
Device Virtualization
Principles for
Real-time Systems
Arm v8-R Device Virtualization

Paul Hughes
Lead System Architect and Distinguished Engineer ATG

Bernhard Rill
Director Automotive Partnerships EMEA

Alexandre Romana
System Architect ATG

James Scobie
Director Automotive Product Management

W H I T E P A P E R

W H I T E P A P E R 2

S U M M A R Y

Virtualization is now at the heart of a revolution that
is taking place in the domains served by the Armv8-R
architecture. For example, the EL2 separation option
in Cortex-R52+ represents a good option to enable
intelligent integration of multiple software stacks (more
details can be found in the Arm Best Practices for
Armv8-R Cortex-R52+ Software Consolidation paper).
While the CPU architecture has evolved to provide
such features enabling this virtualization, on the device
side (whether hardware accelerators or I/O peripherals)
implementing a proper isolation for safety and security
while balancing performance and cost may prove
challenging. Depending on use cases, multiple solutions
with different software and hardware cost versus
efficiency ratios will prove optimal. This whitepaper
discusses those approaches to provide guidance, as
a prerequisite for the proper standardization of device
virtualization in real-time systems.

Device Virtualization
Principles for
Real-time Systems
Arm v8-R Device Virtualization

W H I T E P A P E R 3

Contents
01 Introduction

02 Device Virtualization Design Patterns

01 Device Simulation

02 Device Emulation

03 Device Paravirtualization

04 Device Pass-through

05 Driver VM

06 Mediated Pass-through

07 Standard Multi-context Device Pass-through

03 Device Sharing Examples

01 Zonal Architecture

02 Safety Island

04 Device Architecture Recommendations

01 Device Contexts and Assignment

02 Reset

03 Memory Mapped Registers

04 DMA

05 Interrupts

06 Errors

07 Memory Protection

08 State Diagram

7

10

10

11

12

13

14

15

16

17

17

18

19

19

21

22

23

23

24

24

26

W H I T E P A P E R 4

05 Conclusion

06 Glossary

07 References

27

28

29

W H I T E P A P E R 5

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation

of the information contained in this document may be protected by one or more patents or pending

patent applications. No part of this document may be reproduced in any form by any means without

the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise

to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not

use or permit others to use the information for the purposes of determining whether implementations

infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO

WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE

IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT

OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance

of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify

or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY

DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL,

PUNITIVE, OR CONSEQUENTI DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE

THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,

duplication or disclosure of this document complies fully with any relevant export laws and regulations

to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of

such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create

or refer to any partnership relationship with any other company. Arm may make changes to this

document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is

any conflict between the English version of this document and any translation, the terms of the English

version of the Agreement shall prevail.

W H I T E P A P E R 6

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of

Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names

mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s

trademark usage guidelines at arm. com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved. Arm Limited. Company 02557590

registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ. LES-PRE-20349 version 21.0

http://www.arm. com/company/policies/trademarks.

W H I T E P A P E R 7

Introduction

Virtualization is no longer exclusive to cloud servers or even personal

computers. Today, it is being deployed everywhere. Since Arm is leveraging

the same technologies from cloud to real-time devices, it is very well

positioned to unlock breakthrough use cases and help this revolution.

Embedded virtualization has become one of the key technologies to

handle the complexity of functionalities in a wide range of applications.

For example, the automotive industry is exploring autonomous driving,

enhanced connectivity, and disruptive mobility, wherein the role of

software development is predicted to increase exponentially.

With this increase in software complexity and the number of

components in those computers on wheels, virtualization is a vital

technique to ease software integration from different suppliers

into a domain or zonal controller.

01

W H I T E P A P E R 8

However, while it comes with those many benefits, it also adds some

complexity to device use model:

 — How do you allocate device resources to multiple safely and securely

isolated applications and operating systems?

 — How do you scale the resources?

 — How do you maintain the principle of least privilege?

There are currently two ways to make a device available to software:

 — Mediation

 — by the OS: System calls.

 — by the emulation layer: Emulation.

 — by the hypervisor: Paravirtualization.

 — Assignment

Device mediation has been predominant so far and addresses a wide

variety of use cases, for example for low performance devices or when

device accesses are infrequent. However, this does not scale well and may

negatively impact performance as well as power consumption. For those

use cases, device assignment (where a physical device is directly accessible

from within virtualized software) may prove a superior solution. Notably, it:

 — Provides near-native device performance.

 — Minimizes trusted computing base (TCB) footprint by removing

device specific code.

 — Reduces upstream cost/complexity.

 — Enables driver domains/driver virtual machines (VM).

 — Enables user space drivers, with all its benefits, such as closed

source drivers and choice of programming language for those

drivers, to name a few.

W H I T E P A P E R 9

To take full advantage of these benefits, systems and devices must be

designed in a way that avoids current pitfalls around device assignment:

device scaling and isolation. Indeed, multi-tenant systems must be able

to share those devices while maintaining isolation and real time.

This whitepaper aims at providing a set of requirements to enable the

secure assignment of portions of an on-chip device to a software entity

running on an Arm v8-R CPU. Its goal is to unlock full devices resource

utilization in virtualized environments, and to enable a proper device

partitioning in such systems.

W H I T E P A P E R 10

Device Virtualization Design Patterns

As device sharing is becoming ubiquitous in virtualized systems

(on Armv8-A based systems and increasingly on Armv8-R systems),

we have seen a number of device virtualization patterns emerging.

In the diagrams below, we describe some of the most commonly used patterns:

 — Device virtualization

 — Device emulation

 — Device paravirtualization

 — Device pass-through

 — Driver VM

 — Mediated Pass-through

 — Standard multi-context device pass-through

We use OS and VM interchangeably, and blue arrows depict memory sharing

between the device context and the software agent. Interrupts are not depicted

as they are often flexible, from multiple redirections to direct injection.

Device Simulation

In some cases, a device that is needed by a virtualized software is not

physically available. In such case, where possible, a solution can be to fully

emulate the device functionality with software running in another VM

or in the hypervisor. This solution is the one with the most limitations.

02

F I G . 1

Device Simulation example

W H I T E P A P E R 11

Device Emulation

Traditionally, devices have been virtualized by trapping and emulating

device control and data path in the hypervisor. When the device is shared,

the driver in the hypervisor or the emulation layer must arbitrate between

VMs and avoid interference between requestors; for example, using

time-sharing. This design, however, may introduce a performance cost

and requires the hypervisor to include a device specific driver, increasing

safety, security and certification related challenges. For example, UART

is often virtualized this way.

F I G . 2

Device Emulation example

W H I T E P A P E R 12

Device Paravirtualization

In this design, the VM device driver (paravirtualized driver) is aware

that the device is virtualized and collaborates with the hypervisor driver

to avoid trap and emulate cost, thereby increasing device virtualization

performance. However, there is still a VM exit cost for calling this central

driver, as well as a certification cost, since a common design principle

requires that the hypervisor be as small as possible. For example USB

is sometimes virtualized this way.

F I G . 3

Paravirtualization example

W H I T E P A P E R 13

F I G . 4

Pass-through example

Device Pass-through

In this design, the device has a single user VM, which completely owns

the device, and can read/write the device registers, share memory, and

handle the interrupts. The VM driver in this case is the native driver, with

the VM able to achieve near-native performance. The drawback in this case

is that the device is not shared. On virtualized ECUs, LIN and CAN buses

for example could be passed through.

W H I T E P A P E R 14

Driver VM

This design is a variation of the device emulation pattern above. It mixes

the pass-through approach where the device is completely assigned to a

VM (the driver VM here) with the paravirtualization approach where the

sharing is achieved using some device specific or more generic means

(like virtio) of communication mechanism between this driver VM and

the user VMs. There are typically two kinds of drivers involved in the

processing in the driver VM: a backend driver receiving commands from

the paravirtualized driver, and a device specific driver actually owning the

hardware. There is still a performance cost, but one benefit over the device

emulation design here is avoiding drivers in the hypervisor for a smaller TCB

and improved security. From the guest perspective, it is paravirtualization:

for example paravirtualized network drivers will be used if Ethernet is

virtualized using such architecture.

F I G . 5

Device sharing with
a driver VM example

W H I T E P A P E R 15

Mediated Pass-through

Mediated pass-through devices support hardware-assisted virtualization,

where each device context can be independently assigned to a different

VM. This approach is similar to pass-through devices, but the device

control remains under hypervisor supervision and may be trapped and

emulated in the same ways as regular device virtualization. Assuming

device control and configuration is infrequent, this approach can also

achieve near native performance. For example the Mali G78-AE GPU, with

its hardware virtualization support, enables such software architecture.

F I G . 6

Mediated pass-through example

W H I T E P A P E R 16

Standard Multi-context Device Pass-through

With this design, a device supporting standard hardware-assisted

virtualization could be easily assigned to different VMs, with the VM

wdriver collaborating with the hypervisor standard assignment driver

to assign and release device contexts. Since this assignment control driver

can be common to all devices, the hypervisor does not need to incorporate

a device specific driver for each different device supporting this approach.

For example the Mali G78-AE GPU, with its hardware virtualization

support, enables such software architecture.

App App App App

Driver

Secondary
Context

Secondary
Context

Pr
im

ar
y

Co
nt

ex
t

OS OS

Hypervisor

Device

Driver

Assignment Driver

SMPU/SMMU

F I G . 7

Hardware device virtualization
passthrough example

W H I T E P A P E R 17

Device Sharing Examples

Zonal Architecture

As the whole automotive industry is shifting towards the software-defined

vehicle (SDV) approach, with a central compute system and dedicated

zonal controllers, virtualization is becoming a critical requirement to unlock

its promises, which include more independent and manageable functions,

faster testing, validations, and updates. However, proper virtualization of

accelerators and peripherals may prove challenging: the following sections

discuss some key architectural requirements and recipes to enable proper

device virtualization on automotive platforms.

The shift of automotive architectures toward a zonal architecture to

help solve scalability issues and reduce the needed cabling length, weight,

and cost, requires a new generation of real-time compute which must

support integration of mixed criticality software artifacts. Those mixed

criticality systems (MCS) require even stronger isolation, including

temporal, spatial, and fault isolation, to prevent interference while

maintaining real-time support.

Such isolation may lead to a huge resource waste and poor performance

if not properly handled. As a result, proper resource sharing and isolation

is increasingly essential, and while virtualization seems a common choice

for CPU resource sharing while maintaining sufficient temporal, spatial,

and fault isolation, devices (including hardware accelerators such as

GPUs, NPUs, and ISPs) and I/O peripherals also have to be shared

while maintaining proper isolation.

03

W H I T E P A P E R 18

For example, when an I/O communication peripheral is shared, it is

critical that both proper isolation and a sufficient level of performance

are maintained, which in some cases means including hardware support

for virtualization, such as transactions filtering and separation between

the PE and the device, or between the device and the memory.

Safety Island

In a similar way, automotive SoCs increasingly rely on a safety island

to manage and monitor all of the safety aspects, to enable recovery

of complex issues and signal all kind of failures to external systems.

Inside such subsystem, different criticality levels must be isolated, while

sharing I/O peripherals and some devices between the different clusters

of CPU cores, as pictured in this figure.

F I G . 8

Safety island example

It may be impossible to address those safety island requirement when

accessing shared devices while relying solely on paravirtualization. In such

cases, device virtualization will require some hardware support and should

follow some basic principles exposed in this whitepaper.

W H I T E P A P E R 19

Device Architecture Recommendations

For a device to be virtualizable and shared among isolated software

entities and for it to address use cases such as those described above, it

must comply with a certain number of requirements. This section is a set

of guidelines that should be considered by SoC architects to comply with

those requirements. To illustrate this, we call any device complying with

those guidelines a ‘well-behaved device’.

Device Contexts and Assignment

This paper uses the term context to describe a portion of device

functionality that can be independently assigned to software. Such context

may include a state that is associated with its operation. Any embedded

device (for example, hardware accelerators or peripherals that support

hardware virtualization or not) has one or several such contexts.

F I G . 9

Device context

By looking at all existing devices, we can observe that they all have a single

primary context and zero or more secondary context(s). The primary context

contains the control to manage the assignment of secondary contexts (if

present) and may contain other behaviors that are usually intended to be

used exclusively by the most privileged software accessing the device. All

secondary contexts on well behaved devices must be independent and

isolated from each other (such devices are often referred to as supporting

hardware virtualization).

04

W H I T E P A P E R 20

F I G . 1 0

Device with secondary contexts

We also must define what device assignment means: in this paper, assigning

a context of a device to software requires that:

 — The software to which the device has been assigned can directly access

any memory mapped registers that are presented by the context (if any).

 — Memory accesses by the device context on behalf of the software must

be policed by memory protection hardware (like a System Memory

Management Unit or a System Memory Protection Unit) managed by

the higher privilege software responsible for providing context isolation

(permitted combinations are detailed below).

 — Interrupts triggered by the device context are routed to the software

to which the context has been assigned.

On well-behaved devices, primary context behaviors may usually have

effects that are visible from within secondary contexts. Examples of such

behaviors may include:

 — Device behavior that has an effect on other contexts and must

be arbitrated by privileged software.

 — Device behavior that is not performance critical and is accessed by

lower privilege software through device emulation or paravirtualization.

W H I T E P A P E R 21

While a common design pattern is to have identical secondary contexts,

all secondary contexts do not have to be identical for the device to be well

behaved. The secondary contexts operations must not have any effects that

are visible from other secondary contexts but are permitted to have effects

that are visible from the primary context to maintain isolation between

software entities which have been assigned to different secondary contexts.

Secondary contexts may also share device resources when performance

isolation is not a use-case requirement. In that case, Arm recommends

that the primary context provide mechanisms to statically or dynamically

arbitrate those resources allocation to ensure that real-time constraints are

met. Whether devices are shared between software entities running on

Armv8-R PEs or running on heterogeneous environments, such as a mix

of Armv8-R and Armv8-A PEs, they must comply with some architectural

requirements to avoid compromising the system real-time and isolation

properties. The following sections will expose important guidelines and

rules to meet those requirements.

Reset

A first set of requirements come from device reset support, which is

critical for proper real-time system operation, such as restarting a crashed

VM, recovering from hardware errors or re-assigning a device context

without leaking secrets. A well-behaved device must provide a mechanism

to reset the primary context and confirm that the reset was completed.

The resetting of the primary context must also reset all secondary contexts

so that the device can fully recover, for example, from a critical error

condition, and restart from a known state upon a privileged software

request. Similarly, privileged software must have the means to reset

a secondary context and then confirm an individual secondary context

has been reset.

W H I T E P A P E R 22

Higher privilege software must have access to a reset operation to

individually and independently reset each context, no matter what state

the device is in. Upon reset, each context must return its internal state

to a consistent known initial state.

User alterable values in this context must be returned to their reset

values, and subsequent behavior must be independent from the internal

state before reset to avoid leaking information and breaking the isolation

between virtualized or isolated software entities.

When the context is Direct Memory Access (DMA) capable, we must

avoid having the device lose track of pending transactions and receive

unexpected completions messages, so a well-behaved device’s contexts

must drain and gracefully terminate all outstanding memory transactions

upon reset. The device must not assert reset completion until this is done.

Memory-mapped Registers

When such well-behaved devices have memory mapped registers, it is also

important to enable proper isolation for access to those registers, otherwise

a software entity could affect a context that was not assigned to it. As such,

memory-mapped registers associated with a context (primary or secondary)

that is individually assignable must be in a different protection region (64B

minimum, see references[1][2]) of the physical address map from the one

containing the registers for every other context in the system.

In some systems, where processing elements (PEs) support Virtual Memory

System Architecture (VMSA), memory-mapped registers associated with a

context (primary or secondary) must be in different pages of the physical

address map. Arm recommends that memory-mapped registers associated

with a context expect a 64kB isolation granule, which makes it compatible

with both 4kB and 16kB.

W H I T E P A P E R 23

DMA

For DMA-capable contexts, a context could be used to access memory

outside the allowed address spaces by the software entity to which it

is assigned. One mechanism that can be used to implement this is for

all memory accesses made by the well-behaved device context to be

associated with a set of runtime-immutable identifiers that are unique

to the context in the device. This set of identifiers must be discoverable

by privileged software and used to prevent unpermitted accesses by the

software entity to which the context has been assigned. For an assigned

context, privileged software must be able to link the identifier to the Virtual

Memory Identifier (VMID) of the software entity to which the context

has been assigned.

Interrupts

Device interrupts are also of interest since they are such a critical part

of device interaction, especially on real-time systems. Well-behaved device

interrupts must have a pre-defined semantic (either level or edge) that do

not change for the duration of the assignment to a guest. Also, isolation

guarantees require that such devices must not share interrupts with any

other device, and secondary contexts must not share interrupts with

other secondary contexts. If interrupts associated with a primary context

can originate from a secondary context, the primary context must have a

mechanism to record and report which secondary context originated the

interrupt. In any case, when appropriate, the privileged software agent

should handle the interrupt, and inject it into the proper VM as virtual

IRQ or virtual FIQ.

W H I T E P A P E R 24

Errors

Errors also need to be considered when looking at device virtualization.

There is a strong incentive for containing the error blast radius to avoid

breaking the system isolation properties. Thus, for well-behaved devices,

secondary context errors must be contained to the context that

generated the error.

Memory Protection

At the system level, for well behaved devices, memory protection

mechanisms are required.

For example, higher privilege software responsible for providing context

isolation must ensure that the memory-mapped registers associated with

an active context are only accessible through transactions initiated by

the software that owns the context. This may be enforced by memory

protection mechanisms in the PE or in the memory system.

All direct memory accesses from a well-behaved device must go through

system memory protection mechanisms. The system configuration must

be one of:

 — System MMU at stage 1

 — System MPU at stage 1

 — System MPU at stages 1 and 2

 — System MMU at stage 1 and MPU at stage 2

W H I T E P A P E R 25

To facilitate a clean privilege separation model in the system, those memory

protection mechanisms should be separate from those for the PE in charge

of the device assignment. Privileged software may use the MMU or MPU

to police accesses made from each context (note that MPU stages could

be shared with PE). Sometimes, to address specific situations, one or several

of the MMU or MPU checks could be disabled for a given combination

of transaction attributes. Those system MPU and system MMU must be

programmable at runtime (in order to support dynamic re-assignment,

where a context can be re-assigned at runtime to another software entity).

System MPU and system MMU programming mechanisms (MMIO or

memory) must be in different protection regions (64B minimum as per

references[3][4]) of the physical address map from the regions containing

the registers for every other secondary context in the system. In systems

where PEs have support for VMSA, all system MPU and system MMU

programming mechanisms (MMIO or memory) must reside in different

pages (from each other) of the physical address map, where page size

must be at least 4KB.

When being configured, all the memory protection mechanisms in the

system must not allow a transaction to pass, that would not pass under

the old or the new configuration setting. They must provide a way for

privileged software to determine which permissions are currently active.

This is key to enabling more secure and generic software for programming

the system MPU.

When enabled, a system MPU or MMU must report a fault to the privileged

software responsible for providing context isolation through an interrupt

whenever an error condition becomes active (for example, on a first

configuration operation or permission check failure).

W H I T E P A P E R 26

In order to deal with interrupts in such scenarios, and enable interrupt

virtualization, the system must include an Arm Generic Interrupt Controller

(GIC) version 3 or newer[5].

State Diagram

A well-behaved device context must also be able to transition into some

states with the properties below to enable a safe and secure device context

assignment at runtime.

Those context state transitions are described in the diagram below:

When a secondary context is in the following state:

 — Unassigned: The context must not try to access memory or trigger

interrupts. It is expected that protection regions are setup so that

lower privilege software cannot access a context which is in this state.

F I G . 1 1

Contexts state diagram

 — Assigned: The context can access memory or trigger interrupts. It

is expected that protection regions are setup so that a given lower

privilege software can access a context which is in this state.

W H I T E P A P E R 27

Conclusion

This whitepaper exposed a few principles for device sharing and

virtualization in real-time safe systems. But this is just the beginning. As

new use models, including microservices that require highly independent

software components are being investigated, standardization is the only

way to reap the benefits of SDVs in the automotive industry, and must

happen in the near future to lower the costs and enable more robust

approaches. For example, cost-effective scaling means having a single

and more flexible platform, rather than several less flexible ones,

something that cannot be achieved without proper standardization.

05

W H I T E P A P E R 28

Glossary

Term Meaning

E/E Electrical/Electronic

FIQ Fast Interrupt reQuest

IRQ Interrupt ReQuest

MCS Mixed Criticality System

MCU Microcontroller Unit

MMIO Memory-Mapped I/O

PE Processing Element

SDV Software Defined Vehicle

SOAFEE Scalable Open Architecture for Embedded Edge

System MMU or SMMU System Memory Management Unit

System MPU or SMPU System Memory Protection Unit

TCB Trusted Computing Base

VM Virtual Machine

VMSA Virtual Memory System Architecture

06

29

References

[01] Arm Architecture Reference Manual Supplement Armv8

for Armv8-R AArch64 architecture profile. (ARM DDI 600) Arm Ltd.

[02] Arm Architecture Reference Manual Supplement Armv8

for Armv8-R AArch32 architecture profile. (ARM DDI 568) Arm Ltd.

[03] Arm Architecture Reference Manual Supplement Armv8

for Armv8-R AArch64 architecture profile. (ARM DDI 600) Arm Ltd.

[04] Arm Architecture Reference Manual Supplement Armv8

 for Armv8-R AArch32 architecture profile. (ARM DDI 568) Arm Ltd.

[05] Arm® Generic Interrupt Controller Architecture Specification

GIC architecture version 3.0 and version 4.0. (ARM IHI 0069)

ARM Ltd.

07

© A R M LT D . 2 0 2 2 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the
product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in
this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties
implied or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information
to the reader about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information in this document or any
error or omission in such information.

