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Voice User Interface
Voice interface technology and Automatic Speech Recognition (ASR) have been used in various 
applications for many years. The latest progress in Natural Language Understanding (NLU) 
and its application to voice assistants has positioned voice recognition as a key technology 
differentiator especially for user interfaces in consumer products. Earlier ASR solutions were 
limited to few word commands and may have required a specific user voice training sequence. 
However, modern systems that use NLU can capture various intents and phrasing and are 
robust to diverse accents. Deep Machine Learning (ML) applications have had a significant 
impact in enabling new algorithmic solutions for speech recognition and NLU. 

A voice interface solution also requires efficient audio capture and rendering solutions to 
enable high quality user experience. Selecting the appropriate voice solution requires a good 
understanding of the system and computing requirements. Its implementation also requires a 
good understanding of the application constraints from cost to power figures. 

This white paper focusses on constrained voice solutions and will explore the different 
technology aspects that need to be understood and analyzed to achieve a suitable system 
architecture definition for low power, low cost voice-enabled devices.
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Smart Assistants
Consumers are now very familiar with voice assistants through the mass-market deployment 
of smart speakers. Smart speakers are one form of voice interface device, but many other 
types of voice-enabled consumer solutions are coming to the market. These solutions might 
be embedded within the product itself, or have a dedicated application form. Examples include 
wearable smart home appliances and automotive infotainment systems. These applications 
require similar technology solutions, but they may differ significantly in their usage models and 
integration constraints. 

Most consumer voice assistant devices rely on cloud-based voice services that require a real 
time internet connection to an NLU server to decode user intent. These solutions are usually 
based on an SoC Microprocessor Unit (MPU) running a High-Level Operating System (HLOS). 
The HLOS hosts the voice assistant client that connects to the cloud server and the relevant 
software stacks for connectivity, audio, or video rendering. It also runs the dedicated device 
application software. The SoC MPU usually integrates the relevant system peripherals for 
voice capture, internet connection, and user interfaces.

Voice Service Stack

Controller (OS layer) 

Voice Service Connection Manager 

Wake Word Engine Audio Framework Companion Application  

Interface ManagerAudio Input Processing Media Player Audio output rendering   

Voice Service Messaging Layer Voice Service Sequencer  

Audio and Voice Stack Application Specific Software

While it provides broad services and great user experiences, this model is not applicable where 
connection to cloud-based voice services is not possible or not appropriate for cost or privacy 
reasons. The emergence of embedded deep learning computing solutions enables untethered 
NLU implementation, but sizing the dictionary and intent diversity is a complex process that 
has direct impact on the system computing and memory requirements.

Both models have a common need for clear user voice capture. User voice capture is primarily 
impacted by the acoustic and noise environment and by the speaking distance. Designing a 
microphone system and an associated Digital Signal Processing (DSP) system that enables 
speaker voice isolation from environment noise is complicated. The noise rejection level has a 
direct influence on the user experience as it affects the wake-word recognition rate (positive/
negative) as well as the user intent decoding (command word or NLU). The wake-word is a 
specific Key Word Spotting (KWS) that the user may have to say prior to any specific request. 
The wake-word can be used to “wake up” the speech recognition system or to interrupt any 
ongoing command response.

The analog voice signal must be converted to a digital format at a sampling frequency that 
matches the KWS and the ASR (with NLU) requirement. For communication applications, 
voice bandwidth is usually limited to 4KHz (8KHz sampling rate) but voice recognition may 
benefit from a larger bandwidth. The selected sampling frequency is a compromise between 
signal frequency integrity and computing resources. For example, a higher sampling rate 
implies higher computing needs and a larger bandwidth. Voice cloud services may also impose 
a specific sampling rate: 16KHz is quite common. 
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The acoustic signal processing and the KWS/ASR are likely to be the most demanding 
computing operations of the voice service embedded in the device. Breaking down the 
processing to their low-level DSP and ML kernels is a good way to identify the processing 
resource requirements. 

The fundamental computing aspects to be reviewed are:

• The digital filter architecture,  
• The main operation needs (dot product, convolution),  
• The operand type (vector, matrix), and their coding size (8/16/32 scalar, floating point) 

A first order estimation should identify raw metrics 

• MAC/MHz (Multiplication and Accumulation) 
• ROM/SRAM computing bandwidth (Load/Store MB/s) 
• Memory density requirement

Mobile phones, smart speakers, and smart appliances usually embed significant processing 
capability that facilitate the implementation of the speech recognition tasks when properly 
powered. But wearable and IoT devices with low power budget or smart home appliances 
with aggressive cost requirements are usually based on more constrained systems. 
Maintaining a good user experience with less computing and system resources implies higher 
implementation complexity. We will review how an Arm Cortex-M microcontroller system with 
third party hardware and software can be integrated to enable a low power, low cost voice-
enabled solution.

Constrained CPU System
Constrained computing systems, usually referenced as Microcontroller Units (MCUs), have 
fewer computing capabilities than SoC MPUs and offer a more optimized system solution. 
While MPUs can run HLOSs, MCUs are limited to tiny Real Time Operating Systems (RTOSs) 
or bare-metal software. Such configurations require much less memory (volatile and non-
volatile) and less processing power while enabling efficient real time operation for control and 
computing tasks. These system optimizations can enable solutions with power points below 0.5 
Watt and price points below $1.

Cortex-M processors 

Over the years Arm has developed the Cortex-M processor family which is specifically 
optimized for integration in SoC MCUs. With a simpler and shorter pipeline than high-end 
Cortex-A processors, these 32-bit processors can still achieve raw performance (1 DMIPS/
MHz) in a 100MHz -600MHz frequency range with extremely good energy efficiency. The 
Cortex-M family instruction set has been optimized for code density while still offering good 
control and compute performance with dedicated SIMD (Single Instruction Multiple Data) and 
DSP instructions. If you want to learn more about the Arm Cortex-M series processors please 
refer to [white-paper- arm info center]

Arm silicon partners offer a large portfolio of SoC MCU solutions based on the Cortex-M 
architecture and this paper will give some guidance for MCU platform process selection.

Microcontroller architecture 

The selection of an MCU platform is mainly driven by the device application computing 
requirements and by the needs of a specific user interface and system integration. The voice 
interface itself requires particular care. This paper will go into more details regarding the voice 
pipeline computing requirements and the architecture implementation. 

The following SoC MCU diagram depicts a generic Arm-based microcontroller architecture 
that is common to many Arm silicon partners. Single or multiple Cortex-M cores are attached 
to memory system and peripherals system via multi-layer cascaded interconnect.
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Integrating multiple instances of the same Cortex-M or different Cortex-M CPUs can enable 
optimum computing solutions. Tuning and dedicating an instance to a specific task is an 
efficient way to improve the system PPA (Performance , Power, Area). Example tasks might 
include voice processing, security services, or user interfaces. Tuning instances in this way can 
significantly ease software implementation of complex tasks such as real-time low power DSP 
algorithms or isolation of security services. Communication between processors is facilitated 
by a shared memory architecture and mailbox system. Synchronization with peripherals 
is achieved through interrupt lines that are routed to the processors through low latency 
interrupt controllers based on priority and masking.

Memory system 

The processor selection (Cortex-M type and frequency) is important but the SoC (embedded) 
memory system configuration should also be reviewed very carefully. The memory density 
(code and data) and the performance (latency and bandwidth) should match the requirements 
to execute high level and low level tasks. Memory systems with multiple hierarchy levels can 
be used to balance medium performance (high density, low power) and high performance 
(low latency, low density) using volatile and non-volatile memories. Caches or Tightly Coupled 
Memories (TCM) are often used to create efficient memory systems but it must be properly 
sized and managed. Software code profiling is suggested to analyze different task profiles 
(computing or latency sensitive, instruction or data intensive) and to ensure that the memory 
architecture matches the MCU performance requirements.

Peripheral system and interfaces

The SoC MCU should provide memory interfaces to support external memory devices when 
the application requires more memory than what is embedded in the SoC (most likely non-
volatile storage). The external memory usage model (storage or executing in place) will dictate 
the memory technology (NAND, NOR) and the SoC should integrate a proper interface 
controller (serial, parallel, with possible error correction) to support it. 

SoC MCUs offer a large variety of peripherals and interfaces which requires complex chip 
pinout multiplexing. After review of the application interfaces, the appropriate configuration 
must be verified (digital and analogue interfaces) with the compatible protocols (ports function, 
direction and frequency). 

SoC MCU peripheral subsystems commonly integrate:

• GPIO (General Purpose Input Output)  
• Timers for digital event capture, serial ports for interfaces extension (single or multi wire)  
• ADC/DAC converters for analog interfaces 

Pay particular attention to the interface between the external microphone and the SoC. 
Analogue Microphones could benefit from a SoC internal ADC converter if the ADC 
specifications match the microphone’s audio output conversion requirement (signal dynamic 
and frequency). Digital Microphones could benefit from an SoC digital interface if the 
protocols and IO (Input-output) match the microphones interface specifications. 
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Microphones with a PDM (Pulse Density Modulation) interface require a sampling rate 
conversion (decimation filter) to get 8/16KHz audio sample rate output. It is usually preferable 
to perform this conversion with a dedicated hardware (filter) block with in the SoC’s PDM 
peripheral module interface. Using the main MCU for PDM sampling rate conversion could be 
task intensive and less power efficient than dedicated hardware.

DMA support 

Coupling a system DMA (Direct Memory Access) with peripheral subsystem could offer 
significant performance optimization by releasing the CPU from moving data between the 
interface and internal memories. Audio interfaces for microphone and speaker are good 
candidates for DMA management as it can enable efficient decoupling (pipelining) between 
the data flow management (DMA) and the data computing (CPU). System DMA offers multiple 
channels allowing concurrent synchronized transfers (Mem2Peripheral, Peripheral2Mem) on 
various interfaces (audio or communication interfaces).

Security features 

Security functions are required to perform device integrity checking, device attestation, device 
authentication and communication encryption for the device connection needs. These security 
functions mainly consist of cryptography algorithms that use specific keys and protocols to 
protect the devices from possible attacks. The secure execution of these security functions 
requires dedicated hardware and software modules that form the Root of Trust (RoT) of the 
device. Hosting the RoT in a dedicated device (secure element device) could significantly ease 
the product development and the security certification (if needed) but it would increase the Bill 
Of Material (BOM).

MCU platforms targeting IoT applications commonly embed dedicated resources to enable RoT. 

The resource list should include:

• TRNG (True Random Number Generator). 
• Secure non-volatile storage for key and certificates. 
• Secure boot firmware.  
• Provisioning mechanism (Device Unique ID, certificate).   
• Cryptographic accelerator (symmetric and asymmetric encryption).

To isolate the secure (trusted) function execution from the application (non-trusted) software a 
TEE (Trusted Execution Environment) should be implemented in a dedicated Cortex-M instance 
(if present) or on the main MCU leveraging the TrustZone (TZ) architecture available on 
ArmV8-M processors, such as Cortex-M33 and Cortex-M23 processors.

Power management 

To achieve flexible integration and a low power solution the SoC MCU can implement various 
clock and power domains. This would include various clock generator sources (RTC, PLL) with 
clock routing and multiplexing function. This would also include an internal power softwareitch 
and internal voltage regulator to create isolated power domains dedicated to specific functions 
(ultra-low power always on wakeup domain, low power DSP function).

Debug management 

Arm-based MCUs usually integrate efficient CoreSight debug that enable flexible Cortex-M 
debug capability (brake point, trace, register view) as well as SoC system visibility and control 
(memory image loading, clock and power control). For devices deployed in the field, the debug 
system should be compliant with the security policies that apply to these devices (no debug 
access to secure data and secure code). 
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Voice Capture Pipeline
The voice capture pipeline is a complex assembly of Microphone array (multiple microphones), 
Audio Front End (AFE) signal processing and speech recognition algorithms (KWS and ASR).

The AFE processing is used to improve the SNR (Signal to Noise Ratio) of the user voice by 
applying techniques for ambient noise reduction and echo cancelation. The AFE complexity 
is largely dependent on the number of microphones on the microphone array and the voice 
capture constraints. Smart speakers usually implement multidirectional microphone arrays (up 
to six or seven microphones) to capture the user voice coming from any direction (360-degree 
mic array) at a few meters from the devices (far field capture). 

Voice capture on constrained devices targets applications where the user is likely located in front 
of the device within a limited solid angle at a distance that could vary from near field (around 1 
meter) to far field. Depending on the user distance the microphone array can be limited to one, 
two or three microphones so that an MCU can still meet the AFE processing requirements.

Microphone array

Microphone technology has significantly improved since the emergence of mobile phones and 
MEMS (Micro-Electro-Mechanical Systems) microphones are now used in most applications 
thanks to their low power, integration ease and cost. 

MEMS microphones are usually in the form of a tiny capsule (0.5 mm2) with a small hole for 
sound entry top or bottom capsule face that can be directly soldered to a PCB (Printed Circuit 
Board). MEMS microphones can provide an analog or a digital signal output. Analog microphone 
require the addition of an appropriate analog to digital converter (ADC) while digital microphone 
require a digital (serial) interface for the appropriate protocol, usually Pulse Density Modulation 
(PDM) interface. While digital microphone are easier to integrate, thanks to the embedded ADC 
processing, they are usually more expensive and consume more current (~1mA) than the analog 
version (~0.1mA).

MEMS microphone are nearly omni-directional which means they capture sounds equally in 
every direction. Capturing the ambient sound from multiple microphone (mic array) positioned 
in specific ways (geometry and distance) can offer the possibility to focus the captured sound 
from a specific direction and to reject the sound coming from other directions. The sound 
propagation time induces different signal delays (phase delay) in each mic of the array that 
depend on the sound source localization and the mic position in the array. Combining the signals 
from the different microphone allow the creation of multiple focus sounds cones (beamformer) 
from which the sound source of interest can be extracted.
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The beamforming efficiency is highly dependent on the mic’s parameters disparity and more 
particularly the amplitude and phase matching. It is commonly recommended to use MEMS 
mic with a minimum of +/- 1dB matching for a SNR >60dB. The phase matching is more 
complex and rarely specified for mic but is important for low frequency (voice) signals where 
the positioning accuracy of each mic in the array is critical when the distance is reduced 
(<6cm). The device may incorporate a loudspeaker for the voice command feedback or other 
purposes. Acoustic and mechanical coupling should be reduced as much as possible and 
special care taken that device’s loudspeaker feedback does not saturate the mic output signal. 

Beamforming

Various audio beamforming architectures (fixed or adaptive direction) have been proposed in 
the industry with different implementation complexities. In its simple implementation a 2 mic 
delay and sum beamformer can be represented by the diagram below. The signal capture on a 
front microphone is added to the signal capture on a back microphone that is passed through 
a time delay stage.

By matching the acoustic steering delay stage with the time delay applied to signal capture 
from the mic array it can be seen that the signal from the Direction Of Arrival (DOA) is 
going through constructive addition compared to signal coming from the other directions 
(noise) that is going through destructive addition.

In this simple delay and sum form beamforming can exhibit some negative acoustic 
artifacts and more complex algorithms have been proposed. One of the critical aspects 
for far field voice detection is to address the ambient (room) reverberation that will affect 
both speaker voice and noise sources. The reverberation can create positive or negative 
signal correlation that will affect the KWS or NLU decoding. Voice signal de-reverberation 
is performed by digital adaptive filtering technics moving signal from time domain to 
frequency domain.

The de-reverberation may require significant processing and memory (SRAM) resources 
that mainly depend on the reverberation time window and the working frequency band. For 
voice capture in close (home) environment it is common to apply 100-200ms reverberation 
windows in few (4-6) frequency bands in the voice audio band (4KHz or 8KHz).

Echo canceler

Voice devices can include a speaker to provide user feedback. A device application with 
device audio or music would have to handle concurrent voice command capture. Play 
interruption (barge-in) during audio or music is a common case for smart speaker. Barge-
in support usually implies the need for an echo canceler stage in the AFE to attenuate the 
loudspeaker’s acoustic feedback captured by the microphone array. 

It is likely that the loudspeaker’s source will be limited to a single (mono) audio source 
(versus stereo common to video-audio equipment) such that the echo canceler 
architecture could be simplified. 

∆t1

∆t2
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Like beamformer algorithms, Acoustic Echo canceler (AEC) algorithms use delay and sum 
filters to suppress the reference signal (the audio feedback) from the voice signal at the 
microphone array. The amount of reference signal to be removed is a function of the acoustic 
coupling between the speaker and the mic array. This acoustic transfer function depends on 
device and on ambient (room) acoustic parameters, where reverberation is a critical aspect.

Audio Output

Echo 
Canceler Acoustic 

Channel

Audio Input

Similar to the adaptive beamforming, echo cancellation is based on digital adaptive filtering 
algorithms that convert the signal from time domain to frequency domain. The echo 
cancellation will probably operate in the same acoustic environment (reverberation) so that 
the AEC bank filter may have the same length and similar computing needs (MAC/s and SRAM) 
to beamforming. 

Audio Front End metrics

Beamforming and AEC (when needed) can be combined in multiple ways (AEC front or 
back beamforming). The AFE architecture complexity and computing needs will largely 
depend on the mic array type and the AEC/Beamforming assembly. It is a difficult task to 
estimate the computing (MAC/s) and the memory (KB) requirement by just considering the 
number of microphone, the algorithm complexity, and the acoustic environment (voice band, 
reverberation).

The Arm ecosystem offers a large portfolio Audio Front Ends (AFEs) with beamforming 
solutions that can be tuned to 2 or 3 mic arrays. Device architects should request performance 
metrics from the selected AFE provider after a common review of acoustic performance needs 
and applicable mic array configuration. 

The following metrics are average computing and memory requirement that the Arm team has 
measured for some of the ecosystem AFE solutions. These correspond to state-of-the-art 2 mic 
AFE beamforming and echo cancellation supporting 100ms echo tail for a 8KHz audio band 
(16KHz sampling rate). These metrics were extracted on a Cortex-M33F platform using an 
efficient memory system. The signal processing utilizes the Cortex-M33 FP32 instruction set.

Function MHz ROM RAM

2 MIC Beamformer 60 60KB 130KB

AEC (Mono feed back echo cancellation) 70∆ 60KB◊ 130KB†

Average computing cycle running on Cortex-M33F and low latency memory system
∆  AEC and Beamformer if active concurrently will not cumulate total MHz.  
◊  AEC and Beamformer shared most of the computing routine so memory needs will not cumulate. 

 †  AEC and Beamformer shared most of the memory (sample buffer) so memory needs will not 
cumulate.
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Speech recognition 
As mentioned earlier, voice activated devices may rely on cloud-based voice services or may 
rely on embedded NLU technology to run the speech recognition process and finally get the 
user intent. 

Wake-word engine

Whether the speaker intent decoding is embedded or cloud-based the decoding process 
is only initiated after the recognition of a specific key word (wake-word). The wake-word 
spotting is a way to delineate user voice requests to the intent decoder from normal user 
background conversations. It prevents cloud-based devices from uploading user conversations 
to the cloud outside the desired command that should follow the specific wake-word. 

The wake-word KWS is also used to transition the device from a low-power listening mode to a 
higher-power intent processing mode. For cloud based NLU, the wake-word detection initiates 
the connection to server and for untethered devices it could activate a larger command set 
KWS or it could activate a high performance NLU embedded processor. As such, most devices 
use the wake-word KWS as a Voice Activity Detector (VAD) running in the background. 

Depending on their implementation complexity KWS can offer very strong robustness to False 
Accepts (FA) and False Rejects (FR), but KWS is unlikely to be considered as a very low power 
VAD solution. Coupling a low power front end VAD to initiate the KWS processing can further 
reduce power consumption. Using a VAD requires careful attention that the VAD latency does 
not affect the KWS behavior.

VAD algorithm

Voice Activity Detection is a critical feature for power savings during silent periods. Common 
VAD systems are implemented via cascaded energy detection composed of a fix hardwired 
detector and of a programmable detector.

The hardwired front stage detects energy on the raw samples of a single microphone from the 
microphone array. This front stage is usually integrated in a specific low power domain that 
can stay active while the rest of the SoC MPU is placed in sleep or idle mode. This low power 
subsystem includes the hardwired energy detector logic and the audio samples buffer. The 
second stage of the VAD is woken up and fed with the buffered audio sample when sound 
energy is detected on the front stage. The VAD software compares the input sample energy 
to the baseline noise energy. The signal analysis can be extended to the full microphone array 
and if the signal to noise ratio is confirmed during several tens of milliseconds (usual phoneme 
length) the MPU system wakes up and the microphone array input is processed by the AFE 
and KWS for wake-word recognition.

KWS algorithm

Today, speech recognition techniques are using deep-learning techniques and convolutional 
neural networks. The input of the network is a spectral analysis made one hundred times 
per second. The first convolution layer is trained to extract the spectrum dynamicrophone in 
the peaks of energy. Those peaks of energy are associated to the way the mouth is opened 
and the position of the lips and tongue during the phoneme’s articulation. The following 
layers implement the classifier operation and are trained against a large database of speech 
utterances with all possible variation from the people pronunciations.

Function MHz ROM RAM

 VAD (software implementation) 1 10KB 10KB∆

Wake-word Engine 50◊ 256K 30KB

Average computing cycle running on Cortex-M33F and low latency memory system
∆  Voice buffer size is largely dependent on VAD validation window. Buffer is shared with the 

other AFE pipeline element  
◊  Smart speaker wake-word engine class (Strong accuracy. Compliant to consumer test suite)
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The larger the neural network, the higher the probability to capture small pronunciation 
variations between human, with age, stress, and regional accent. The table below summarizes 
the accuracy, memory consumption and number of operations per second, depending on the 
three typical model sizes. If you want to learn more about KWS implementation on Cortex-M 
please refer to [https://developer.arm.com/solutions/machine-learning-on-arm/developer-
material/white-papers/the-power-of-speech].

The NLU engine

An NLU engine for constrained IoT devices is likely to be dedicated to a specific target domain 
in which naturally spoken commands can be translated to specific actions. Target domains are 
relative to a specific usage like a smart appliance with its specific command set. For a specific 
command, the NLU engine can understand and associate various utterances. Different 
command (intent) to utterance mapping can be chosen but common applications with ten or so 
commands efficiently map to around a hundred utterances. 

NLU engine architectures are based on various technologies but their implementation largely 
depend on the infrastructure in which the engine will execute (cloud compute versus end point 
device). By limiting the NLU to a specific target domain an optimized engine (model) can be 
executed on Cortex-M4, Cortex-M7 or Cortex-M33 with less than 100MHz budget and less 
than a Mbyte of non-volatile memory.

The Arm ecosystem offers various frameworks that allow user to create their own NLU engine 
for domain specific command set in different languages. These solutions would fit to a large 
set of available Cortex-M based MPUs with a minimum of 300KB for model storage (assuming 
100s of domain specific utterances).

CNN model size Acc. Mem. OP/s

Small 91.6% 79KB 5M

Medium 92.2% 199KB 17M

Large 92.7% 498KB 25M
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Voice-Enabled IoT System Base
Voice-activated solutions can be used in a wide range of applications and their overall 
system requirements may significantly differ from application to application (user interface, 
computing and power performances). 

On top of a voice capture pipeline, a device is likely to integrate a generic communication stack 
(WiFi, BLE), security stack (Transport Layer Security) and audio stack (Audio codec). A Real 
Time Operating System (RTOS) or a simplistic bare-metal scheduler can be used to dispatch 
the stack’s services to the upper application layer and to provide system resource access 
(storage and peripheral) through system drivers (software modules for hardware abstraction 
layer). The application layer integrates a client voice service application (for cloud-based voice 
service or embedded NLU framework) that will link the voice capture pipeline to the voice 
services through an audio framework (upstream/downstream audio buffer management and 
audio rendering). 

RTOS 

Using an RTOS is the easiest way to integrate the various software modules (voice and stack) 
required by the application. The software modules are broken down into multiple parallel tasks 
(threads) that the RTOS schedules (position for execution) based on execution priority and 
event requests (incoming data to be managed by the task). 

The RTOS provides 

• Inter-thread communication 
• Interrupt dispatching 
• Manages the access to resources (memory allocation, peripheral allocation).

The Arm ecosystem offers a large variety of commercial and open source RTOS for Cortex-M 
platforms. Many RTOSs also include pre-integrated software modules for storage, UI, power 
management, communication and security.

Mbed OS 6 Example Architecture

The memory footprint (Flash and SRAM) will largely depend on the added software modules 
required by the end application. The RTOS typically has a small footprint and requires less than 
10KB of Flash and few KBs of SRAM. The total application however will require in the order 
of 512KB of Flash and 128KB of SRAM due to the voice pipeline and the speech recognition 
memory needs (see voice capture pipeline metrics).

Hardware abstraction layer (Drivers)

The Cortex-M programing model is common to all Arm-based MCUs, but the hardware system 
(peripherals, memory and storage) can significantly differ from SoC to SoC. It is a common 
development methodology to implement an interface software layer between the application 
and the hardware system to ease the development (debug visibility) and to offer software 
portability. The software application should request/access the hardware services through 
well define abstraction layer interface APIs (Application Programming Interface). Arm has 
defined a set of standard APIs for peripheral driver (CMSIS) that is widely used by the Arm 
MCU ecosystem.
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Most of the Arm-based MCU providers deliver their MCU SoCs with a dedicated software 
Development Kit (SDK) that includes a Board Support Package (BSP). The BSP includes 
specific routines (boot routine, image loader) and all the hardware specific drivers (CMSIS 
compliant) to enable MCU peripheral integration (timers, DMA, I2S or PDM audio port) 
required for the voice application. Some SDKs also provide integrated software modules like 
open source RTOSs or open source Security Stacks.

Communication stack

Depending on the end application the device may have to be connected in different ways. For 
devices where the voice service is cloud based the communication channel requires a minimum 
bandwidth and real-time internet access. For devices with embedded voice service the 
communication bandwidth is potentially less critical and more related to device connectivity to 
a local network (Smart home system) or to cloud device management (Internet). The protocol 
for the connection to the access point (wired or wireless) should be selected considering the 
bandwidth requirement (Ethernet, WiFi, BLE, 802.15.4). 

The protocol stack is implemented in layers (physical, network, application) that may all be 
executed on the voice system if supplied as an integrated solution, or distributed between the 
voice system and a dedicated communication device (Radio and Modem). 

The application protocol is very dependent on the internet access needs, but MQTT (Message 
Queuing Telemetry Transport) is preferred over HTTP Transfer for constrained IoT devices. 
Both protocols manage the connection through the IP transport protocol. Communication 
limited to local connectivity may be implemented using a lighter protocol (Point to Point), 
but IP-based protocols are still likely to be required for local network (MQTT over IP over 
802.15.4). Finally, the data exchange between the device and the network goes through the 
selected physical protocol stack (WiFi, BLE, 802.15.4) 

Multiple communication protocol stacks for bare-metal or RTOS-integrated can be found 
through the Arm software ecosystem (MQTT, LwIP). The connection device (WiFi, BLE, 
802.15.4) should include the relevant physical protocol stack. The following table gives  
some indication on the relative performance requirement and memory footprint for these  
software stacks.

Security stack 

Device usage integrity (functionality and asset) and user privacy integrity (social and 
asset) are required for any IoT application. Many aspects have to be considered and it is a 
recommendation to run a threat analysis on the targeted application to define the device 
security requirements. 

As previously discussed, the security foundations are based on the proper implementation of 
the device hardware/software RoT which all the security functions will rely on.

Device integrity is implemented through RoT services to check that the embedded software 
image has not been corrupted and has been securely updated (update over the air, anti-roll 
back mechanisms). Dynamic checking and anti-tampering techniques should be implemented 
to properly protect critical assets (software assets) and preserve device identity  
(device attestation).

Function MHz ROM RAM

RTOS NA 15KB∆ 160KB ◊

Generic LIB NA 100KB NA◊

Communication Stack (IP-MQTT-TLS) 10 † 80KB NA ◊

Average computing cycle running on Cortex-M33F and low latency memory system
∆ Average RTOS size   
◊  Average RTOS heap size requirement . Most Libs , Communication stack get RAM allocated from the heap
† Average including software based AES 32KB/s encryption 8KB/s decryption.
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The device communication channel is usually the easiest to attack so it should be properly 
secured in a way that preserves the integrity and privacy of the user communication. The 
security of the communication layers depend on the connection type (local or through 
Internet). Each security layer needs to be properly implemented on top of the communication 
channel that device communication goes through (WiFi or BL channel, Internet channel). Local 
connectivity protocols (WiFi, BL, 802.14.5) have their own security specification, but Internet 
communication supports different security protocols.

Transport Layer Security (TLS) protocol is commonly used to secure internet communication 
protocols like MQTT and HTTP. The TLS protocol specifies the authentication procedure 
between the user (device) and the server (voice service) using certificates (Certificate 
Authority), and also specifies the key establishment procedure to be used for communication 
channel encryption. The TLS security stack is integrated in many commercial and open 
source RTOSs with dedicated software APIs to provide access to the devices’ RoT resources 
(certificate and physical and generated keys). 

MbedTLS is an Arm Cortex-M based open source TLS stack that has been integrated in various 
RTOSs including MbedOS. MbedTLS includes all the cryptography algorithms and have been 
optimized for the Cortex-M instruction set.

Audio framework 

As previously discussed a voice-controlled application requires various audio interfaces and 
audio computing stages to be properly work together. The audio framework includes the 
various buffering stages, synchronization and conversion processes required in the upstream 
and downstream audio paths. The audio framework complexity is largely dependent on the 
final application and tuned to operate with the SoC hardware resources.

Buffering is implemented between the input-output stages (mic, voice engine) and the various 
computing stages (AFE, KWS/NLU engine, audio decode) to adapt the processing data rate 
(computing windows) to the audio sampling rate. It also decouples autonomous process like 
DMA and compensates for CPU latency to serve asynchronous events (interrupts). Buffering 
introduces delays that should be properly monitored to match voice system constraints.

Voice 
Service

Processed 
Buffer

Speaker Buffer

Audio Buffer

I2S ControllerPDM-PCM

PRE-ROLL

Auto Sample

Stop Index

Start Index

Wake Word

User Utterance
What’s the weather?

Mic Buffer

Audio DecoderAudio Front End

Wake Word Detection
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Conversion may be required to convert data sampling frequency (interfacing or mixing) or to 
convert data format. Conversion should be limited to its minimum and native matching format 
is preferred. The audio return path (feedback from user request) can be sent using various 
audio formats (raw or compressed format) and the audio framework should provide provisions 
(processing resources) for decoding (Audio Codec).

Client voice service stack 

The device voice service software stack largely depends on the location of the voice service 
(cloud based or local device based).

Service providers for cloud-based voice services commonly provide dedicated SDKs and 
development support to design and integrate the client voice applications. The client stack 
includes procedures to connect the device (client) to the voice service account and to manage 
the communication between the client and the voice server. The stack also offers static and 
dynamic parameters to adapt to the device’s specifications. The client stack relies on the audio 
framework to get access to the audio input-output streams. The client stack runs on top of 
the communication stack and on top of the security stack to get access to secure services. The 
client stack may also include specific application services (timer alarm) associated with voice 
commands. 

Several cloud-based voice services released client voice SDKs for Arm based platforms and the 
Arm ecosystem offers many pre-integrated platform solutions. A few of these solutions have 
been specially designed for Cortex-M MCU platforms.

The client stack for local voice solutions largely depends on the specific voice recognition 
engine. For applications limited to small command vocabulary, the stack consists of a simple 
integration layer of a predefined command set recognition engine. Applications targeting more 
complex recognition solutions (Larger vocabulary and NLU for intent decoding) require a more 
complex framework. Various speech recognition frameworks are available through open source 
projects or commercial offerings. Several Arm partners have released speech recognition SDKs 
that generate Arm optimized solutions for Cortex-M MCU platforms.

Function MHz ROM RAM

Audio Framework NA NA 160KB ∆

Audio decoder (Opus) 20 ◊ 70KB 25KB

Average computing cycle running on Cortex-M33F and low latency memory system
∆  Sample buffer size could vary due to various implementation and content of the audio pipeline stage 
◊� Audio music stream decoding Mono 16KHz – 128Kb/s
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Designing a custom Voice IoT SoC 
Today Arm MCU providers offer various Cortex-M MCU solutions that are particularly 
tailored to enable cost effective constrained Voice IoT applications. Although these off-the-
shelf solutions would serve most of the devices market needs, some applications could require 
custom SoC solutions. Designing a custom SoC solution would be considered when the voice 
interface integration into the targeted device need to address specific constrains that are not 
fully covered by off the shelf offering (For example combo integration, power, connectivity,  
or cost).

On top of Cortex-M CPU, Arm’s offering also includes all major system IP that are needed to 
create an efficient voice-enabled SoCs. 

The IP list includes:

• Interconnects infrastructure.  
• Memory system (Cache, TCM and embedded memory controller). 
• DMAs and specific acceleration function (Cryptographic).   
• Power and Clock controllers. 
• Debug infrastructure. 

All these IPs are compliant to the overall Arm reference architecture that includes memory 
and system transaction through standard bus protocol communication, system control 
through standard power and clock control protocols, system development through standard 
system debug protocols. 

To facilitate and accelerate SoC development, Arm also offers pre-defined and pre-validated 
Cortex-M subsystems than can be customized for integration in a standalone SoC or 
extended for integration in larger systems. The Arm Corstone family of subsystem series 
(300, 201, 102) have been specifically designed to address IoT applications leveraging 
Cortex-M series (M33, M23, M3) and PSA Certified principles. These subsystems include the 
various IP bundles, the subsystem top level integration, the subsystem verification suite and 
documentation.

A custom voice system would likely need IP functions (accelerator or peripheral) that are not 
available through Arm’s IP offering but that are available through the Arm ecosystem. The 
selection of these complementary IPs should not only be driven by functionality requirement 
but also based on maturity and demonstrated compatibility with Arm architecture.

Designing a custom SoC is a complex task and requires significant expertise. ASIC design 
houses that are part of the Arm Approved Design Partner program can offer various services 
and business models that will facilitate and secure custom solution development. From 
specific design services to full SoC specification and production release. Arm Approved Design 
Partners can also facilitate full access to Arm technology (IP licensing support).

To find out more about voice recognition on Cortex-M visit:  
https://developer.arm.com/solutions/internet-of-things/voice-recognition


