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S U M M A R Y

Virtualization is now at the heart of a revolution that 
is taking place in the domains served by the Armv8-R 
architecture. For example, the EL2 separation option 
in Cortex-R52+ represents a good option to enable 
intelligent integration of multiple software stacks (more 
details can be found in the Arm Best Practices for 
Armv8-R Cortex-R52+ Software Consolidation paper). 
While the CPU architecture has evolved to provide 
such features enabling this virtualization, on the device 
side (whether hardware accelerators or I/O peripherals) 
implementing a proper isolation for safety and security 
while balancing performance and cost may prove 
challenging. Depending on use cases, multiple solutions 
with different software and hardware cost versus 
efficiency ratios will prove optimal. This whitepaper 
discusses those approaches to provide guidance, as  
a prerequisite for the proper standardization of device 
virtualization in real-time systems.
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Introduction

Virtualization is no longer exclusive to cloud servers or even personal 

computers. Today, it is being deployed everywhere. Since Arm is leveraging 

the same technologies from cloud to real-time devices, it is very well 

positioned to unlock breakthrough use cases and help this revolution.

Embedded virtualization has become one of the key technologies to 

handle the complexity of functionalities in a wide range of applications. 

For example, the automotive industry is exploring autonomous driving, 

enhanced connectivity, and disruptive mobility, wherein the role of  

software development is predicted to increase exponentially.

With this increase in software complexity and the number of  

components in those computers on wheels, virtualization is a vital 

technique to ease software integration from different suppliers  

into a domain or zonal controller.

01
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However, while it comes with those many benefits, it also adds some 

complexity to device use model:

 — How do you allocate device resources to multiple safely and securely 

isolated applications and operating systems?

 — How do you scale the resources?

 — How do you maintain the principle of least privilege?

There are currently two ways to make a device available to software:

 — Mediation

 — by the OS: System calls.

 — by the emulation layer: Emulation.

 — by the hypervisor: Paravirtualization.

 — Assignment

Device mediation has been predominant so far and addresses a wide 

variety of use cases, for example for low performance devices or when 

device accesses are infrequent. However, this does not scale well and may 

negatively impact performance as well as power consumption. For those 

use cases, device assignment (where a physical device is directly accessible 

from within virtualized software) may prove a superior solution. Notably, it:

 — Provides near-native device performance.

 — Minimizes trusted computing base (TCB) footprint by removing  

device specific code.

 — Reduces upstream cost/complexity.

 — Enables driver domains/driver virtual machines (VM).

 — Enables user space drivers, with all its benefits, such as closed  

source drivers and choice of programming language for those  

drivers, to name a few.
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To take full advantage of these benefits, systems and devices must be 

designed in a way that avoids current pitfalls around device assignment: 

device scaling and isolation. Indeed, multi-tenant systems must be able  

to share those devices while maintaining isolation and real time.

This whitepaper aims at providing a set of requirements to enable the 

secure assignment of portions of an on-chip device to a software entity 

running on an Arm v8-R CPU. Its goal is to unlock full devices resource 

utilization in virtualized environments, and to enable a proper device 

partitioning in such systems.



W H I T E  P A P E R 10

Device Virtualization Design Patterns

As device sharing is becoming ubiquitous in virtualized systems  

(on Armv8-A based systems and increasingly on Armv8-R systems),  

we have seen a number of device virtualization patterns emerging.

In the diagrams below, we describe some of the most commonly used patterns:

 — Device virtualization

 — Device emulation

 — Device paravirtualization

 — Device pass-through

 — Driver VM

 — Mediated Pass-through

 — Standard multi-context device pass-through

We use OS and VM interchangeably, and blue arrows depict memory sharing 

between the device context and the software agent. Interrupts are not depicted 

as they are often flexible, from multiple redirections to direct injection.

Device Simulation

In some cases, a device that is needed by a virtualized software is not 

physically available. In such case, where possible, a solution can be to fully 

emulate the device functionality with software running in another VM  

or in the hypervisor. This solution is the one with the most limitations.

02
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Device Simulation example
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Device Emulation

Traditionally, devices have been virtualized by trapping and emulating  

device control and data path in the hypervisor. When the device is shared, 

the driver in the hypervisor or the emulation layer must arbitrate between 

VMs and avoid interference between requestors; for example, using  

time-sharing. This design, however, may introduce a performance cost  

and requires the hypervisor to include a device specific driver, increasing 

safety, security and certification related challenges. For example, UART  

is often virtualized this way.

F I G .  2

Device Emulation example
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Device Paravirtualization

In this design, the VM device driver (paravirtualized driver) is aware  

that the device is virtualized and collaborates with the hypervisor driver  

to avoid trap and emulate cost, thereby increasing device virtualization 

performance. However, there is still a VM exit cost for calling this central 

driver, as well as a certification cost, since a common design principle 

requires that the hypervisor be as small as possible. For example USB  

is sometimes virtualized this way.

F I G .  3

Paravirtualization example
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F I G .  4

Pass-through example

Device Pass-through

In this design, the device has a single user VM, which completely owns  

the device, and can read/write the device registers, share memory, and 

handle the interrupts. The VM driver in this case is the native driver, with 

the VM able to achieve near-native performance. The drawback in this case 

is that the device is not shared. On virtualized ECUs, LIN and CAN buses 

for example could be passed through.
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Driver VM

This design is a variation of the device emulation pattern above. It mixes  

the pass-through approach where the device is completely assigned to a  

VM (the driver VM here) with the paravirtualization approach where the 

sharing is achieved using some device specific or more generic means 

(like virtio) of communication mechanism between this driver VM and 

the user VMs. There are typically two kinds of drivers involved in the 

processing in the driver VM: a backend driver receiving commands from 

the paravirtualized driver, and a device specific driver actually owning the 

hardware. There is still a performance cost, but one benefit over the device 

emulation design here is avoiding drivers in the hypervisor for a smaller TCB 

and improved security. From the guest perspective, it is paravirtualization: 

for example paravirtualized network drivers will be used if Ethernet is 

virtualized using such architecture.

F I G .  5

Device sharing with  
a driver VM example
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Mediated Pass-through

Mediated pass-through devices support hardware-assisted virtualization, 

where each device context can be independently assigned to a different 

VM. This approach is similar to pass-through devices, but the device  

control remains under hypervisor supervision and may be trapped and 

emulated in the same ways as regular device virtualization. Assuming  

device control and configuration is infrequent, this approach can also  

achieve near native performance. For example the Mali G78-AE GPU, with 

its hardware virtualization support, enables such software architecture.

F I G .  6

Mediated pass-through example
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Standard Multi-context Device Pass-through

With this design, a device supporting standard hardware-assisted 

virtualization could be easily assigned to different VMs, with the VM  

wdriver collaborating with the hypervisor standard assignment driver  

to assign and release device contexts. Since this assignment control driver  

can be common to all devices, the hypervisor does not need to incorporate  

a device specific driver for each different device supporting this approach. 

For example the Mali G78-AE GPU, with its hardware virtualization  

support, enables such software architecture.
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Hardware device virtualization 
passthrough example
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Device Sharing Examples

Zonal Architecture

As the whole automotive industry is shifting towards the software-defined 

vehicle (SDV) approach, with a central compute system and dedicated 

zonal controllers, virtualization is becoming a critical requirement to unlock 

its promises, which include more independent and manageable functions, 

faster testing, validations, and updates. However, proper virtualization of 

accelerators and peripherals may prove challenging: the following sections 

discuss some key architectural requirements and recipes to enable proper 

device virtualization on automotive platforms.

The shift of automotive architectures toward a zonal architecture to  

help solve scalability issues and reduce the needed cabling length, weight, 

and cost, requires a new generation of real-time compute which must 

support integration of mixed criticality software artifacts. Those mixed 

criticality systems (MCS) require even stronger isolation, including  

temporal, spatial, and fault isolation, to prevent interference while 

maintaining real-time support. 

Such isolation may lead to a huge resource waste and poor performance  

if not properly handled. As a result, proper resource sharing and isolation  

is increasingly essential, and while virtualization seems a common choice  

for CPU resource sharing while maintaining sufficient temporal, spatial,  

and fault isolation, devices (including hardware accelerators such as  

GPUs, NPUs, and ISPs) and I/O peripherals also have to be shared  

while maintaining proper isolation.

03
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For example, when an I/O communication peripheral is shared, it is  

critical that both proper isolation and a sufficient level of performance  

are maintained, which in some cases means including hardware support  

for virtualization, such as transactions filtering and separation between  

the PE and the device, or between the device and the memory.

Safety Island

In a similar way, automotive SoCs increasingly rely on a safety island  

to manage and monitor all of the safety aspects, to enable recovery  

of complex issues and signal all kind of failures to external systems.

Inside such subsystem, different criticality levels must be isolated, while 

sharing I/O peripherals and some devices between the different clusters  

of CPU cores, as pictured in this figure.

F I G .  8

Safety island example

It may be impossible to address those safety island requirement when 

accessing shared devices while relying solely on paravirtualization. In such 

cases, device virtualization will require some hardware support and should 

follow some basic principles exposed in this whitepaper.
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Device Architecture Recommendations

For a device to be virtualizable and shared among isolated software 

entities and for it to address use cases such as those described above, it 

must comply with a certain number of requirements. This section is a set 

of guidelines that should be considered by SoC architects to comply with 

those requirements. To illustrate this, we call any device complying with 

those guidelines a ‘well-behaved device’.

Device Contexts and Assignment

This paper uses the term context to describe a portion of device 

functionality that can be independently assigned to software. Such context 

may include a state that is associated with its operation. Any embedded 

device (for example, hardware accelerators or peripherals that support 

hardware virtualization or not) has one or several such contexts.

F I G .  9

Device context

By looking at all existing devices, we can observe that they all have a single 

primary context and zero or more secondary context(s). The primary context 

contains the control to manage the assignment of secondary contexts (if 

present) and may contain other behaviors that are usually intended to be 

used exclusively by the most privileged software accessing the device. All 

secondary contexts on well behaved devices must be independent and 

isolated from each other (such devices are often referred to as supporting 

hardware virtualization).

04
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F I G .  1 0

Device with secondary contexts

We also must define what device assignment means: in this paper, assigning 

a context of a device to software requires that:

 — The software to which the device has been assigned can directly access 

any memory mapped registers that are presented by the context (if any).

 — Memory accesses by the device context on behalf of the software must  

be policed by memory protection hardware (like a System Memory 

Management Unit or a System Memory Protection Unit) managed by  

the higher privilege software responsible for providing context isolation 

(permitted combinations are detailed below).

 — Interrupts triggered by the device context are routed to the software 

to which the context has been assigned.

On well-behaved devices, primary context behaviors may usually have 

effects that are visible from within secondary contexts. Examples of such 

behaviors may include:

 — Device behavior that has an effect on other contexts and must  

be arbitrated by privileged software.

 — Device behavior that is not performance critical and is accessed by  

lower privilege software through device emulation or paravirtualization.
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While a common design pattern is to have identical secondary contexts, 

all secondary contexts do not have to be identical for the device to be well 

behaved. The secondary contexts operations must not have any effects that 

are visible from other secondary contexts but are permitted to have effects 

that are visible from the primary context to maintain isolation between 

software entities which have been assigned to different secondary contexts. 

Secondary contexts may also share device resources when performance 

isolation is not a use-case requirement. In that case, Arm recommends 

that the primary context provide mechanisms to statically or dynamically 

arbitrate those resources allocation to ensure that real-time constraints are 

met. Whether devices are shared between software entities running on 

Armv8-R PEs or running on heterogeneous environments, such as a mix 

of Armv8-R and Armv8-A PEs, they must comply with some architectural 

requirements to avoid compromising the system real-time and isolation 

properties. The following sections will expose important guidelines and 

rules to meet those requirements.

Reset

A first set of requirements come from device reset support, which is  

critical for proper real-time system operation, such as restarting a crashed 

VM, recovering from hardware errors or re-assigning a device context 

without leaking secrets. A well-behaved device must provide a mechanism 

to reset the primary context and confirm that the reset was completed. 

The resetting of the primary context must also reset all secondary contexts 

so that the device can fully recover, for example, from a critical error 

condition, and restart from a known state upon a privileged software 

request. Similarly, privileged software must have the means to reset  

a secondary context and then confirm an individual secondary context  

has been reset. 
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Higher privilege software must have access to a reset operation to 

individually and independently reset each context, no matter what state  

the device is in. Upon reset, each context must return its internal state  

to a consistent known initial state.

User alterable values in this context must be returned to their reset 

values, and subsequent behavior must be independent from the internal 

state before reset to avoid leaking information and breaking the isolation 

between virtualized or isolated software entities. 

When the context is Direct Memory Access (DMA) capable, we must 

avoid having the device lose track of pending transactions and receive 

unexpected completions messages, so a well-behaved device’s contexts 

must drain and gracefully terminate all outstanding memory transactions 

upon reset. The device must not assert reset completion until this is done.

Memory-mapped Registers

When such well-behaved devices have memory mapped registers, it is also 

important to enable proper isolation for access to those registers, otherwise 

a software entity could affect a context that was not assigned to it. As such, 

memory-mapped registers associated with a context (primary or secondary) 

that is individually assignable must be in a different protection region (64B 

minimum, see references[1][2]) of the physical address map from the one 

containing the registers for every other context in the system. 

In some systems, where processing elements (PEs) support Virtual Memory 

System Architecture (VMSA), memory-mapped registers associated with a 

context (primary or secondary) must be in different pages of the physical 

address map. Arm recommends that memory-mapped registers associated 

with a context expect a 64kB isolation granule, which makes it compatible 

with both 4kB and 16kB.
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DMA

For DMA-capable contexts, a context could be used to access memory 

outside the allowed address spaces by the software entity to which it 

is assigned. One mechanism that can be used to implement this is for 

all memory accesses made by the well-behaved device context to be 

associated with a set of runtime-immutable identifiers that are unique 

to the context in the device. This set of identifiers must be discoverable 

by privileged software and used to prevent unpermitted accesses by the 

software entity to which the context has been assigned. For an assigned 

context, privileged software must be able to link the identifier to the Virtual 

Memory Identifier (VMID) of the software entity to which the context  

has been assigned.

Interrupts

Device interrupts are also of interest since they are such a critical part  

of device interaction, especially on real-time systems. Well-behaved device 

interrupts must have a pre-defined semantic (either level or edge) that do 

not change for the duration of the assignment to a guest. Also, isolation 

guarantees require that such devices must not share interrupts with any 

other device, and secondary contexts must not share interrupts with 

other secondary contexts. If interrupts associated with a primary context 

can originate from a secondary context, the primary context must have a 

mechanism to record and report which secondary context originated the 

interrupt. In any case, when appropriate, the privileged software agent 

should handle the interrupt, and inject it into the proper VM as virtual  

IRQ or virtual FIQ.
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Errors

Errors also need to be considered when looking at device virtualization. 

There is a strong incentive for containing the error blast radius to avoid 

breaking the system isolation properties. Thus, for well-behaved devices, 

secondary context errors must be contained to the context that  

generated the error.

Memory Protection

At the system level, for well behaved devices, memory protection 

mechanisms are required.

For example, higher privilege software responsible for providing context 

isolation must ensure that the memory-mapped registers associated with 

an active context are only accessible through transactions initiated by 

the software that owns the context. This may be enforced by memory 

protection mechanisms in the PE or in the memory system.

All direct memory accesses from a well-behaved device must go through 

system memory protection mechanisms. The system configuration must  

be one of:

 — System MMU at stage 1

 — System MPU at stage 1

 — System MPU at stages 1 and 2

 — System MMU at stage 1 and MPU at stage 2
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To facilitate a clean privilege separation model in the system, those memory 

protection mechanisms should be separate from those for the PE in charge 

of the device assignment. Privileged software may use the MMU or MPU 

to police accesses made from each context (note that MPU stages could 

be shared with PE). Sometimes, to address specific situations, one or several 

of the MMU or MPU checks could be disabled for a given combination 

of transaction attributes. Those system MPU and system MMU must be 

programmable at runtime (in order to support dynamic re-assignment, 

where a context can be re-assigned at runtime to another software entity).

System MPU and system MMU programming mechanisms (MMIO or 

memory) must be in different protection regions (64B minimum as per 

references[3][4]) of the physical address map from the regions containing 

the registers for every other secondary context in the system. In systems 

where PEs have support for VMSA, all system MPU and system MMU 

programming mechanisms (MMIO or memory) must reside in different 

pages (from each other) of the physical address map, where page size  

must be at least 4KB. 

When being configured, all the memory protection mechanisms in the 

system must not allow a transaction to pass, that would not pass under  

the old or the new configuration setting. They must provide a way for 

privileged software to determine which permissions are currently active. 

This is key to enabling more secure and generic software for programming 

the system MPU.

When enabled, a system MPU or MMU must report a fault to the privileged 

software responsible for providing context isolation through an interrupt 

whenever an error condition becomes active (for example, on a first 

configuration operation or permission check failure).
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In order to deal with interrupts in such scenarios, and enable interrupt 

virtualization, the system must include an Arm Generic Interrupt Controller 

(GIC) version 3 or newer[5].

State Diagram

A well-behaved device context must also be able to transition into some 

states with the properties below to enable a safe and secure device context 

assignment at runtime.

Those context state transitions are described in the diagram below:

When a secondary context is in the following state:

 — Unassigned: The context must not try to access memory or trigger 

interrupts. It is expected that protection regions are setup so that  

lower privilege software cannot access a context which is in this state.

F I G .  1 1

Contexts state diagram

 — Assigned: The context can access memory or trigger interrupts. It  

is expected that protection regions are setup so that a given lower 

privilege software can access a context which is in this state.
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Conclusion

This whitepaper exposed a few principles for device sharing and 

virtualization in real-time safe systems. But this is just the beginning. As 

new use models, including microservices that require highly independent 

software components are being investigated, standardization is the only 

way to reap the benefits of SDVs in the automotive industry, and must 

happen in the near future to lower the costs and enable more robust 

approaches. For example, cost-effective scaling means having a single  

and more flexible platform, rather than several less flexible ones,  

something that cannot be achieved without proper standardization.

05
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Glossary

Term Meaning

E/E Electrical/Electronic

FIQ Fast Interrupt reQuest

IRQ Interrupt ReQuest

MCS Mixed Criticality System

MCU Microcontroller Unit

MMIO Memory-Mapped I/O

PE Processing Element

SDV Software Defined Vehicle

SOAFEE Scalable Open Architecture for Embedded Edge

System MMU or SMMU System Memory Management Unit

System MPU or SMPU System Memory Protection Unit

TCB Trusted Computing Base

VM Virtual Machine

VMSA Virtual Memory System Architecture

06
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