
W H I T E P A P E R

Best Practi ces for
Armv8-R Cortex-R52+
Soft ware Consolidati on
Dr Paul Austin, Principal Software Engineer, ETAS
Dr Andrew Coombes, Senior Product Manager, ETAS
Paul Hughes, Lead System Architect and Distinguished Engineer ATG, Arm
James Scobie, Director Automotive Product Management, Arm
Bernhard Rill, Director Automotive Partnerships EMEA, Arm

W H I T E P A P E R 2

Contents

03 Introduction

10 Software Integration Mechanisms

25 Software Integration Recommendations

30 Recommendations for Future Microcontrollers

32 Summary/Conclusion

33 Glossary

W H I T E P A P E R 3

Introduction

Vehicle electrical/electronic (E/E) architectures are evolving towards

the centralization of compute resources. This initially happened in domain

controllers before moving to zonal and centralized approaches.

As multiple real-time functions are consolidated into zonal controllers,

the requirement for the processor performance increases, as does

the sophistication of the operating system and software. The industry

is increasingly turning to Armv8-R based solutions like the Cortex-R52

and Cortex-R52+ CPUs (summarized in the paper as Cortex-R52+)

to enable this software integration vision. Several automotive chip

manufacturers have already incorporated these processors into their

designs for high-performance microcontrollers for zonal platforms

and safety islands. Meanwhile, automotive software providers have

established solutions that integrate with Armv8-R, the Arm architecture

used in this processor family. A state-of-the-art overview of this industry

trend is summarized in this Arm Blueprint article.

W H I T E P A P E R 4

The new system hardware and software must simultaneously meet the

requirements of every individual workload hosted on a device. These include:

	— Satisfying the software dependencies of a workload, including libraries,

operating system calls (including access to Input/Output), and Application

Binary Interfaces (ABI). Specific versions of these may be required. Where

a single operating system is unable to simultaneously satisfy all dependencies,

system software may include more than one operating system.

	— �Performance, including the determinism required for real-time workloads

may have different hard real-time response time requirements, ranging

from a few microseconds upwards. Failure to meet hard real-time

requirements results in an incorrect operation for the workload.

Some workloads may have leaner real-time requirements where failure

to meet these results in degraded performance. Other workloads have

no dedicated real-time requirements, so these software artefacts

are executed on a best effort basis.

	— For functionally safety workloads, satisfying the workload’s assumptions

of a correct execution environment along with the provision of any assumed

external safety mechanisms is fundamental. The Automotive Safety Integrity

Level (ASIL) of the execution environment and safety mechanisms must

be as high or higher than that assigned to the workload.

	— For workloads with less safety relevance, it is highly desirable that the ASIL

of the workload is not increased simply because other higher ASIL workloads

are present on the device.

	— �Meeting security requirements, such as confidentiality, integrity, privacy,

and authenticity, through ensuring sensitive data is not accessible

to other workloads.

	— The ability to update individual workloads, including firmware over-the-air

(FOTA). This also encompasses a range of other topics, such as authentication

of workloads, secure boot and system-level updates. FOTA for hypervisors

is a large topic, which cannot also be addressed in this white paper.

�

W H I T E P A P E R 5

	— For workloads derived from pre-existing (legacy) applications, a desirable

option is to integrate the workload with minimal adaptation. When integrating

workloads that were designed for standalone system hardware, software

must protect against any behaviours with side effects that affect other

applications in the system.

	— For workloads which relate to regulated applications, it may be necessary

to obtain certification (for example, in the case of On-Board Diagnostics

(OBD)-relevant applications). To avoid the need for re-certification every

time another workload changes, it is important to demonstrate that

the other workloads do not interfere with the certified workload.

By hosting multiple workloads, system hardware and software must provide

appropriate isolation between workloads to ensure that one workload cannot

cause another workload to fail to meet its requirements. Where multiple

operating systems are required, similar isolation requirements exist between

each operating system.

For functional safety, this type of isolation is known as freedom-from-interference

(FFI), and requires mechanisms to ensure faults related to one workload

do not cause failure of the execution environment and system safety mechanisms

provided to another workload.

A system that provides this level of isolation between workloads also brings

the advantage of allowing each workload to be developed (and debugged)

in isolation from other workloads. This is especially important if the workloads

are coming from different suppliers.

W H I T E P A P E R 6

System hardware and software provide the following isolation mechanisms

that are used to meet these requirements:

	— Logical isolation. Isolation of state belonging to different workloads using

a privilege model and memory protection mechanisms.

	— Timing isolation. Scheduling of private and shared resources, partitioning

and monitoring of shared resources, and managing watchdog timers

to detect timing violations.

Cortex-R Outline

Arm has a portfolio of CPU processors that are designed to address a wide range

of computing, from the smallest, lowest power microcontrollers to ultra-high

performance server class computing. The Cortex-R processors have been

developed to enable applications where there are demands for real-time

processing and are applicable to a range of different uses cases, not least

of all in automotive applications where systems must respond in short and

deterministic timeframes to successfully meet the requirements of the system

deadlines. In many cases, these applications also include functional safety

(and security) requirements that add to the challenges faced by system

integrators and developers. Cortex-R processors, like the Cortex-R52+

can be used in standalone microcontrollers (MCUs) or as additional cores

in a SoC (System on Chip) design, for example as a safety island.

The first Cortex-R processors, such as Cortex-R5, were built on the Armv7-R

architecture. However, since then the architecture has evolved, with Arm’s

Cortex-R52 and Cortex-R52+ processors implementing the Armv8-R

architecture which helps address the increasing complexity of automotive

real-time software and the transition from discrete dedicated controllers

to those where functions are centralized and combined. The Armv8-R

architecture adds support which enables the better control of software within

a single processor, providing isolation of code and enabling reproducible and

understandable behaviour including virtualization in a real-time processor.

W H I T E P A P E R 7

T A B L E 1

CortexR52(+) Example,
Config Parameters

As part of the Armv8-R architecture, these processors provide an additional

exception level to those of the user space, Exception Level 0 (EL0), and

Operating System space, Exception Level 1 (EL1). This new Exception Level

2 (EL2) can be used to help the management of software on the processor

with the aid of a hypervisor/separation kernel, which simplifies how partners

control software access to shared resources and its interaction. This can

be used to maintain isolation between tasks on a single processor running

on the same operating system, or across multiple operating systems.

Together with the new Exception Level comes the addition of a two stage

Memory Protection Unit (MPU), which is able to enforce the access

performed by the processor to different resources. The Operating System

is able to control the MPU for its resources at EL1, but the processors

can be implemented to add this additional second stage of the MPU, which

is only configurable from the EL2 from where the hypervisor can run.

Config Parameter Cortex-R52/Cortex-R52+

Cores per cluster Configurable 1-4

Stage 1 MPU 8,16,20,24 Regions

Stage 2 MPU 0,8,16,20,24 Regions

Logic fault detection Dual Core Lockstep, Split/lock

Interface Protection Optional

Interconnect Protection Optional

Floating Point Single/Double precision

SIMD NEON

GIC Interrupts Configurable 32-960 SPIs

The Cortex-R52 and Cortex-R52+ processors are highly configurable and

can be defined to suit the implementors application requirements. Some

of the configurability is described in Table 1.

W H I T E P A P E R 8

Access to resources is managed with software running at the new higher

Exception Level 2. Application tasks can request access to the required

resources through this software, which enforces the access with the two level

Memory Protection Units (MPU). This approach is not limited to two different

criticality levels, but can support many different contexts with differing

protections. Unlike a Memory Management Unit (MMU) the availability

of an MPU can offer the access management from the Cortex-R processors

to the system resources without the introduction of additional, potentially

schedule breaking, delays to search and load page tables from memory.

These are hard to manage, as well as being difficult to evaluate and guarantee

their timely completion.

The two levels of MPU are:

— The EL1 MPU, which is managed by the operating system to enforce

the separation of the Operating System from application tasks/ISRs

and also the separation of application tasks/ISRs from each other.

The EL1 MPU can be programmed by code running at EL2 or EL1.

— The EL2 MPU, which can only be programmed by code running

at EL2 and is used by a hypervisor to provide additional separation.

The Cortex-R52+ provides information outside the core to enable the system

to establish and maintain control of accesses based on the running software.

This is achieved by propagating the virtual Machine ID (VMID) for device

transactions to enable the system to manage access to those resources.

In the case of Cortex-R52+, this is further extended by supporting buffers

and memory transaction and requests, which are made directly from

a hypervisor at EL2.
F I G . 1

Armv8-R Exception Levels

W H I T E P A P E R 9

These Cortex-R processors integrate their own Generic Interrupt Controller

(GIC) shared by all CPUs within the cluster to deliver low latency interrupts

from the system. This can flexibly assign and prioritise Shared Peripheral

Interrupts (SPI) to any of the cores in the cluster. The GIC supports the ability

to signal both physical and virtual interrupts and can trap interrupt accesses

to EL2 to virtualize interrupts.

The processors have Tightly Coupled Memories for highly deterministic,

low latency access to code and data by the cores. They have multiple interfaces

to external resources, including SRAM, main memory and devices. Resources

accessed by an interface are assigned based on their address location with

implementors able to flexibly allocate the space in the memory map they

use and manage the allocation of resources to be privately assigned

to a virtual machine.

W H I T E P A P E R 10

Software Integration Mechanisms

As the amount of software in a vehicle increases, progressively more-and-more

applications are being integrated onto one microcontroller. This can be seen

particularly in domain/zonal controllers that provide the bridge between the

very powerful central vehicle computers (typically using Arm Cortex-A cores

and running a POSIX based operating system and Adaptive AUTOSAR), and

the simpler ECUs on the mechatronic rim, which typically use Arm Cortex-R

and Cortex-M cores.

Hypervisors and Virtual Machines

Microcontrollers using the Cortex-R52+ can support systems that integrate

applications with the necessary separation. Each application is run inside its

own separated instance – usually referred to as a partition or virtual machine (VM).

A VM is typically composed of:

	— Some physical or virtual processor cores

	— Some memory

	— Some physical or virtual peripherals

	— Some physical or virtual configuration registers

The software that manages VMs is usually called a hypervisor, separation

kernel or VM manager, which, on a Cortex-R processor, runs at Exception Level

2 (EL2) privileged level.

W H I T E P A P E R 11

One physical processor core can host multiple virtual cores by context

switching between the virtual cores in the same way that operating systems

context switch between processes. A virtual core’s context is the values

of the general-purpose registers, floating-point registers, some system

configuration registers and the configuration of the EL1 MPU.

Where legacy software is being run inside a VM, we want the VM to look

as much as possible like a real microcontroller to avoid the need to change

the legacy software other than by re-linking so that the guest software

running in each VM uses separate memory.

Note that the Armv8-R Cortex-R processors (and similar devices) do not provide
Memory Management Units (MMUs). A hypervisor running on a Cortex-A
device can use its MMU to present each VM with a completely separate virtual
address space. For example, the guest software running inside each VM
can be linked to run at the same address and use the same range of memory
addresses for data. The Memory Protection Unit (MPU) provided by the
Cortex-R52+ allows a hypervisor to protect one VM’s memory from another
VM but does not allow each VM to have a separate virtual address space.

To a greater or lesser extent, a hypervisor creates the illusion to the guest

software running inside a VM that it is running on its own microcontroller

and not sharing the microcontroller devices with other guest software

in other VMs.

W H I T E P A P E R 12

Using SMPUs and Peripheral Protection Mechanisms

Microcontrollers that contain Cortex-Rs will normally include a system-level

memory protection unit (SMPU). The primary role of an SMPU is to control

which bus managers (e.g DMA controller) can access which memory addresses.

Cortex-R processor cores and other microcontroller components, such

as Cortex-M cores and some peripherals, can be bus managers. Typically,

an SMPU will have a collection of regions. Each region has a configurable

start address, a size and is assigned to one or more bus manager (or in more

advanced designs, to one or more VMs using a VM identifier stored in the

Cortex-R52+’s VSCTLR.VMID register). A bus manager (or VM) can only

access memory in regions assigned to it.

Microcontrollers may also include peripheral protection mechanisms

to allow peripherals to be assigned to bus managers (or VMs). Here

a peripheral is assigned to one or more bus manager (or VMs) and the

peripheral protection mechanism then prohibits any other bus manager

(or VM) from accessing the peripheral’s registers.

By using SMPUs and peripheral protection mechanisms we can achieve

cluster-level separation. That is, a microcontroller’s memory and peripherals,

can be partitioned amongst multiple VMs where a VM contains all of the

cores in a Cortex-R core cluster. Relying solely on the above mechanisms

would not allow us to have multiple VMs in the same cluster if the VMs have

different safely levels (e.g., different ISO 26262 ASIL levels). Each cluster

has a Generic Interrupt Controller (GIC) that is used to route interrupts

to the cores in the cluster. Each core has a separate GIC redistributor

to handle Software Generated Interrupts (SGI) and Private Peripheral

Interrupts (PPI), but the GIC distributor used to handle SPI interrupts

is common to all cores in the cluster. If we allowed multiple VMs in the same

Cortex-R52 core cluster to write to the memory mapped GIC distributor

registers, a VM could interfere with another VM by (accidentally

or maliciously) changing the other VM’s interrupt configuration.

W H I T E P A P E R 13

F I G . 2

Partitioning Memory with an SMPU

An advantage of using SMPUs, rather than just core MPUs, is that it allows

us to create VMs that include not just Cortex-R52+ cores but also other DMA

capable components that may be in the microcontroller and are connected

to the same memory bus. For example, microcontrollers may include clusters

of Cortex-R52+ cores and some special purpose Cortex-M cores.

Using EL2 for Para-virtualization

In addition to protection mechanisms like SMPUs and peripheral protection

provided by the microcontroller, the Cortex-R52+ itself includes features

to support virtualization. One of these features is the EL2 privilege level.

EL2 is more privileged than the EL1 (supervisor) level used by an operating

system and the EL0 (user) level used by application code. A hypervisor runs

at EL2 and code inside a VM, the guest software, runs at EL1 or EL0.

W H I T E P A P E R 14

The HVC (hypervisor call) instruction can be used by code running at EL1

to make a request to a hypervisor in the same way that the SVC (supervisor

call) instruction can be used by application software to make a request

to an operating system. When software running at EL1 executes a HVC

instruction, the Cortex-R52+ core switches to EL2 and takes a Hyp-mode

entry exception. The hypervisor handles this exception and then returns

to the guest software at EL1.

The HVC instruction allows for para-virtualization. This is where guest

software is aware that it is running in a VM, and the hypervisor provides

an API (using HVC instructions) that the guest software uses to make

requests to the hypervisor, to device drivers plugged in to the hypervisor

(EL2 device drivers), or to device drivers running in other VMs.

F I G . 3

Para-virtualization

As an example, consider how para-virtualization can be used to allow multiple

VMs to exist inside the same cluster despite the shared GIC distributer. The SMPU

(or the core MPU) is configured so that the VMs do not have access to the

GIC’s memory-mapped registers. When guest software wants to change

its interrupt configuration, it makes an API request to the hypervisor. The

hypervisor carries out the necessary GIC configuration having first checked

that the requested changes will not interfere with another VM.

W H I T E P A P E R 15

Para-virtualization can also be used to allow peripheral sharing and creation

of virtual peripherals. A peripheral, such as an Ethernet controller, can be shared

in much the same way as the GIC. Completely virtual peripherals can also

be created. For example, one might create a virtual Ethernet controller used

for communication between VMs running on the same microcontroller. In both

cases, the hypervisor would contain an EL2 device driver that either managed

access to the shared peripheral or implemented the virtual peripheral. This

is analogous to the way that an Operating System uses devices drivers

to manage access to peripherals shared by multiple processes or tasks.

Para-virtualization can be used as a solution for peripherals that do not,

or do not fully, support virtualization in hardware. Ideally peripherals would

support virtualization as described in “Device virtualization principles for real

time systems” to avoid the need for para-virtualization – at least on the data

plane. Para-virtualization (and trap-and-emulate) will always add some

additional cycles when compared to device pass-through (where a peripheral

is driven directly by guest software without hypervisor intervention), but unless

a peripheral supports virtualization, para-virtualization (or trap-and-emulate)

is likely to be needed to allow the peripheral to be shared between VMs.

In the case where para-virtualized code is only executed infrequently, the

overhead of para-virtualization may be acceptably small e.g., where a control

plane must be para-virtualized but a data plane does not.

W H I T E P A P E R 16

Using EL2 for Trap-and-emulate

In some cases, para-virtualizing guest software may not be possible.

In these cases, trap-and-emulate can be used.

When code running at EL1 or EL0 makes a memory access prohibited by the

EL2 MPU, the Cortex-R52+ processor switches to EL2 and takes a Hyp-mode

entry exception. This feature can be used by a hypervisor to allow emulated

access to peripherals with memory mapped registers. The EL2 MPU is configured

to prohibit access to the registers. When guest software reads or writes

a register, a Hyp-mode entry exception occurs at EL2. The hypervisor works

out which register the guest software was reading or writing by examining

the Cortex-R52+’s Hyp Syndrome Register (HSR) – which contains details

of why an exception occurred - and Hyp Data Fault Address Register

(HDFAR)– which contains the memory address being accessed when

an exception occurred - and either emulates access to the register itself

or delegates to an EL2 device driver.

Trap-and-emulate can be used to access the shared GIC distributer. The EL2

MPU is configured so that guest software access to GIC memory mapped

registers causes an exception. When the exception occurs, the hypervisor

carries out the GIC register access having first checked that the register

access will not interfere with another VM.

Trap-and-emulate can provide a means for guest software to access shared

and virtual peripherals managed by EL2 device drivers. When integrating

legacy software, trap-and-emulate can be used to emulate a peripheral

not present in the microcontroller.

W H I T E P A P E R 17

Trap-and-emulate has the advantage that guest software does not need

to be modified to run in a VM. However, para-virtualization is usually more

performant because:

	— Operations on peripherals can be requested at a higher level of abstraction,

which results in few switches to the hypervisor (e.g., we might have a “configure

interrupt” operation that is equivalent to multiple accesses to GIC registers).

	— The hypervisor does not have to work out what the guest software was doing

when the Hyp-mode entry exception occurs.

Interrupt Virtualization

EL2 alone does not allow us to share or virtualize interrupt driven peripherals.

The Armv8-R architecture defines that normally when an interrupt occurs it

interrupts the currently running code at the current privilege level. For example,

if an IRQ occurs while code is running at EL1 then the interrupt will be taken

at EL1 using the IRQ entry in the EL1 vector table, but if the IRQ occurs while

code is running at EL2 then the interrupt will be taken at EL2 using the IRQ

entry in the EL2 vector table.

To solve this, the Cortex-R52+ supports interrupt virtualization. When interrupt

virtualization is enabled (by setting the IMO and FMO flags in the HCR register

and setting the EN flag in the ICH_HCR register), an FIQ or IRQ interrupt

(exception) always results in the Cortex-R52+ switching to EL2 and taking

an FIQ or IRQ interrupt using the EL2 vector table. The hypervisor can then

either handle the interrupt or use features of the Cortex-R52+ core to virtualize

the interrupt (by using list registers), so that when guest software runs

at EL1/EL0 it takes the virtual interrupt at EL1 using the EL1 vector table.

To the guest software, the virtual interrupt is indistinguishable from a real

interrupt. When guest software disables interrupts or changes the priority

mask register value, only virtualized interrupts routed to the guest’s VM are

affected, not real interrupts being taken at EL2. Therefore, guest software

cannot stop interrupts being taken by the hypervisor.

W H I T E P A P E R 18

F I G . 4

Interrupt Virtualization

Since all interrupts are initially handled by the hypervisor, the hypervisor can

decide if an interrupt should be handled by the hypervisor itself, by an EL2

device driver, or should be virtualized and injected into to a VM. This allows

interrupt driven shared/virtual peripherals to be handled. EL2 device drivers

can also inject virtual interrupts into VMs if needed.

Interrupt virtualization also allow “remote control” of VMs. For example,

a privileged management VM or EL2 device driver running on one physical

core can generate an interrupt in a second physical core to request that

the hypervisor do something on the second core, such as shutting down

or re-starting a VM running on the second core.

W H I T E P A P E R 19

Of course, nothing comes for free, and interrupt virtualization adds to the total

time taken to process an interrupt. The exact overhead depends on many

factors, including the arrival pattern of interrupts and how many different

GIC interrupts are being used. There are two timing concerns to be aware

of related to interrupt virtualization:

1.	 The processing at EL2 to virtualize an interrupt consumes processor time.

2.	 Since prioritization of virtual interrupts is independent to prioritization

of real interrupts, guest software may see timing anomalies.

	 Some examples in this context: consider two interrupts A and B. 		

A is higher priority than B. Both interrupts are routed to the same 		

VM using interrupt virtualization.

				 i.	 If A occurs and the EL2 and EL1 handling of A completes 	

				 before B occurs, then guest software will see a small increase

				 in latency for both interrupts due to the EL2 handling.

				 ii.	 If both interrupts occur at the same time, the EL2 handling 	

				 for both interrupts will occur before any EL1 handling, and 	

				 the guest software will see a double increase in latency for

				 A, but no increase in latency for B.

				 iii.	 Now imagine that A occurs and reaches the EL1 handler

				 in the guest software and then B occurs. The EL2 handling

				 of B will pre-empt the EL1 handling of A even though A is

				 higher priority.

W H I T E P A P E R 20

To help quantify this GIC virtualization behaviour, we include the results

of some experiments carried out with ETAS’ RTA-HVR hypervisor. In these

experiments, we compared the interrupt latency of Cortex-R52+ cores

running the RTA-OS Operating System without a hypervisor to the same

Cortex-R52 cores running RTA-OS as guest software inside a VM. Two

cores inside the same Cortex-R cluster were used. The first core triggered

interrupts in the second core by setting bits in the GIC ISPENDR registers

(Interrupt Set Pending Registers that are used by software to trigger interrupts).

The latency is the number of timer ticks between the interrupt being triggered

and the start of the (fully Operating System managed – i.e., AUTOSAR Category

2) ISR. The timer was configured to run at the same speed as the processor

clock. The exact value of the latency will depend on the type of memory used

for code/data and the cache configuration, so in the following results

it is important to focus on the comparison between the hypervisor and

non-hypervisor cases rather than the absolute values.

T A B L E 2
Interrupt Number Latency (CPU Cycles)

No Hypervisor
Latency (CPU Cycles)

Hypervisor
Ratio Hypervisor/No

Hypervisor

1 1129 2067 1.83

2 1120 2053 1.83

3 1120 2008 1.79

4 1125 2002 1.78

Table 2 shows what happens when the first core triggers four different interrupts

with a large delay between interrupts so that all interrupt handing has completed

on the second core before the next interrupt is triggered. In this case, we see

an increase of around 80 percent in interrupt latency. In this case, the Operating

System configuration does not contain any untrusted code (i.e., all application

code is running at EL1).

W H I T E P A P E R 21

Interrupt
Number

Latency
(CPU Cycles)

No Hypervisor

Delta Between
Latency N-1 and N
for No Hypervisor

Latency
(CPU Cycles)
Hypervisor

Delta Between
Latency N-1 and N

for Hypervisor

1 1255 1255 5047 5047

2 2674 1419 6366 1319

3 4089 1415 7714 1348

4 5505 1416 9051 1337

T A B L E 3

Table 3 contains results from the same setup as 2, except that the Operating

System configuration includes untrusted tasks and ISRs. Here we see that

the additional work that must be done by RTA-OS to manage untrusted code

means the work done at EL2 to virtualize interrupts is a smaller proportion

of overall interrupt latency.

Interrupt Number Latency (CPU Cycles)
No Hypervisor

Latency (CPU Cycles)
Hypervisor

Ratio Hypervisor/No
Hypervisor

1 2046 2916 1.43

2 2023 2817 1.39

3 2463 3381 1.37

4 2454 3364 1.37

T A B L E 4

Table 4 shows what happens if the four interrupts are triggered at the same time.

The lower the interrupt number, the higher its priority. For the case without

a hypervisor, we see the expected behaviour given interrupt prioritization. The ISR

for interrupt number 1 runs first and blocks the other interrupts until it has been

completed. The ISR for interrupt number 2 then runs and blocks the other

interrupts until it has been completed. And so on. The time between the ISR for

interrupt N-1 starting and the ISR for interrupt number N starting is approximately

the same (the ISRs executed very little code). However, with a hypervisor present

we see quite different behaviour. The EL2 handling for all four interrupts occurs

before interrupt number 1 is handled by its EL1 ISR. Therefore, we see a much

larger interrupt latency for interrupt number 1 than for the subsequent interrupts.

W H I T E P A P E R 22

Virtual Processor Cores

We can also take advantage of interrupt virtualization to support virtual

processor cores. For example, a timer interrupt can be handled by the

hypervisor and used to drive a virtual core scheduler that decides when

to context switch between virtual cores. Since guest software cannot block

interrupts being taken at EL2, broken or malicious guest software cannot

deny processor time to other guest software. Interrupts that arrive for

 a virtual core that are not currently running can be virtualized, queued

in software, and injected into the virtual core when it next runs.

Switching between virtual cores often involves re-programming the EL2

MPU. Care must also be taken with co-processor 14 and 15 configuration

registers (these registers are used to configure various aspects of the

processor, such as endianness, whether or not caching is enabled and

whether or not the EL1 MPU is enabled). Some of these registers affect the

physical core in ways that could affect all virtual cores on the physical core

and the hypervisor. Other registers have effects that might be virtual core

specific, such as EL1 MPU region registers. Registers in the latter category

need to be part of a virtual core’s context. For registers in the former category,

the Cortex-R52+ can be configured to generate a Hyp-mode entry exception

at EL2 when they are accessed. The hypervisor can then in some way

emulate access to these registers.

W H I T E P A P E R 23

F I G . 5

Virtual Cores

If multiple virtual cores are hosted by a single physical core, then consideration

must be given to how virtual cores are scheduled. The simplest approach

is to use a static TDMA (Time-division multiple access) algorithm. A TDMA

algorithm has a very low run-time overhead, is easy to understand, and is easy

to work out when a virtual core will run in wall-clock time. The disadvantage

of a purely static algorithm is that it can lead to long latencies when handling

asynchronous events (e.g., interrupts). It may be possible to avoid long

latencies through the careful construction of the static VM schedule to ensure

that an interrupt never has to wait for too long before the VM that handles

it runs. However, this may require detailed understanding of interrupt

worst-case execution times.

An alternative way for a system to handle asynchronous events with short

latencies is to use a dynamic scheduling algorithm. An example of a dynamic

scheduling algorithm is Reservation Based Scheduling with each virtual core

being a Deferrable Server. Such an algorithm has been used in some versions

of the ETAS RTA-HVR hypervisor. This gives much shorter latencies when

handling asynchronous events at the expense of a higher run-time scheduling

overhead and the need to para-virtualize the guest Operating System so that

it can yield its virtual core when the operating system has no tasks to run.

W H I T E P A P E R 24

Using virtual processor cores gives the system designer flexibility:

	— A VM can be created that contains more cores than would be available if only

physical cores were used. The extra cores might make structuring software

easier – in the same way that threads are used in an operating system.

	— Multiple VMs may be hosted by a single physical core.

However, context switching between virtual cores has a non-trivial overhead,

as the hypervisor needs to save one virtual core’s general-purpose registers,

floating-point registers, relevant configuration registers and EL1 MPU settings,

and then re-load these for another virtual core. A virtual core context switch

is analogous to a process context switch in an Operating System.

Using virtual cores effects interrupt latency. With a static scheduling algorithm,

an interrupt that arrives for a virtual core that is not currently running will not

be handled until the virtual core next runs. With a dynamic scheduling algorithm

that automatically switches to the virtual core that handles an interrupt, the

virtual core context switch time will be added to the interrupt latency.

A system designer needs to evaluate which applications can make use

of virtual processor cores. If the overhead of context switching virtual cores

is not acceptable, the system designer should consider different options.

W H I T E P A P E R 25

Software Integration Recommendations

Unfortunately, there is no “one size fits all” approach to integrating multiple

applications into a microcontroller. The previous section has outlined several

mechanisms that can be used to enable integration. Which mechanisms

are appropriate will depend on the types of application being integrated.

Decide if Hypervisor-type Separation Is Needed or Would OS-level

Separation Be Better?

The mechanisms described above allow a hypervisor to create the illusion that

guest software has its own microcontroller and to enforce separation between

the VMs running the guest software. If the applications to be integrated are

tightly coupled (tightly coupled means that applications make synchronous

functions calls into each other or rely on activities within all applications being

scheduled by the same scheduler), then integration using Operating System

containers may be more appropriate. AUTOSAR operating systems allow tasks

and ISRs to be grouped into containers called “Operating System applications”

and MPUs can be used to separate these different containers. Integration

at the Operating System level means that a single scheduler is used to schedule

all tasks and tightly coupled communication is better supported. New initiatives

like AUTOSAR Flex-CP are being developed to support more dynamic

integration of applications into Classic AUTOSAR systems.

Treat Each VM as a Separate ECU Connected by a Network

Where running each application in a VM is the best approach, it is important

to treat each VM as a sperate Electronic Control Unit (ECU) connected

by a network. Each VM likely contains guest software with its own Operating

System and scheduling policy. Tight coupling between tasks in different VMs,

both in terms of scheduling and communication, is very hard to manage and

likely to result in a fragile system. It is better to treat each VM as a separate

ECU and use the mechanisms built into AUTOSAR to handle systems built

from multiple ECUs. This leads to a more robust, simpler, and easier to reason

about system.

W H I T E P A P E R 26

Use Core-local and Cluster-local Resources

It is better to use resources like memory and peripherals that are “close”

to the core that uses them. Each Cortex-R core has TCMs that are much

faster to access than other types of RAM. Often microcontrollers have

cluster local Flash and RAM, and in some cases peripherals (e.g., CAN and

LIN controllers) can be assigned to a cluster. As well as usually being faster,

using cluster local resources often results in less memory bus contention

because a core accessing cluster local resources may not have to contend

with cores in other clusters for access to the memory bus.

Note that using resources close to a core may limit any migration of virtual

processor cores between physical processor cores at run-time (if this

is supported). For example, if a virtual core is linked to use FLASH local

to Cortex-R core cluster 0, the virtual core would run more slowly if migrated

to cluster 1.

Consider the Interrupt Latency and Real-time Requirements

A summary of the techniques applicable to applications with different

interrupt latency and real-time requirements are summarised in the table

below. A more detailed discussion can be found in subsequent sub-sections.

T A B L E 5 Application
Type

Interrupt
Virtualization

Virtual
Processor Cores

Para-virtualization/
Trap-and-emulate Example Applications

Ultra-Low
Latency Hard
Real-Time

No No Yes, if the application
allows it

Powertrain, Braking

Low-Latency
Hard Real-Time

Yes, dynamic
scheduling may
be needed

Yes, dynamic
scheduling may
be needed

Yes, if the application
allows it

Other chassis

Latency
Focussed
Real-Time

Yes Yes Yes, if the application
allows it

General Body functions
(e.g. immobilizer, ambient
lightning, etc.)

Best Effort Yes Yes Yes Convenient Body
functions (e.g. road
noise suppression)

W H I T E P A P E R 27

Ultra-low Latency Hard Real-time Applications

Here we are considering applications that require very short and predicable

interrupt latencies. In essence, we want the “bare metal” behaviour. In these

cases, interrupt virtualization and hosting multiple virtual cores on a physical

core is more challenging, because of the increased and less predictable interrupt

latencies that result from using these techniques.

Virtualizing GIC access, either with para-virtualization or trap-and-emulate, will

reduce performance and may or may not be appropriate. While the hypervisor

is carrying out GIC access on behalf of guest software, interrupts will most

likely be disabled. However, this interrupt blocking will happen at times that

are under the control of the guest software (e.g., during initialization).

The same argument applies to using EL2 device drivers for sharing

peripherals and creating virtual peripherals. The para-virtualization

or trap-and-emulate required is relatively slow, but when it occurs

it is under the control of the application.

Using memory local to a core or cluster is particularly advisable for this

type of application.

Low-latency Hard Real-time Applications

Here we are considering applications that require short and predictable

interrupt latencies, but interrupt latencies longer and less predictable than

“bare metal” are acceptable.

Depending on the acceptable upper bound on interrupt latencies for these

types of applications, interrupt virtualization and hosting multiple virtual cores

per physical core may be viable if a suitable virtual core scheduling algorithm

is used. A dynamic scheduling algorithm, such as reservation-based scheduling

with deferrable servers, can lead to fairly short and fairly predictable interrupt

latencies – albeit longer than “bare metal” latencies because of the need for

virtual core context switches when the virtual core that handles an interrupt

is not currently running.

W H I T E P A P E R 28

The discussion on virtualizing GIC access and using EL2 device drivers

in the section on ultra-low latency hard real-time applications is also

applicable here.

Latency Focussed Real-time Applications

Here we are considering applications that do not need particularly short

interrupt latencies, but do need bounded interrupt latencies.

Again, depending on the acceptable upper bound on interrupt latencies,

for these types of applications interrupt virtualization and hosting multiple

virtual cores per physical core may be viable. Whether or not a static

or dynamic virtual core scheduling is used will depend on the acceptable

upper bound for interrupt latencies. If the upper bound is quite long, then

a static scheduling algorithm may work. For example, if the longest time

between a virtual core being scheduled is shorter than the upper bound

on interrupt latency. If the upper bound is shorter, then a dynamic scheduling

algorithm would be needed.

The discussion on virtualizing GIC access and using EL2 device drivers

in the section on ultra-low latency hard real-time applications is also

applicable here.

Best-effort Applications

For best effort (non-real time) applications, multiplexing multiple virtual

cores onto a single physical core and shared and virtual device support can

allow a far more optimal use of microcontroller resources. In some domains,

many applications perform functions that have no hard real-time constraints,

and these applications often perform their function in response to a stimulus

and are then quiescent until the stimulus occurs again. Such systems are

amenable to hosting multiple applications on a single physical core.

W H I T E P A P E R 29

If the system needs to handle asynchronous events with short latencies, then

a dynamic virtual core scheduling algorithm may be needed. However, if there

is no need to handle asynchronous events with short latencies, a simple static

scheduling algorithm will have a lower run-time overhead.

Legacy Software

When integrating legacy applications, one wants to minimize changes to the

software. If the applications do not have hard real-time constraints, then

most of the above mechanisms can be used except for para-virtualization.

Trap-and-emulate would allow legacy peripherals to be emulated using EL2

device drivers.

If a legacy application has ultra-low latency hard real-time requirements, then

the only solution may be to give the application a complete Cortex-R cluster

and just firewall the cluster from the rest of the microcontroller using

an SMPU and peripheral protection.

W H I T E P A P E R 30

Recommendations for
Future Microcontrollers

Provide Fine Grained Assignment of Peripherals to VMs

The need for EL2 device drivers can be reduced if peripherals can be assigned

to VMs at a fine grain. For example, it would be useful to be able to assign

individual Controller Area Network (CAN) channels, or even individual

General-Purpose Input/Output (GPIO) pins, to a VM. This reduces the need

for para-virtualization or trap-and-emulate with the consequent improvement

in performance. While full peripheral virtualization would be ideal (see below),

a compromise would be to use para-virtualization/trap-and-emulate to carry

out initialization and configuration of peripherals, but allow direct access

for the data plane.

Provide as Many MPU Regions as Possible

Assigning memory or peripherals to VMs often uses a lot of SMPU and core MPU

regions. The more (S)MPU regions available the better (this statement implies

that silicon partners include the EL2 MPU in the design synthesis). It is also

good if MPU region granularity is small. A small MPU region granularity makes

it easier to assign peripherals to VMs.

Support Virtualization in Peripherals

Even better than fine-grain peripheral to VM assignment is full virtualization

of peripherals. Here a peripheral would be configured by a hypervisor to present

a separate “view” of itself to multiple VMs. Each of the VMs could then use

the peripheral as if it has been assigned a unique instance of the peripheral.

W H I T E P A P E R 31

Ensure that DMA is Virtualization Aware

When a VM uses a DMA transfer, or uses a peripheral that uses a DMA transfer,

the DMA transfer must not allow the VM to read or write from memory

addresses that would normally be prohibited by the SMPU or core MPUs.

The ideal would be for the DMA module/channel to automatically inherit the

identity of the VM that configured the DMA module/channel or of the VM that

configured the peripheral that uses the DMA module/channel. The VM identifier

would then be checked by at least the SMPU on a DMA transfer, and the DMA

transfer blocked if the VM did not have permission to read or write the memory

involved in the DMA transfer. To support such behaviour, the Armv8-R VMID

should be distributed to peripherals and DMA controllers.

If this automatic inheritance of VM identity is not possible, it should be possible

to programmatically assign, by a privileged software entity, DMA modules/

identifiers to VMs, so that SMPU control of DMA transfers can be done.

Control of DMA by VM, rather than just the bus-manager, is important

when a single physical core may be running multiple VMs.

Adopt Available Virtualization Standards to Ease Software Mobility

Virtualization is a relatively new topic for the microcontrollers typically used

to run Classic AUTOSAR systems, and naturally microcontroller manufacturers

are adding features to give themselves an advantage over their competitors.

However, users of these microcontrollers would like to develop software with

the confidence that they can move that software to a different microcontroller,

if necessary. Therefore, the combination of the microcontroller and a hypervisor

needs to provide the users of microcontrollers with a fairly standard set

of features and methods of feature usage. To this end, where industry

standards are available, they should be adopted.

Some work as already been done in this area for the Armv8-R architecture,

and a good example can be found in the Arm “Device virtualization principles

for real time systems” paper.

W H I T E P A P E R 32

Summary/Conclusion

The evolution of EE-architecture, including zonal controllers, demands

further solutions for real-time software integration. Classic AUTOSAR

is a de-facto standard in the automotive real-time software world, but further

integration options, such as for legacy software, are a must moving forward.

The Armv8-R architecture with the EL2 separation option represents a good

option to enable intelligent integration options. How to use this integration

option is highly dependent on the application though, and dedicated application

demands will define which way of integration is most suitable.

This paper presents a variety of different techniques that can be used

to support integration of different types of applications. This should help

the system designer to understand how to best use Cortex-R52+ cores

to support application integration.

33

© A R M LT D . 2 0 2 2 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the
product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in
this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties
implied or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information
to the reader about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information in this document or any
error or omission in such information.

Glossary (in alphabetical order):

— ABI — Application Binary Interface

— ASIL — Automotive Safety Integrity Level

— BOM — Bill Of Material

— EE — Electrical/electronic

— ECU — Electronic Control Unit

— EL2 — Exception Level 2

— GIC — Generic Interrupt Controller

— ISR — Interrupt Service Routine

— MCU — Microcontroller

— MMU — Memory Management Unit

— NEON — Arm Neon is an advanced single instruction

multiple data (SIMD) architecture extension for the

Arm Cortex-A and Arm Cortex-R series of processors

— OBD — On Board Diagnostics

— PPI — Private Peripheral Interrupt

— SGI — Software Generated Interrupt

— SMPU — System Memory Protection Unit

— SIMD — Single Instruction Multiple Data

— SoC — System on Chip

— VM — Virtual Machine

