
1

Introduction to
Armv8.1-M architecture

February 2019 White Paper

By Joseph Yiu, Senior Principal Engineer, Arm

2

The Armv8.1-M architecture is an enhancement of
the current Armv8-M architecture. It brings many new
features, including an M-Profile Vector Extension (MVE)
for signal processing and machine learning applications.
MVE for the Arm Cortex-M processor series is called
Arm Helium technology.

This whitepaper provides an overview on the various enhanced areas in the Armv8.1-M

architecture, including Helium.

What is the Armv8.1-M architecture?
Armv8.1-M is an extension of the Armv8-M architecture that includes many new features:

A new vector instruction set extension called Helium

	�Additional instruction set enhancements for loops and branches (Low Overhead

Branch Extension)

Instructions for half precision floating-point support

Instruction set enhancement for TrustZone management for Floating Point Unit (FPU)

New memory attribute in the Memory Protection Unit (MPU)

	�Enhancements in debug including Performance Monitoring Unit (PMU), Unprivileged

Debug Extension, and additional debug support to focus on signal processing

application developments

Reliability, Availability and Serviceability (RAS) extension

Helium:

The M-Profile Vector Extension (MVE) is an optional architectural extension that enables

higher signal processing and machine learning capabilities. For Arm Cortex-M processors,

MVE is called Helium.

Neon is an architectural extension for A-Profile processors, including Arm Cortex-A and

Neoverse, that enables high performance Advanced SIMD technology.

While there are similarities between Helium and Neon, Helium is a new ground-up design

that enables efficient signal processing performance in small processors. It offers many

new architectural features that enhance the compute performance of embedded use

cases, as it is optimized for area and power, bringing Neon capabilities (SIMD instructions

for Cortex-A) to the M-Profile architecture.

https://developer.arm.com/products/architecture/cpu-architecture/m-profile
https://developer.arm.com/technologies/trustzone
https://developer.arm.com/products/processors/cortex-m
https://developer.arm.com/products/processors/cortex-a
https://www.arm.com/solutions/infrastructure

3

Helium and Neon are similar in the following areas:

128-bit vector size

Uses registers in the floating-point unit as vector registers

Some vector processing instructions are available in both Helium and Neon

However, there are many key differences between Helium and Neon:

	�Helium is designed to maximize the use of all available hardware and uses fewer

vector registers than Neon

	�Some operations in Helium utilize both vector registers and registers in the scalar

register bank

Helium supports more data types than Neon

	�Helium supports many new features like loop predication, lane predication, complex

maths and scatter-gather memory accesses

Helium adds over 150 new scalar and vector instructions. Architecturally, there are many

implementation options:

	�Helium option omitted – Armv8.1-M integer core with optional scalar FPU (double

precision support also optional)

	�Helium with support for vectored integer only, and with optional scalar FPU (double

precision support also optional)

	�Helium with vectored Integer + floating point (support vectored single precision and

half precision) with scalar FPU (double precision support also optional)

Due to large number of instructions covered by Helium, it is impossible to cover all

of them in this document. Here are a number of highlights, in addition to the vector

processing capabilities:

I nterleaving and de-interleaving load and store instructions (VLD2/VST2 with strides

of 2, and VLD4/VST4 with strides of 4)

 Vector gather load and vector scatter store – memory access of elements in a vector

register, with address offset of each element in the vector, defined using elements

in another vector register. This allows software to handle arbitrary memory access

patterns and can be used to emulate special addressing modes like circular addressing,

which are often used in signal processing. This can also help accelerate non-sequential

accesses of data elements in arrays in various data processing tasks

 Vector complex value processing supporting integers (8-bit, 16-bit and 32-bit) and

float (32-bit) – e.g. VCADD, VCMUL, VCMLA instructions

 Lane predication – this will be covered later

Big integer support – this will be covered later

“�The M-Profile Vector
Extension (MVE) is an
optional architectural
extension that enables
higher signal processing
capabilities. For Arm
Cortex-M processors,
MVE is called Helium.”

4

To reduce the processor’s area and power, the register bank in the FPU is reused for

vector processing:

The integer support in Helium enables efficient compute of 8-bit, 16-bit and 32-bit fixed

point data. 16-bit and 32-bit fixed point formats are widely used in traditional signal processing

applications, such as audio processing. 8-bit fixed point format can be important to machine

learning (ML) processing, such as neural network computation, as well as image processing.

Combining Helium with the new Low Overhead Branch Extension, the performance

of signal processing with Armv8.1-M processors can be several folds better than using

traditional SIMD instruction set in Armv7-M and Armv8.0-M, while maintaining a small

processor size with excellent energy-efficiency.

Helium enables Arm Cortex-M processors to address the compute challenges in (but

not limited to):

Audio devices

Sensor hubs (sensor fusion), context hub (environmental sensing) and wearables

Keyword spotting and voice command control

Power electronics and controls (signal processing)

Communications (e.g. NB-IoT)

Still image processing (e.g. camera)

5

With Helium, many applications that previously used a Cortex-M processor with

a dedicated DSP could consolidate the two processor systems into a single processor.

This has many advantages:

	� Simplify software development – only requires a single toolchain, single architecture

and reduces software overhead for communications between the two processor systems

	� Reduce silicon design complexity – only requires a single memory system, hence

enabling faster system-on-chip (SoC) design cycle and reducing costs

It is also possible to replace some of the legacy standalone DSP products in embedded systems:

	� Cortex-M processors are highly versatile and can perform general non-DSP workloads

at higher performance than many legacy DSPs

	� High code density of Cortex-M processors allows system cost reduction in such

DSP replacements

Helium features – lane predication:

Helium includes MVE features for supporting conditional execution for each of the lanes

in the vector. This optimization mechanism is called lane predication. To enable this feature,

a new special purpose register called Vector Predication Status and Control Register (VPR)

is added, to hold the condition for each lane. This predication condition inside this register

is updated by vector operations, such as Vector Compare (VCMP). After setting up the

condition flags, VPT (Vector Predicate Then) / VPST (Vector Predicate Set Then) instructions

can then set up conditional execution of each lane, in sub-sequence vector instructions (up

to 4 instructions in vector predication block, similar to the IF-THEN instruction block).

The status of the VPR is saved and restored automatically in exception events, using

a reserved word inside the extended exception stack frame.

Helium features – big integer support:

To get the most out of the 128-bit vector registers, Helium also introduced big integer

processing instructions (VADC, VSBC and VSHLC) as defined in MVE, which can be

chained to operate with integer data types of 128 bits or larger.

“�With Helium, many
applications that previously
used a Cortex-M processor
with a dedicated DSP
could consolidate the two
processor systems into
a single processor.”

6

Low Overhead Branch Extension:

To enable efficient signal processing, Armv8.1-M introduced low overhead loops and

additional branch instructions. A simple while loop structure starts with a WLS (while-loop-

start) instruction, which specifies the loop count and branch back address, and the loop

structure ends with a LE (loop-end) instruction.

The first time the loop is executed, both WLS and LE instructions would be executed,

and the loop addresses are cached inside the processor, and subsequent loop iterations do

not need to execute these two instructions again. The loop counting is handled by the link

register (LR/r14) and the loop exit, when the loop counter reaches zero.

If an interrupt occurred during the low-overhead-loop, the loop address cache would be

cleared and the LE instruction would be re-executed after returning from the interrupt

service routine (ISR).

In addition to while-loop-start (WLS), there is also a do-loop-start (DLS) instruction,

which is similar. The do-loop always executes the first iteration of the loop body, but while-

loop will jump to the end of the loop before the first iteration, if the condition is not met.

There is a variant of low-overhead-loop instructions (WLSTP and DLSTP) which enables

loop tail predication – if a data processing task needs to be performed on N elements,

where N is not a multiple of vector lane width (e.g. if the elements to be processed are

32-bit, Helium can process 4 lanes of elements per vector instruction), then loop tail

predication allows the last loop iteration to process just the remaining elements using

conditional execution mechanism. When using WLSTP/DLSTP, LETP (Loop-end with Tail

Predication) must be used to indicate end of the loop. A suffix is needed for WLSTP and

DLSTP (.8/.16/.32) to indicate the size of the vector elements to be processed, and the

value in the LR holds the number of elements to process, rather than the number of loops.

7

An additional instruction called LCTP (Loop clear with tail predication) allows the low

overhead loop with tail predication to be terminated early, if required.

WLS, DLS, LE instructions are available regardless of whether Helium is implemented. Loop

tail predication instructions (WLSTP, DLSTP, LETP) require Helium option. There are additional

branch hint instructions, introduced in the Armv8.1-M architecture, which take advantage of

the hardware introduced by low overhead loop, to enable better branching performance.

Other Armv8.1-M mainline extension enhancements:

Armv8.1-M introduces a number of conditional execution instructions:

	 CINC – conditional increment

	 CINV – conditional invert

	 CNEG – conditional negate

	 CSEL – conditional select

	 CSET – conditional set register to 1

	 CSETM – conditionally set all bits in register to 1

	 CSINC – conditional select / increment

	 CSINV – conditional select / bitwise invert

	 CSNEG – conditional select / negate

Armv8.1-M also adds:

	� 64-bit arithmetic and logical shift instructions (ASRL, LSLL, LSRL + saturated /

rounded variants), halving variants for some of these instructions are also available

	� Signed and unsigned rounding/saturating shift instructions for 32-bit and 64-bit data

	 These are available only when Helium is implemented.

Floating point processing enhancements:

Just like the Armv8.0-M architecture, Armv8.1-M supports optional scalar single

precision (32-bit) and double precision (64-bit) floating point computation (supports

all FPv5 instructions). In addition, Armv8.1-M also supports:

	 Optional scalar half precision (16-bit) floating point

	 Optional vector half precision (16-bit) floating point (part of Helium)

	� Optional vector single precision (32-bit) floating point (part of Helium)

Half precision floating point support can be useful for audio pre-processing for keyword

spotting and voice command control applications. In these applications, the audio does not

need to have very high resolution, but good dynamic range support is highly desirable. By

moving processing from single precision to half precision, the processor can process twice the

amount of data over the same duration, using Helium technology. Use of half precision floating

point format can also help reduce memory size requirements for data (e.g. filter coefficients).

“�By moving processing
from single precision to half
precision, the processor can
process twice the amount of
data over the same duration.”

8

Security-related enhancements – FPU context saving/restore:

Armv8.0-M introduced TrustZone security extension, which enabled new generations

of security solutions to be implemented on low cost, low power embedded systems, using

Cortex-M processors. One of the key characteristics of TrustZone for Armv8-M is that it

allows efficient direct function calls between Secure software (protected environment)

and Non-secure software (Normal environment), and Armv8.1-M continues to add

enhancement in this area.

To support TrustZone for Armv8-M, Arm C Language Extension (ACLE) defined various

C compiler features required, namely Cortex-M Security Extension (CMSE). One of the

requirements is that when Non-secure software calls a Secure API, the Secure function

epilogue (code insert by C compiler at the end of the Secure API) needs to clear the

contents in the Floating Point Status and Control Register (FPSCR) to avoid information

leaking to the Non-secure side. This is good for security but can also cause a problem

for Non-secure software, with regard to ABI compatibility – FPU configurations could

be changed (e.g. rounding mode configuration).

In Armv8.1-M, the instruction set enhancements are added to enable context saving

of Non-secure FPSCR states (FPCXT_NS) in the prologue of the Secure API and context

restore in the epilogue. The enhanced instructions include FPU memory access instructions

(VLDR, VSTR) and FPU register access instructions (VMRS, VMSR). A C compiler update is

required to utilize this new feature. In relation to this, Armv8.1-M also adds new instruction

for clearing context in the register bank (CLRM and VSCCLRM).

Security related enhancements – MPU’s Privileged eXecute Never (PXN) attribute:

Another security enhancement is inside the Memory Protection Unit (MPU) – a new

MPU region attribute called Privileged eXecute Never (PXN). If an MPU region has PXN

attribute set and the processor attempts to execute the code inside with privileged level,

the Memory Management Fault exception would be triggered, with IACCVIOL bit in

MemManage Fault State Register set to 1.

The PXN attribute bit is in bit 4 of MPU_RLAR (Region Limit Address Register) and its alias

registers. It is available in both Secure and Non-secure MPU, and this bit was previously

fixed to 0 in Armv8.0-M.

The PXN feature allows privileged software to ensure specific application tasks (threads)

to execute in unprivileged level only. For example, a hacker cannot use stack corruption in

a privileged peripheral handler to branch into unprivileged codes and execute them with

privileged level.

9

This feature is also particularly useful for TrustZone-enabled systems with secure

firmware components from various software vendors. In those cases, some of the security

firmware components might not be fully trusted and need to be restricted to unprivileged

execution only. If such systems are implemented with Armv8.0-M, the unprivileged

software components must not be allowed to have its own secure entry points which

are callable from Non-secure state, because the software components would execute in

a privileged state if being called directly from Non-secure Handler mode. As a result, the

entry points need to be implemented separately with security checking, which increases

software overhead. With the PXN attribute available in Armv8.1-M, these unprivileged

software components can have their own Secure API entry points, and only if the APIs are

called by Non-secure handlers, then the MemManage fault exception handler can intercept

and switch the processor to unprivileged state for the Secure APIs to be executed.

Security-related enhancements – Unprivileged debug extension:

For systems with Secure software libraries from third parties, there are situations

where a software developer might need to debug the unprivileged software library, but

he/she might not be fully trusted by the vendors of other Secure firmware components.

In Armv8.0-M, if Secure debug is enabled, then the software developer can have full debug

access to both privileged and unprivileged software, which is undesirable in this case. While

it is possible to restrict debug access (instead of providing full Secure debug access via

debug access port, Secure privileged software can use debug monitor with a communication

channel, such as CoreSight SDC-600, to provide restricted debug access to Secure

unprivileged world), this requires more software overhead.

Armv8.1-M provides a new mode of debug enabling mechanism through the unprivileged

debug extension. When Secure debug is disabled, Secure privileged software can enable the

unprivileged debug extension via the Debug Authentication Control Register (DAUTHCTRL).

When dealing with multiple Secure firmware libraries, the Secure privileged software,

that deals with context switching in Secure world (e.g. Secure Partition manager in the

Arm Platform Security Architecture ‘PSA’), should program DAUTHCTRL registers when

switching between different contexts. For example, in the figure below, the software

developer has debug access to all Non-secure software and Library X, which is Secure

unprivileged. Halting request can be accepted when the processor is running the software,

but not possible when running the Library manager or Library Y and Z.

10

RTOS

Ta
sk

 A

Ta
sk

 B

Ta
sk

 C

Li
br

ar
y

X

Li
br

ar
y

Y

Li
br

ar
y

Z

Non-secure MPU

Non-secure world

TrustZone
protection

e.g. Secure partition
manager {Trusted

Firmware-M}

Secure MPU

Secure world

Privileged

Unprivileged

Partitioning
management

With the unprivileged debug extension, debug access to memory of current security state

(except certain debug components inside the processor) is blocked when the processor is

running and is allowed when the processor is halted in the unprivileged state, with unprivileged

debug enabled (UIDEN bit in DAUTHCTRL set to 1). The debug accesses also check against

the permission in the MPU of the current state, when unprivileged debug is used for that state.

Based on the example in the diagram:

	� Software developers can access the Non-secure memory and halt the processor when

it is in a Non-secure state

	� Software developers can halt the processor only when the processor is running Library

X (DAUTHCTRL configure by library manager in context switches) and can access

memory space that is accessible by Library X (permission based on Secure MPU)

The unprivileged debug extension is available for both the Secure and Non-secure

world (the UIDEN and UIDAPEN bits in DAUTHCTRL are banked between security states).

To support unprivileged debug, the debugger tools and the library manager need to be

updated. However, the unprivileged debug is an extension of the debug architecture and

existing debug functionalities (when legacy authentication control signals are enabled) are

not affected.

Debug enhancements – Performance Monitoring Unit (PMU):

In Armv8.1-M, the profiling counters in Data Watchpoint and Trace (DWT) are extended

to support Performance Monitoring Unit (PMU) features, as found in Cortex-A processors.

This enables advanced profiling features, including the capabilities to analyze cache hit/

miss. The previous profiling features are still available, but for software developers to

make the most out of the architecture, debuggers need to be updated.

11

Please note that the PMU uses a separated address space from DWT, although the profiling

counters are physically the same (address aliasing) and hence, debug tools cannot use PMU

and legacy DWT profiling at the same time.

Debug enhancements – features for signal processing applications:

Several debug architecture enhancements are also included in Armv8.1-M that further

enhance debug efficiency for signal processing applications. These include:

	 Data watchpoint with bit mask for value matching. Useful for detecting signal ranges

	� Breakpoint with counter – breakpoint triggers (halt) only when certain count value is

reached. This can be useful to halt a processor when a digital filter is stabilized

Reliability, Availability and Serviceability (RAS) Extension:

The RAS extension was introduced in Cortex-A processors in Armv8-A architecture.

RAS are three aspects of the dependability of a system:

	 Reliability, continuity of correct service

	 Availability, readiness for correct service

	 Serviceability, ability to undergo modifications and repairs

The need for RAS extension was originated from server/enterprise applications –

RAS techniques reduce unplanned outages because:

	� Transient errors can be detected and corrected before they cause application

or system failure

	 Failing components can be identified and replaced

	� Failure can be predicted ahead of time, to allow replacement during planned maintenance

While Cortex-M processors are mostly deployed in embedded and automotive applications,

the functional safety requirements for automotive and industrial usages make RAS a natural

choice for the next generation Cortex-M processors, as many techniques for RAS also help

functional safety aspects.

In processors designed with Armv8.1-M, the RAS extension covers:

	 Adding of Error Synchronization Barrier (ESB) instruction

	 Error reporting registers (e.g. for Error Corrected Code errors in cache)

	� Bus interface level enhancements, such as parity or Error Correction Code (ECC)

signals for bus transfer integrity checks, and poison signalling in bus interface

“�Several debug architecture
enhancements are also
included in Armv8.1-M
that further enhance
debug efficiency for signal
processing applications.”

12

The poison signalling feature is new to embedded processors. One common usage example

is for handling of corrupted data in data cache:

1)	� A cache line is corrupted (e.g. due to voltage instability). If the error is more than one

bit, ECC will not be able to correct the error when the data in the corrupted cache line

is used.

2)	� Later, a cache line eviction occurred, and this flushed the corrupted data. ECC error

is detected at this stage and triggers the poisoning side band signal on the bus to

be asserted. The poisoning state is stored in the memory system. No fault exception

occurred at this stage.

13

3)	� When the data (with poison state) is read by a processor (could be a different processor

or a different bus master in the system), the poison information is passed along and

triggers a fault exception at the processor.

This approach has several advantages:

	� If the corrupted data is not used by any bus master (e.g. gets overwritten by other data

later), there is no need to trigger a fault exception

	� The fault exception is triggered when the data is being used and is synchronous to the

applications being affected. If poisoning signaling is not available, the exception needs

to be triggered at cache line eviction and the processor can be running a completely

unrelated application, making it hard to decide which applications are being affected

The use of RAS extension also enables better consistency between Cortex-M and

Cortex-A processors, which is an advantage for software that handles error conditions

in heterogeneous multi-processor systems with Cortex-A and Cortex-M processors.

Migration of software to Armv8.1-M:

Armv8.1-M processors retain the previous key characteristics of Arm Cortex-M

processors including:

	 Ease-of-use

	 Fast and deterministic interrupt response time

	 Optimized for low power embedded applications

Existing Armv8-M software can run on Armv8.1-M, to enable easy software migration.

Just like Armv8.0-M, Armv8.1-M supports the TrustZone security extension, which

addresses security requirements for connected products, such as IoT devices.

14

To take advantage of new features, various software related updates would be needed:

	� C compilers – compiler (and binutils) need to be updated to support new instructions.

The Arm C language extension (ACLE) needs to introduce new intrinsic functions for

new instructions. The prologue and epilogue of Secure APIs should also be enhanced

to enable saving and restoring of Non-secure FPCXT. Compiler vendors can also add

advanced optimizations, to take advantage of the low overhead loops, new instructions,

and potentially support auto-vectorization on Helium capable systems

	� Debug tools – Debuggers require updates to support new features and new architectural

registers (e.g. VPR)

	� RTOS – To take advantage of new security features, like new MPU attributes, OS

needs to be updated. Additional updates are also needed to support unprivileged

debug, if this feature is required for the device

	� Arm Trusted Firmware for Armv8-M – this needs to be updated to support new

PXN MPU attribute and unprivileged debug extension

	� Application code – New CMSIS-CORE headers and CMSIS-DSP libraries will be

available. The enhanced CMSIS-DSP library will take advantage of the Helium

instruction set, to provide significant performance uplift

Summary

Armv8.1-M includes many new enhancements and advantages. A major addition

to Armv8.1-M is the M-Profile Vector Extension (MVE). Helium is the M-Profile Vector

Extension for the Arm Cortex-M processor series, which enables efficient signal processing

and machine learning in small, embedded applications. It allows consolidation of what

would previously require two processors onto one SoC, reducing complexity and cost.

Armv8.1-M includes other enhancements to the instruction set, debug features and improves

the dependability of embedded systems. Also, the architecture has built-in security with

TrustZone and is designed to Platform Security Architecture (PSA) specifications.

The Helium ecosystem has a wide range of tools and software libraries available to enable

performance increases for DSP and ML applications. Developers can get started today with

pre-silicon software development and migrate libraries and other code to Helium. Tools with

support include the Arm Fast Model virtual platform, Arm Compiler 6, software libraries, and

toolchains such as Arm Development Studio and Keil MDK.

Get in touch to get access to the Arm tools supporting Helium.

“�The Helium ecosystem
has a wide range of tools
and software libraries
available, enabling rapid
and low risk development.”

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information

contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written

permission of the copyright holder. The product described in this document is subject to continuous developments and improvements.

All particulars of the product and its use contained in this document are given in good faith. All warranties implied or expressed, including

but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide

information to the reader about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising

from the use of any information in this document or any error or omission in such information.

https://www.arm.com/why-arm/architecture/platform-security-architecture
https://developer.arm.com/buy-arm-products

