
White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

1

Software Defined Vehicles and
the need for standardisation

W H I T E P A P E R

By Andrea Gallo

Abstract

This white paper will look at the
implications coming with the disruption
driven by the Software Defined Vehicle
momentum. From the lack of standard
interfaces and latency to the need for
secure communication between virtual
machines and the ability to maintain up-to-
date, secure software - all the challenges
identified have one thing in common.
They all require collaborative software
engineering to bring standardization and
reference open source code bases to
automotive. Without open standards the
path to delivering the software defined
vehicle will be a lot longer and more costly.

Linaro has a track record of bringing
standardization to the Linux kernel and is
now extending this to automotive.

Contents

The evolution of Software Defined Everything 2

Automotive and software today 4
 Simplifying the management of ECUs - A single unified bus 4

 Central automotive servers and multiple zonal gateways 4

 The head unit becomes customisable 5

The transition to Software Defined Vehicles and the 6
challenges of implementation
 Vendor lock-in and the lack of standard interfaces 6

 Secure and Reliable VM-to-VM communication 6

 Latency and the need for a defined fast path 7

 The challenges of continually updating software 7

Achieving the Software Defined Vehicle through 9
open source and common standards

 Reducing the hypervisor lock-in through Project Stratos 10

 Secure and reliable communication through OP-TEE 11
 and Functional Safety

 Reducing latency through Time Sensitive Networking and 11
 Time Sensitive Applications

 Delivering the latest, most secure and validated software 13
 through Linaro’s Trusted Substrate and Linaro’s Linux Kernel
 Functional Test projects

Accelerating Cloud Native In Automotive Through 14
Arm SOAFEE Initiative

How do I get involved? 15

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

2

The evolution of Software
Defined Everything

Almost sixty years ago, in 1964 Piergiorgio Perotto
invented and designed the Olivetti Programma P101,
also known as the Perottina, the world-first electronic
programmable desktop calculator in history. It also
included a magnetic floppy card, the ancestor of the
floppy disk. NASA purchased ten models to plan the
Apollo 8 landing on the moon.

It featured registers, mathematical operations and even
memory load/store and jump instructions -- all so similar
to what we consider an assembly language nowadays!

The Perottina disrupted the existing market of
electromechanical calculators, for it could be easily
programmed to implement new functions without
changing any mechanical parts. Not to mention that the
electromechanical solutions had quite a low production
yield and were quite expensive to manufacture. It was a
revolution!

50 years ago in 1971 Federico Faggin designed
the world’s first microprocessor, the Intel 4004. It
replaced the fixed function electronic designs with a
programmable logic unit. It was a major revolution and
the ancestor of the entire Intel x86 family of processors.

This year Arm Ltd celebrates their 30 year
anniversary. It was actually 36 years ago that the first
Arm1 chip was powered on at Acorn Computers.

Twenty years ago the virtualization momentum
started and eleven years ago in July 2010 NASA and
Rackspace launched the open-source cloud-software
OpenStack initiative.

Software has come to play a critical role in
technology’s evolution and has led us to where we
are today - in the era of software defined everything.

Electromechanical calculators got replaced by
programmable logic computers. Custom-designed
telecommunication units have been replaced by
Software Defined Networking (SDN) and Network
Function Virtualization (NFV). Dedicated physically-
located pools of hard drives, optical readers and
magnetic tapes have been replaced by Software
Defined Storage (SDS).

https://en.wikipedia.org/wiki/Pier_Giorgio_Perotto#Programma_101
https://en.wikipedia.org/wiki/Programma_101
https://spectrum.ieee.org/the-calculator-that-helped-land-men-on-the-moon
https://en.wikipedia.org/wiki/Federico_Faggin#Intel
https://www.arm.com/company/arm-30-anniversary
https://www.arm.com/company/arm-30-anniversary
https://en.wikichip.org/wiki/acorn/microarchitectures/arm1#History
https://en.wikichip.org/wiki/acorn/microarchitectures/arm1#History
https://en.wikipedia.org/wiki/OpenStack#History

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

3

Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS) are nowadays
common terms, as much as the new Car as a Service
(CaaS) and Mobility as a Service (MaaS) terms are
becoming familiar.

We live in a globalised world where consumers have
become accustomed to always being online and
connected. With IoT, VR, AI and edge computing,
we are increasingly expecting our devices to
intelligently communicate with one and another and
be customizable. And while in many instances this is
possible, there is one piece of technology which is
critical to our lives which still has some way to go before

it is truly part of our pool of connected devices - our
cars. In order for our vehicles to become one of our
connected devices we need to extend the software
defined everything movement to automobiles.

The next technological disruption to address these
needs is Software Defined Vehicles (SDV).

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

4

Simplifying the management of ECUs
- A single unified bus

Work is underway to simplify the management of ECUs.
Traditionally, multiple ECUs have been connected
together and have been communicating over a
Controller Area Network bus (CANbus). The addition of
distributed audio and video functionalities has increased
the number of wires in a car with a direct impact on the
overall car Bill of Materials (BoM). The effort to simplify
the complexity and amount of wiring in a car and reduce
its manufacturing cost has led to the definition and
adoption of a single unified bus in the car, also known as
Audio Video Bridging (AVB), Time Sensitive Networking
(TSN) or Automotive Ethernet.

It is a single Ethernet-based bus shared by all ECUs in
the car and it features real-time capabilities and pre-
allocated guaranteed time slots, so that critical sensors
or isochronous media pipes can timely transmit and
receive their data as needed.

Central automotive servers and multiple zonal
gateways

The increased computing capabilities in recent
microprocessors is driving the next change: multiple
embedded fixed-function ECUs can be combined into
one or two central automotive servers and multiple
zonal gateways. Car makers can add new functionalities
or improve existing features at will over the life of a car,
as long as there are enough spare computing resources
and the required hardware support is there. Combining
multiple ECUs into one or two server CPUs provides

Automotive and software
today
The concept of Software Defined Vehicles reflects the
gradual transformation of automobiles from highly
electromechanical terminals to intelligent, expandable
mobile electronic terminals that can be continuously
upgraded.

Smartphones and computers transitioned from
hardware upgrades to software development when they
had reached the physical limits of what was possible.
The automotive industry is in a similar transitional
phase where in order to evolve our cars into connected
devices, we need to rethink how we build cars and move
towards software development.

Over the years, the amount of electronics in
automobiles has steadily increased.

So far more and more functionalities have been added
via fixed-function embedded electronics, also known
as control units or engine control units (ECU). Each
ECU is connected to a few sensors and actuators and
manages a specific fixed function in the car. According
to the IEEE, the number of ECUs in a premium car
has increased by 50% in the last ten years, reaching
a massive number of 150 ECUs in one single car!
Consumers expect their cars to function similarly
to their smartphone, as such the management of
functionalities needs to become more centralised and
software based - not only to leverage IoT but also to
reduce manufacturing and maintenance costs. The
current set up in many cars with more than 100 ECUs
does not lend itself to the future connected car.

So what steps are currently being taken towards
realizing the Software Defined Vehicle?

https://en.wikipedia.org/wiki/Audio_Video_Bridging
https://en.wikipedia.org/wiki/Time-Sensitive_Networking
https://www.cambridge.org/it/academic/subjects/engineering/communications-and-signal-processing/automotive-ethernet-3rd-edition?format=HB&isbn=9781108841955
https://www2.deloitte.com/cn/en/pages/consumer-business/articles/software-defined-cars-industrial-revolution-on-the-arrow.html
https://spectrum.ieee.org/software-eating-car

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

5

economic savings coming from multiple angles: BoM,
multiplicity, size and complexity of the circuit boards,
test plans and test harness, etc.

The head unit becomes customisable

The same trend applies to the head unit. Multiple
independent instrumentation clusters, displays and
gauges, are being merged into one single large central
display, which provides virtually unlimited indicators.
Multiple buttons, knobs and levels are being merged
and transformed into icons and virtual buttons on a
touchscreen display. The user interface of a car could be
reconfigured and customised at will by the users.

This is the start of the Software Defined Vehicle (SDV)
momentum!

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

6

The de-facto industry solution is to adopt virtualization
technologies. A hypervisor can provide well isolated
virtualized environments, one for each ECU. Assuming
that the hypervisor technology can emulate the legacy
ECU as close as possible, each ECU code base can run
almost unmodified in its own virtual machine and the
resulting server platform may run a mix of:

• Safety certified OS and bare metal applications
 for safety critical functions - ADAS, engine control,
 instrumentation cluster, connectivity

• Real Time OS for early functions - remote cameras,
 audio subsystem

• High Level Rich OS (Linux, Android) for the main
 dashboard and user services - audio/video
 infotainment, navigation, etc.

It is important to note that adopting a hypervisor is
not a cost free move, for when it comes to access to
peripherals via device drivers in the VM, there is a
tight link between the virtual device drivers and the
hypervisor of choice. This is true for both type 1 and
type 2 hypervisors.

The transition to Software
Defined Vehicles and
the challenges of
implementation
While there is work currently happening which
signals the beginning of the Software Defined Vehicle
transition, there are several problems that need to be
solved and implications to be considered in order to
realise this major shift.

Vendor lock-in and the lack of standard
interfaces

There is an immediate consequence of the trend to
merge multiple ECUs into one or two server chips: the
individual software code bases running on each ECU
need to be ported to the new CPU and run altogether
one next to the other. There are non negligible
implications:

• Compatibility of different software code bases
 and runtimes

• Cross-component interference

• Disruption of safety critical functionalities

• Different security levels provided by different
 functions

• Overall cost of integration and maintenance

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

7

The embedded software running on an ECU requires
some rework to be ported on top of the virtualized
device drivers. The implication is that there may be a
natural lock-in with the hypervisor technology of choice,
if the hypervisor support is baked directly into the
virtualized device drivers. It may become very expensive
to switch hypervisors.

By having a dependency between the virtualized
device drivers and the hypervisor, it forces a very early
commitment to a SoC and Hypervisor choice in what
is likely a multi year design and development effort. A
given selected solution may be old technology by the
time a vehicle gets close to the go-to market phase but
there may not be an opportunity to migrate to a newer,

better or more secure technology at that point.

There is a need to define standard interfaces which
would work with every hypervisor and which could be
adopted to modify the ECU device drivers.

Secure and Reliable VM-to-VM communication

The second challenge is to adapt the CANbus or the
Automotive Ethernet bus used by fixed-function
embedded ECUs to communicate between them. The
problem is to identify its corresponding software-based
communication infrastructure across all VMs.

The natural choice is to use the virtualized LAN
drivers in the VMs, so that the software originally

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

8

developed for the ECUs would still communicate over
an ethernet-compatible bus. The next step is to look at
the underlying infrastructure at the host system level,
which would be used to implement the backend for the
virtual ethernet devices. This really depends on the host
system. Is it a type 1 hypervisor or a type 2? Is it running
Linux or an RTOS or something else? Is it the default
“local loop” or something custom?

It is quite difficult if not risky to accept different
implementations on different host platforms. There is a

need to define one standard host VM-to-VM solution,
which shall be reliable and secure.

In addition, use cases like bus recorder for the insurance
companies should be considered, these may require
a secure storage service and may dictate a specific
implementation.

Latency and the need for a defined fast path

In the traditional set up, fixed function ECUs are
connected directly to the sensors, relays and actuators
in their scope of operation. This ensures timely data
transfer, be it for early functions or audio/video
subsystems.

Once the ECUs are transferred into Virtual Machines,
the same real time requirements need to be met in the
new set up. The ethernet link is still used to connect
the sensors and relays/actuators to the main server
processor via the zonal gateways. Time Sensitive
Networking and time slicing, bandwidth management,
etc. are all still present but guaranteed only up to the
physical connection to the server processor.

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

9

Once packets are delivered to the hardware buffers, the
ultimate latency until the application software functions
are executed depends on multiple software layers:
the host OS and type 2 hypervisor or the bare metal
hypervisor, the OS running in the VM, the application
itself. As a result, the latency is out of one’s control.

Building on top of the standard interfaces for virtualized
devices, there is a need to define a fast path between
the application running in the VM and the hardware
FIFOs, bypassing the VM OS and the hypervisor.

The challenges of continually updating
software

The more software there is in a product and the more
complex that software becomes, the more essential
it becomes to define a software update strategy. The
way software is developed is changing and it is edging
closer and closer to continuous release and deployment
mechanisms with new jobs like devops becoming
familiar in the automotive industry.

Over-the-Air Updates

Over-the-Air updates (OTA) can generally be split into
two phases: the first phase takes care of the handshake
protocol with the software provider and downloads
the new software image, the second phase takes care
of the flashing procedure. The former takes place as a

runtime service while the latter usually requires a reboot
of the platform. There are multiple implications to be
considered.

First of all, there must be a fallback mechanism in case
the new image is corrupted, not complete or the update
process fails. The vehicle cannot just become unusable.
It is not acceptable for smartphones or computers, it
cannot even be conceived for a vehicle.

Security and Trust

Then there is the security aspect. The whole process
to identify, download and flash the update must be
trusted. The vehicle must not be compromised. It is
mandatory to have all signature verification procedures
and best practices. Not to mention the requirement to
ensure that the entire software is secure and trusted
while the vehicle is powered on. Security, root of trust,
applications for trust, non-repudiable logs, secure
storage and system health monitoring.

A software defined vehicle can integrate components
from many different suppliers, at a recent conference
one car maker hinted at modules provided by as many as
twenty different vendors! Integrating components from
multiple suppliers introduces the potential for disrupting
a component from another vendor. There is also the
case of dependent components, a process also known
as a transactional update. This is when one component
is updated if, and only if, a given related component also
gets updated successfully at the same time. There needs
to be a rollback mechanism in case chained updates do
not all complete as expected.

Continuous Integration and Testing

Lastly continuous integration and testing needs to be
considered. There are so many moving parts in the
system, so many patches being released and tested in
parallel - both during development as well as during
maintenance. There is a need for an automatic system
- and its infrastructure - to continuously build and test
the entire system or each subsystem - depending on the
software architecture - for every patch pull request.

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

10

Linaro and its member companies are driving multiple
projects that help realize the Software Defined Vehicle
revolution through reference open source software.

Reducing the hypervisor lock-in through
Project Stratos

Project Stratos addresses the need for reducing the
application lock-in inherent in the current mix of
Hypervisor and SoC proprietary solutions. Its aim is to
establish virtio interfaces complying with the OASIS
Virtual I/O Device (VIRTIO) specification. Project Stratos
also generates open-source implementations of the
front and backends for that specification.

The first problem that needs to be addressed is the need
for common frontend interfaces via the virtio standard.
The diagram shows how having a common virtio
interface allows the hypervisor to be transparent to the
application. A previous generation hardware can now
be used to start development on the next generation
without as much cost to port to the new platform when
it arrives. The selection of a solution can be opened to
a wider market of SoCs and the decision made later in
the vehicle’s development. This ensures you end up with
more up to date and secure software in your vehicles.

The second problem being actively addressed is the
need to reduce the duplication of effort in implementing
the backends for the standard interfaces. The majority of
the functionality is the same and only a shim is required
per hypervisor. There are obvious benefits to this
common implementation of the backend.

First of all this enables the rapid proliferation of any
new standard to all hypervisors that share the common
backend. Secondly, security is enhanced when there are
more eyes and testing of the core functionality due to

Achieving the Software
Defined Vehicle through
open source and common
standards
The Arm ecosystem is well known for its very high
pace of innovation, thanks to the business model
created in 1992 and pursued since then by Arm Ltd.
Multiple semiconductor manufacturers license the Arm
microprocessor IP and its fundamental peripherals,
they then add their own differentiating blocks and
design their unique system-on-chip. The outcome is a
significant large number of vendors competing in the
same market segments.

While on one side this fosters innovation at an
incredible speed, on the other side the implications
are that software integrators shall adapt and port
their software stacks to each new SoC. Often the
base software development kits delivered by the
semiconductor companies will be based on different
firmware releases, different operating system releases,
different toolchain versions, etc. The consequences
are that applications or software stacks from software
vendors and system integrators may not work the
same on different platforms or may have different
security levels. Maintenance over time, rebasing to new
releases, porting fixes are all expensive and difficult to
consistently apply to all supplier platforms.

Overall the total cost of ownership can be pretty
significant if competing semiconductor companies
design their SoCs without being aligned to the same set
of well defined standards.

This is why Linaro was formed in 2010 - to bring
companies together in the Arm ecosystem to work on
common foundational software. Bringing engineering
resources together to collaborate on common software
projects reduces overall fragmentation, allowing
Linaro’s member companies to reduce their costs for
development and validation of Arm-based software.

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

11

Current interfaces under development to be established
as standards with front end and common backends
implemented with the RustVMM are: - virtio-I2c, virtio-
rpmb, virtio-gpio and virtio-scmi. Work is progressing to
establish secure vm to vm multimedia via virtio-video
and a “fat virtqueue” to address the issue when using
virtio between guests and the global memory model
breaks down.

Automotive Grade Linux (AGL) Demo

As part of the bootstrap of the Stratos efforts, we
worked with the AGL virtualization expert group (EG-
VIRT) to demonstrate how virtio enabled the goal of
generating hypervisor-independent interfaces.

The demo was a very simple PoC with two targets as
a collaboration with the AGL image. In parallel Linaro
member companies worked to replicate the environment
on their physical hardware and uncover issues.

This work generated an expansion of QEMUs ability
to support a guest loader in Xen, which supports
collaboration where there is no common hardware
platform for development.

it being developed once in collaboration. And finally, in
this case the implementation of the common backend
via the RustVMM brings its own assurances of memory
management security and stability issues.

The diagram below highlights the simplification achieved
by having the common backend driver and the reduced
impact to the code.

Virtio as a common framework

Common backend for a device

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

12

a picture of what it would take to get OP-TEE safety
ready. If the automotive industry is ready to collaborate,
we believe we can repeat the success we’ve seen with
OP-TEE in the areas mentioned above.

Reducing latency through Time Sensitive
Networking and Time Sensitive Applications

In an automotive car environment, the timely and
reliable delivery of packets is of the utmost importance.
However the best effort nature of the Ethernet
protocol is not a good match. Moreover the traditional
protection mechanisms for packet delivery (e.g TCP/IP)
fail to meet the strict requirements of the automotive
industry.

With the intention of building on time sensitive
networking (TSN) and improving its upstream support,
Linaro has engaged on the kernel related activities
almost three years ago. We have contributed the initial
TSN drivers as well as the general architecture in the
kernel for configuring and managing TSN switches.

Although TSN can offer deterministic latency, there
might be use cases where it needs to be less than 1µs.
Measuring the kernel network stack yielded numbers
way above that. Since the kernel has to go through a
number of layers to deliver a packet to a userspace
application, this slowly adds up to ~70µs. We adopted
the AF_XDP in-kernel fast path, which can deliver
packets to user space directly by-passing the slower
kernel layers. Although we didn’t meet the strict 1us

Secure and reliable communication through
OP-TEE and Functional Safety

As noted in the previous section, each hypervisor can
provide its own proprietary implementation of the VM-
to-VM communication infrastructure.

In order to make this standard across all hypervisors, a
common virtio device shall be specified and adopted. If
needed, security can be added by leveraging the Trusted
Execution Environment by providing some secure
handshake between the VMs or even by providing a
secure trusted application.

It is an area to be explored from multiple perspectives:
functionality, requirements, performance and safety.

OP-TEE contains a full implementation to make a
complete Trusted Execution Environment. It has been
used in production on all sorts of devices like mobile
phones, tablets, laptops and surveillance cameras for
many years. All of this was made possible by Linaro in
2014 when OP-TEE became an open source project.

The last year or two car manufacturers, Tier 1 suppliers
and even OEMs have started questioning whether
OP-TEE fulfills any safety requirements, like ISO-26262.
The answer to that currently is no. This has led to an
investigation where the goal has been to understand
what it would take to get OP-TEE safety ready (ASIL-B).
In Linaro we’ve spent a couple of months looking at
MISRA C, trying to understand use cases from the
automotive industry by talking to car manufacturers
one to one as well as hosting workshops. We now have

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

13

Linaro’s Linux Kernel Quality program covers both Linux
kernel testing and testing of the LTS-derived Android-
Common Kernel. Linaro’s Linux Kernel Functional
Testing (LKFT) framework (LKFT) is the most reliable
Linux long-term-stable functional test framework in the
industry. On a weekly basis, across the latest 6 Linux
LTS releases, the linux-next branch and linux-mainline
branches, Linaro build-tests and reports on over 350
release+architecture+target combinations on every git-
branch push. We run functional-testing on nearly 40 of
these combinations on real and emulated hardware and
report back consistently with results in under 48 hours.
We have run over 156 Million Test runs of the Linux LTS
trees to date against a variety of embedded, emulated,
and server platforms. We work weekly with LTS
maintainers to execute testing and report regressions
on the latest release-candidates before the releases are
made.

We also build and functional test (Android CTS & VTS)
Android Common Kernels weekly and report regressions
in the Linux kernel and AOSP directly to Linux upstream
maintainers and Google respectively. To date we’ve run
over 530 Million Test runs against a variety of mobile
chipsets, preventing regressions before they ever hit
production mobile devices. Explore Linaro’s Linux kernel
functional test project at https://lkft.linaro.org

timing, we demonstrated we could deliver packets up to
the OPC-UA software layers in user space within ~4µs.

The next step is to deliver packets to the same software
layers but running inside a VM. This implies measuring
and coping for the added latency of the hypervisor
and the guest operating system in addition to the host
OS. The ongoing work in Project Stratos will lead the
analysis and definition of the right virtio interfaces to
enable the same fast path performances across the VM
boundaries.

Delivering the latest, most secure and
validated software through Linaro’s Trusted
Substrate and Linaro’s Linux Kernel Functional
Test projects

Trusted Substrate is a collaborative project for the
integrated, tested and packaged foundation of open
source secure boot and trusted execution environments.
The project brings standards based secure booting and
over-the-air (OTA) updates to the most trust demanding
embedded computing projects such as automotive and
robotics.

Trusted Substrate is aligned with Arm standardisation
and certification programs - specifically Platform
Security Architecture (PSA) and System Ready.

Trusted Substrate provides reference
open source implementations for
Dependable Boot, Other-the-Air
(OTA) updates with anti-bricking
and anti-roll back protections, Trust
Services.

In order to find out more about
Linaro Trusted Substrate,
please visit https://www.linaro.org/
trusted-substrate

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

14

These are complex issues which need to be solved by
an ecosystem of companies across the automotive
value chain. This is why, in collaboration with ecosystem
leaders like Linaro and others across the automotive
supply chain, Arm has recently announced the Scalable
Open Architecture for Embedded Edge (SOAFEE)
initiative and two new Arm-based centralized compute
development platforms. The aim is to accelerate the
adoption of the cloud native design paradigm in the
software-defined future of automotive and “datacenter-
on-wheels”architecture.

As a key ecosystem partner of Arm, Linaro intends
to work closely on Arm’s SOAFEE initiative and be a
partner to help achieve scale in addition to contributing
all the key technology components described in this
document.

Accelerating Cloud Native
In Automotive Through
Arm SOAFEE Initiative
Another key technology component to consider in
software defined vehicles is the utility of the vast
ecosystem of cloud native development which has
matured over decades in the enterprise domain.

The cloud native design paradigm has been used in
the enterprise domain to manage software complexity
and deliver incremental functionality deployment.
Introducing cloud native devops to automotive makes
sense for the very same reasons and is likely to result
in the automotive industry opening up to a wide
ecosystem of software companies. This will help pave
the way for the same type of revolution that we have
seen in the mobile space.

Although promising, there are many challenges to
consider when bringing cloud native into the automotive
space. First and foremost, it is critical to extend the
existing cloud native infrastructure for automotive
workload development, which is realtime and safety
relevant. An example of such an infrastructure element
could be the usage of a Kubernetes orchestrator and
the need to extend it to orchestrate mixed critical
workloads.

https://www.arm.com/solutions/automotive/software-defined-vehicles
https://www.arm.com/solutions/automotive/software-defined-vehicles

White Paper | Software Defined Vehicles and the need for standardisation
BACK TO
THE TOP

15

How do I get involved?
Together with our member companies, Linaro has
been working on all the key technologies we consider
essential to enable the Software Defined Vehicle
revolution through open source software. These span
from the secure boot, Trusted Execution Environment
and OTA, security and trust at system level, virtio and
hypervisors, Time Sensitive Networking (TSN) and
Automotive Ethernet, Linux and Android functional
testing.

To speak to Linaro about how we can collaborate,
contact contactus@linaro.org.

About Linaro

Linaro leads collaboration in the Arm ecosystem and
helps companies work with the latest open-source
technology. The company has over 250 engineers
working on more than 70 open-source projects,
developing and optimizing software and tools, ensuring
smooth product roll outs, and reducing maintenance
costs. Work happens across a wide range of
technologies including artificial intelligence, automotive,
datacenter & cloud, edge & fog computing, high
performance computing, IoT & embedded and mobile.

