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Introduction

Vehicle electrical/electronic (E/E) architectures are evolving towards  

the centralization of compute resources. This initially happened in domain 

controllers before moving to zonal and centralized approaches.

As multiple real-time functions are consolidated into zonal controllers,  

the requirement for the processor performance increases, as does  

the sophistication of the operating system and software. The industry  

is increasingly turning to Armv8-R based solutions like the Cortex-R52  

and Cortex-R52+ CPUs (summarized in the paper as Cortex-R52+)  

to enable this software integration vision. Several automotive chip 

manufacturers have already incorporated these processors into their  

designs for high-performance microcontrollers for zonal platforms  

and safety islands. Meanwhile, automotive software providers have 

established solutions that integrate with Armv8-R, the Arm architecture  

used in this processor family. A state-of-the-art overview of this industry 

trend is summarized in this Arm Blueprint article. 
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The new system hardware and software must simultaneously meet the 

requirements of every individual workload  hosted on a device. These include:

	— Satisfying the software dependencies of a workload, including libraries, 

operating system calls (including access to Input/Output), and Application 

Binary Interfaces (ABI). Specific versions of these may be required. Where  

a single operating system is unable to simultaneously satisfy all dependencies,  

system software may include more than one operating system.

	— �Performance, including the determinism required for real-time workloads 

may have different hard real-time response time requirements, ranging 

from a few microseconds upwards. Failure to meet hard real-time 

requirements results in an incorrect operation for the workload.  

Some workloads may have leaner real-time requirements where failure 

to meet these results in degraded performance. Other workloads have  

no dedicated real-time requirements, so these software artefacts  

are executed on a best effort basis.

	— For functionally safety workloads, satisfying the workload’s assumptions  

of a correct execution environment along with the provision of any assumed 

external safety mechanisms is fundamental. The Automotive Safety Integrity 

Level (ASIL) of the execution environment and safety mechanisms must  

be as high or higher than that assigned to the workload.

	— For workloads with less safety relevance, it is highly desirable that the ASIL  

of the workload is not increased simply because other higher ASIL workloads  

are present on the device.

	— �Meeting security requirements, such as confidentiality, integrity, privacy,  

and authenticity, through ensuring sensitive data is not accessible  

to other workloads.

	— The ability to update individual workloads, including firmware over-the-air  

(FOTA). This also encompasses a range of other topics, such as authentication 

of workloads, secure boot and system-level updates. FOTA for hypervisors  

is a large topic, which cannot also be addressed in this white paper. 

�
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	— For workloads derived from pre-existing (legacy) applications, a desirable 

option is to integrate the workload with minimal adaptation. When integrating 

workloads that were designed for standalone system hardware, software 

must protect against any behaviours with side effects that affect other 

applications in the system.

	— For workloads which relate to regulated applications, it may be necessary 

to obtain certification (for example, in the case of On-Board Diagnostics 

(OBD)-relevant applications). To avoid the need for re-certification every 

time another workload changes, it is important to demonstrate that  

the other workloads do not interfere with the certified workload.

By hosting multiple workloads, system hardware and software must provide 

appropriate isolation between workloads to ensure that one workload cannot 

cause another workload to fail to meet its requirements. Where multiple 

operating systems are required, similar isolation requirements exist between 

each operating system.

For functional safety, this type of isolation is known as freedom-from-interference 

(FFI), and requires mechanisms to ensure faults related to one workload 

do not cause failure of the execution environment and system safety mechanisms 

provided to another workload.

A system that provides this level of isolation between workloads also brings 

the advantage of allowing each workload to be developed (and debugged)  

in isolation from other workloads. This is especially important if the workloads 

are coming from different suppliers.
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System hardware and software provide the following isolation mechanisms 

that are used to meet these requirements:

	— Logical isolation. Isolation of state belonging to different workloads using  

a privilege model and memory protection mechanisms.

	— Timing isolation. Scheduling of private and shared resources, partitioning 

and monitoring of shared resources, and managing watchdog timers  

to detect timing violations.

Cortex-R Outline

Arm has a portfolio of CPU processors that are designed to address a wide range  

of computing, from the smallest, lowest power microcontrollers to ultra-high 

performance server class computing. The Cortex-R processors have been 

developed to enable applications where there are demands for real-time 

processing and are applicable to a range of different uses cases, not least 

of all in automotive applications where systems must respond in short and 

deterministic timeframes to successfully meet the requirements of the system 

deadlines. In many cases, these applications also include functional safety  

(and security) requirements that add to the challenges faced by system 

integrators and developers. Cortex-R processors, like the Cortex-R52+  

can be used in standalone microcontrollers (MCUs) or as additional cores  

in a SoC (System on Chip) design, for example as a safety island.

The first Cortex-R processors, such as Cortex-R5, were built on the Armv7-R 

architecture. However, since then the architecture has evolved, with Arm’s 

Cortex-R52 and Cortex-R52+ processors implementing the Armv8-R 

architecture which helps address the increasing complexity of automotive  

real-time software and the transition from discrete dedicated controllers 

to those where functions are centralized and combined. The Armv8-R 

architecture adds support which enables the better control of software within 

a single processor, providing isolation of code and enabling reproducible and 

understandable behaviour including virtualization in a real-time processor.
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T A B L E  1

CortexR52(+) Example,  
Config Parameters

As part of the Armv8-R architecture, these processors provide an additional 

exception level to those of the user space, Exception Level 0 (EL0), and  

Operating System space, Exception Level 1 (EL1). This new Exception Level  

2 (EL2) can be used to help the management of software on the processor 

with the aid of a hypervisor/separation kernel, which simplifies how partners 

control software access to shared resources and its interaction. This can  

be used to maintain isolation between tasks on a single processor running  

on the same operating system, or across multiple operating systems.

Together with the new Exception Level comes the addition of a two stage 

Memory Protection Unit (MPU), which is able to enforce the access 

performed by the processor to different resources. The Operating System  

is able to control the MPU for its resources at EL1, but the processors  

can be implemented to add this additional second stage of the MPU, which  

is only configurable from the EL2 from where the hypervisor can run.

Config Parameter Cortex-R52/Cortex-R52+ 

Cores per cluster Configurable 1-4

Stage 1 MPU 8,16,20,24 Regions

Stage 2 MPU 0,8,16,20,24 Regions

Logic fault detection Dual Core Lockstep, Split/lock

Interface Protection Optional

Interconnect Protection Optional

Floating Point Single/Double precision

SIMD NEON

GIC Interrupts Configurable 32-960 SPIs

The Cortex-R52 and Cortex-R52+ processors are highly configurable and  

can be defined to suit the implementors application requirements. Some  

of the configurability is described in Table 1.
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Access to resources is managed with software running at the new higher 

Exception Level 2. Application tasks can request access to the required 

resources through this software, which enforces the access with the two level 

Memory Protection Units (MPU). This approach is not limited to two different 

criticality levels, but can support many different contexts with differing 

protections. Unlike a Memory Management Unit (MMU) the availability 

of an MPU can offer the access management from the Cortex-R processors 

to the system resources without the introduction of additional, potentially 

schedule breaking, delays to search and load page tables from memory. 

These are hard to manage, as well as being difficult to evaluate and guarantee 

their timely completion.

The two levels of MPU are:

— The EL1 MPU, which is managed by the operating system to enforce 

the separation of the Operating System from application tasks/ISRs 

and also the separation of application tasks/ISRs from each other. 

The EL1 MPU can be programmed by code running at EL2 or EL1.

— The EL2 MPU, which can only be programmed by code running 

at EL2 and is used by a hypervisor to provide additional separation.

The Cortex-R52+ provides information outside the core to enable the system 

to establish and maintain control of accesses based on the running software. 

This is achieved by propagating the virtual Machine ID (VMID) for device 

transactions to enable the system to manage access to those resources. 

In the case of Cortex-R52+, this is further extended by supporting buffers 

and memory transaction and requests, which are made directly from 

a hypervisor at EL2.
F I G .  1

Armv8-R Exception Levels
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These Cortex-R processors integrate their own Generic Interrupt Controller 

(GIC) shared by all CPUs within the cluster to deliver low latency interrupts 

from the system. This can flexibly assign and prioritise Shared Peripheral 

Interrupts (SPI) to any of the cores in the cluster. The GIC supports the ability 

to signal both physical and virtual interrupts and can trap interrupt accesses  

to EL2 to virtualize interrupts.

The processors have Tightly Coupled Memories for highly deterministic,  

low latency access to code and data by the cores. They have multiple interfaces 

to external resources, including SRAM, main memory and devices. Resources 

accessed by an interface are assigned based on their address location with 

implementors able to flexibly allocate the space in the memory map they  

use and manage the allocation of resources to be privately assigned  

to a virtual machine.
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Software Integration Mechanisms

As the amount of software in a vehicle increases, progressively more-and-more 

applications are being integrated onto one microcontroller. This can be seen 

particularly in domain/zonal controllers that provide the bridge between the 

very powerful central vehicle computers (typically using Arm Cortex-A cores 

and running a POSIX based operating system and Adaptive AUTOSAR), and 

the simpler ECUs on the mechatronic rim, which typically use Arm Cortex-R 

and Cortex-M cores.

Hypervisors and Virtual Machines

Microcontrollers using the Cortex-R52+ can support systems that integrate 

applications with the necessary separation. Each application is run inside its  

own separated instance – usually referred to as a partition or virtual machine (VM).

A VM is typically composed of:

	— Some physical or virtual processor cores

	— Some memory

	— Some physical or virtual peripherals

	— Some physical or virtual configuration registers

The software that manages VMs is usually called a hypervisor, separation 

kernel or VM manager, which, on a Cortex-R processor, runs at Exception Level  

2 (EL2) privileged level. 
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One physical processor core can host multiple virtual cores by context  

switching between the virtual cores in the same way that operating systems 

context switch between processes. A virtual core’s context is the values  

of the general-purpose registers, floating-point registers, some system 

configuration registers and the configuration of the EL1 MPU.

Where legacy software is being run inside a VM, we want the VM to look  

as much as possible like a real microcontroller to avoid the need to change  

the legacy software other than by re-linking so that the guest software 

running in each VM uses separate memory.

Note that the Armv8-R Cortex-R processors (and similar devices) do not provide 
Memory Management Units (MMUs). A hypervisor running on a Cortex-A 
device can use its MMU to present each VM with a completely separate virtual 
address space. For example, the guest software running inside each VM 
can be linked to run at the same address and use the same range of memory 
addresses for data. The Memory Protection Unit (MPU) provided by the 
Cortex-R52+ allows a hypervisor to protect one VM’s memory from another  
VM but does not allow each VM to have a separate virtual address space.

To a greater or lesser extent, a hypervisor creates the illusion to the guest 

software running inside a VM that it is running on its own microcontroller  

and not sharing the microcontroller devices with other guest software  

in other VMs.
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Using SMPUs and Peripheral Protection Mechanisms

Microcontrollers that contain Cortex-Rs will normally include a system-level  

memory protection unit (SMPU). The primary role of an SMPU is to control 

which bus managers (e.g DMA controller) can access which memory addresses. 

Cortex-R processor cores and other microcontroller components, such 

as Cortex-M cores and some peripherals, can be bus managers. Typically, 

an SMPU will have a collection of regions. Each region has a configurable 

start address, a size and is assigned to one or more bus manager (or in more 

advanced designs, to one or more VMs using a VM identifier stored in the 

Cortex-R52+’s VSCTLR.VMID register). A bus manager (or VM) can only 

access memory in regions assigned to it.

Microcontrollers may also include peripheral protection mechanisms  

to allow peripherals to be assigned to bus managers (or VMs). Here  

a peripheral is assigned to one or more bus manager (or VMs) and the 

peripheral protection mechanism then prohibits any other bus manager  

(or VM) from accessing the peripheral’s registers.

By using SMPUs and peripheral protection mechanisms we can achieve 

cluster-level separation. That is, a microcontroller’s memory and peripherals, 

can be partitioned amongst multiple VMs where a VM contains all of the 

cores in a Cortex-R core cluster. Relying solely on the above mechanisms 

would not allow us to have multiple VMs in the same cluster if the VMs have 

different safely levels (e.g., different ISO 26262 ASIL levels). Each cluster  

has a Generic Interrupt Controller (GIC) that is used to route interrupts  

to the cores in the cluster. Each core has a separate GIC redistributor 

to handle Software Generated Interrupts (SGI) and Private Peripheral 

Interrupts (PPI), but the GIC distributor used to handle SPI interrupts  

is common to all cores in the cluster. If we allowed multiple VMs in the same 

Cortex-R52 core cluster to write to the memory mapped GIC distributor 

registers, a VM could interfere with another VM by (accidentally  

or maliciously) changing the other VM’s interrupt configuration.
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F I G .  2

Partitioning Memory with an SMPU

An advantage of using SMPUs, rather than just core MPUs, is that it allows 

us to create VMs that include not just Cortex-R52+ cores but also other DMA 

capable components that may be in the microcontroller and are connected  

to the same memory bus. For example, microcontrollers may include clusters 

of Cortex-R52+ cores and some special purpose Cortex-M cores.

Using EL2 for Para-virtualization

In addition to protection mechanisms like SMPUs and peripheral protection 

provided by the microcontroller, the Cortex-R52+ itself includes features  

to support virtualization. One of these features is the EL2 privilege level. 

EL2 is more privileged than the EL1 (supervisor) level used by an operating 

system and the EL0 (user) level used by application code. A hypervisor runs  

at EL2 and code inside a VM, the guest software, runs at EL1 or EL0. 
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The HVC (hypervisor call) instruction can be used by code running at EL1  

to make a request to a hypervisor in the same way that the SVC (supervisor 

call) instruction can be used by application software to make a request  

to an operating system. When software running at EL1 executes a HVC 

instruction, the Cortex-R52+ core switches to EL2 and takes a Hyp-mode 

entry exception. The hypervisor handles this exception and then returns  

to the guest software at EL1.

The HVC instruction allows for para-virtualization. This is where guest 

software is aware that it is running in a VM, and the hypervisor provides  

an API (using HVC instructions) that the guest software uses to make 

requests to the hypervisor, to device drivers plugged in to the hypervisor  

(EL2 device drivers), or to device drivers running in other VMs.

F I G .  3

Para-virtualization

As an example, consider how para-virtualization can be used to allow multiple  

VMs to exist inside the same cluster despite the shared GIC distributer. The SMPU  

(or the core MPU) is configured so that the VMs do not have access to the  

GIC’s memory-mapped registers. When guest software wants to change 

its interrupt configuration, it makes an API request to the hypervisor. The 

hypervisor carries out the necessary GIC configuration having first checked 

that the requested changes will not interfere with another VM.
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Para-virtualization can also be used to allow peripheral sharing and creation 

of virtual peripherals. A peripheral, such as an Ethernet controller, can be shared  

in much the same way as the GIC. Completely virtual peripherals can also  

be created. For example, one might create a virtual Ethernet controller used 

for communication between VMs running on the same microcontroller. In both  

cases, the hypervisor would contain an EL2 device driver that either managed 

access to the shared peripheral or implemented the virtual peripheral. This  

is analogous to the way that an Operating System uses devices drivers  

to manage access to peripherals shared by multiple processes or tasks.

Para-virtualization can be used as a solution for peripherals that do not,  

or do not fully, support virtualization in hardware. Ideally peripherals would 

support virtualization as described in “Device virtualization principles for real  

time systems” to avoid the need for para-virtualization – at least on the data  

plane. Para-virtualization (and trap-and-emulate) will always add some 

additional cycles when compared to device pass-through (where a peripheral  

is driven directly by guest software without hypervisor intervention), but unless  

a peripheral supports virtualization, para-virtualization (or trap-and-emulate) 

is likely to be needed to allow the peripheral to be shared between VMs. 

In the case where para-virtualized code is only executed infrequently, the 

overhead of para-virtualization may be acceptably small e.g., where a control 

plane must be para-virtualized but a data plane does not.
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Using EL2 for Trap-and-emulate

In some cases, para-virtualizing guest software may not be possible.  

In these cases, trap-and-emulate can be used. 

When code running at EL1 or EL0 makes a memory access prohibited by the  

EL2 MPU, the Cortex-R52+ processor switches to EL2 and takes a Hyp-mode 

entry exception. This feature can be used by a hypervisor to allow emulated  

access to peripherals with memory mapped registers. The EL2 MPU is configured  

to prohibit access to the registers. When guest software reads or writes  

a register, a Hyp-mode entry exception occurs at EL2. The hypervisor works 

out which register the guest software was reading or writing by examining 

the Cortex-R52+’s Hyp Syndrome Register (HSR) – which contains details  

of why an exception occurred - and Hyp Data Fault Address Register 

(HDFAR)– which contains the memory address being accessed when  

an exception occurred -  and either emulates access to the register itself  

or delegates to an EL2 device driver.

Trap-and-emulate can be used to access the shared GIC distributer. The EL2 

MPU is configured so that guest software access to GIC memory mapped 

registers causes an exception. When the exception occurs, the hypervisor 

carries out the GIC register access having first checked that the register 

access will not interfere with another VM.

Trap-and-emulate can provide a means for guest software to access shared  

and virtual peripherals managed by EL2 device drivers. When integrating 

legacy software, trap-and-emulate can be used to emulate a peripheral  

not present in the microcontroller.
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Trap-and-emulate has the advantage that guest software does not need  

to be modified to run in a VM. However, para-virtualization is usually more 

performant because:

	— Operations on peripherals can be requested at a higher level of abstraction, 

which results in few switches to the hypervisor (e.g., we might have a “configure  

interrupt” operation that is equivalent to multiple accesses to GIC registers).

	— The hypervisor does not have to work out what the guest software was doing 

when the Hyp-mode entry exception occurs. 

Interrupt Virtualization

EL2 alone does not allow us to share or virtualize interrupt driven peripherals. 

The Armv8-R architecture defines that normally when an interrupt occurs it 

interrupts the currently running code at the current privilege level. For example, 

if an IRQ occurs while code is running at EL1 then the interrupt will be taken 

at EL1 using the IRQ entry in the EL1 vector table, but if the IRQ occurs while 

code is running at EL2 then the interrupt will be taken at EL2 using the IRQ 

entry in the EL2 vector table. 

To solve this, the Cortex-R52+ supports interrupt virtualization. When interrupt  

virtualization is enabled (by setting the IMO and FMO flags in the HCR register  

and setting the EN flag in the ICH_HCR register), an FIQ or IRQ interrupt 

(exception) always results in the Cortex-R52+ switching to EL2 and taking 

an FIQ or IRQ interrupt using the EL2 vector table. The hypervisor can then  

either handle the interrupt or use features of the Cortex-R52+ core to virtualize  

the interrupt (by using list registers), so that when guest software runs  

at EL1/EL0 it takes the virtual interrupt at EL1 using the EL1 vector table. 

To the guest software, the virtual interrupt is indistinguishable from a real 

interrupt. When guest software disables interrupts or changes the priority 

mask register value, only virtualized interrupts routed to the guest’s VM are 

affected, not real interrupts being taken at EL2. Therefore, guest software 

cannot stop interrupts being taken by the hypervisor.
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F I G .  4

Interrupt Virtualization

Since all interrupts are initially handled by the hypervisor, the hypervisor can 

decide if an interrupt should be handled by the hypervisor itself, by an EL2 

device driver, or should be virtualized and injected into to a VM. This allows 

interrupt driven shared/virtual peripherals to be handled. EL2 device drivers 

can also inject virtual interrupts into VMs if needed.

Interrupt virtualization also allow “remote control” of VMs. For example,  

a privileged management VM or EL2 device driver running on one physical  

core can generate an interrupt in a second physical core to request that  

the hypervisor do something on the second core, such as shutting down  

or re-starting a VM running on the second core.
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Of course, nothing comes for free, and interrupt virtualization adds to the total 

time taken to process an interrupt. The exact overhead depends on many 

factors, including the arrival pattern of interrupts and how many different 

GIC interrupts are being used. There are two timing concerns to be aware  

of related to interrupt virtualization:

1.	 The processing at EL2 to virtualize an interrupt consumes processor time.

2.	 Since prioritization of virtual interrupts is independent to prioritization  

of real interrupts, guest software may see timing anomalies. 

	 Some examples in this context: consider two interrupts A and B. 		

A is higher priority than B. Both interrupts are routed to the same 		

VM using interrupt virtualization.

				                  i.	 If A occurs and the EL2 and EL1 handling of A completes 	

				   before B occurs, then guest software will see a small increase  

				   in latency for both interrupts due to the EL2 handling. 

				                  ii.	 If both interrupts occur at the same time, the EL2 handling 	

				   for both interrupts will occur before any EL1 handling, and 	

				   the guest software will see a double increase in latency for  

				   A, but no increase in latency for B.

				                  iii.	 Now imagine that A occurs and reaches the EL1 handler  

				   in the guest software and then B occurs. The EL2 handling  

				   of B will pre-empt the EL1 handling of A even though A is  

				   higher priority. 
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To help quantify this GIC virtualization behaviour, we include the results 

of some experiments carried out with ETAS’ RTA-HVR hypervisor. In these 

experiments, we compared the interrupt latency of Cortex-R52+ cores 

running the RTA-OS Operating System without a hypervisor to the same 

Cortex-R52 cores running RTA-OS as guest software inside a VM. Two 

cores inside the same Cortex-R cluster were used. The first core triggered 

interrupts in the second core by setting bits in the GIC ISPENDR registers  

(Interrupt Set Pending Registers that are used by software to trigger interrupts). 

The latency is the number of timer ticks between the interrupt being triggered  

and the start of the (fully Operating System managed – i.e., AUTOSAR Category 

2) ISR. The timer was configured to run at the same speed as the processor 

clock. The exact value of the latency will depend on the type of memory used 

for code/data and the cache configuration, so in the following results  

it is important to focus on the comparison between the hypervisor and  

non-hypervisor cases rather than the absolute values.

T A B L E  2
Interrupt Number Latency (CPU Cycles)

No Hypervisor
Latency (CPU Cycles)

Hypervisor
Ratio Hypervisor/No 

Hypervisor

1 1129 2067 1.83

2 1120 2053 1.83

3 1120 2008 1.79

4 1125 2002 1.78

Table 2 shows what happens when the first core triggers four different interrupts 

with a large delay between interrupts so that all interrupt handing has completed 

on the second core before the next interrupt is triggered. In this case, we see  

an increase of around 80 percent in interrupt latency. In this case, the Operating  

System configuration does not contain any untrusted code (i.e., all application 

code is running at EL1).
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Interrupt 
Number

Latency  
(CPU Cycles)

No Hypervisor

Delta Between 
Latency N-1 and N 
for No Hypervisor

Latency  
(CPU Cycles)
Hypervisor

Delta Between 
Latency N-1 and N 

for Hypervisor

1 1255 1255 5047 5047

2 2674 1419 6366 1319

3 4089 1415 7714 1348

4 5505 1416 9051 1337 

T A B L E  3

Table 3 contains results from the same setup as 2, except that the Operating 

System configuration includes untrusted tasks and ISRs. Here we see that 

the additional work that must be done by RTA-OS to manage untrusted code 

means the work done at EL2 to virtualize interrupts is a smaller proportion  

of overall interrupt latency.

Interrupt Number Latency (CPU Cycles)
No Hypervisor

Latency (CPU Cycles)
Hypervisor

Ratio Hypervisor/No 
Hypervisor

1 2046 2916 1.43

2 2023 2817 1.39

3 2463 3381 1.37

4 2454 3364 1.37 

T A B L E  4

Table 4 shows what happens if the four interrupts are triggered at the same time.  

The lower the interrupt number, the higher its priority. For the case without  

a hypervisor, we see the expected behaviour given interrupt prioritization. The ISR  

for interrupt number 1 runs first and blocks the other interrupts until it has been  

completed. The ISR for interrupt number 2 then runs and blocks the other  

interrupts until it has been completed. And so on. The time between the ISR for  

interrupt N-1 starting and the ISR for interrupt number N starting is approximately 

the same (the ISRs executed very little code). However, with a hypervisor present 

we see quite different behaviour. The EL2 handling for all four interrupts occurs  

before interrupt number 1 is handled by its EL1 ISR. Therefore, we see a much  

larger interrupt latency for interrupt number 1 than for the subsequent interrupts.
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Virtual Processor Cores

We can also take advantage of interrupt virtualization to support virtual 

processor cores. For example, a timer interrupt can be handled by the 

hypervisor and used to drive a virtual core scheduler that decides when  

to context switch between virtual cores. Since guest software cannot block 

interrupts being taken at EL2, broken or malicious guest software cannot 

deny processor time to other guest software. Interrupts that arrive for 

 a virtual core that are not currently running can be virtualized, queued  

in software, and injected into the virtual core when it next runs.

Switching between virtual cores often involves re-programming the EL2 

MPU. Care must also be taken with co-processor 14 and 15 configuration 

registers (these registers are used to configure various aspects of the 

processor, such as endianness, whether or not caching is enabled and 

whether or not the EL1 MPU is enabled). Some of these registers affect the 

physical core in ways that could affect all virtual cores on the physical core  

and the hypervisor. Other registers have effects that might be virtual core 

specific, such as EL1 MPU region registers. Registers in the latter category 

need to be part of a virtual core’s context. For registers in the former category, 

the Cortex-R52+ can be configured to generate a Hyp-mode entry exception  

at EL2 when they are accessed. The hypervisor can then in some way  

emulate access to these registers.
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F I G .  5

Virtual Cores

If multiple virtual cores are hosted by a single physical core, then consideration  

must be given to how virtual cores are scheduled. The simplest approach 

is to use a static TDMA (Time-division multiple access) algorithm. A TDMA 

algorithm has a very low run-time overhead, is easy to understand, and  is easy 

to work out when a virtual core will run in wall-clock time. The disadvantage 

of a purely static algorithm is that it can lead to long latencies when handling 

asynchronous events (e.g., interrupts). It may be possible to avoid long 

latencies through the careful construction of the static VM schedule to ensure 

that an interrupt never has to wait for too long before the VM that handles  

it runs. However, this may require detailed understanding of interrupt  

worst-case execution times. 

An alternative way for a system to handle asynchronous events with short 

latencies is to use a dynamic scheduling algorithm. An example of a dynamic 

scheduling algorithm is Reservation Based Scheduling with each virtual core 

being a Deferrable Server. Such an algorithm has been used in some versions 

of the ETAS RTA-HVR hypervisor. This gives much shorter latencies when 

handling asynchronous events at the expense of a higher run-time scheduling 

overhead and the need to para-virtualize the guest Operating System so that  

it can yield its virtual core when the operating system has no tasks to run.
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Using virtual processor cores gives the system designer flexibility:

	— A VM can be created that contains more cores than would be available if only 

physical cores were used. The extra cores might make structuring software 

easier – in the same way that threads are used in an operating system.

	— Multiple VMs may be hosted by a single physical core.

However, context switching between virtual cores has a non-trivial overhead, 

as the hypervisor needs to save one virtual core’s general-purpose registers, 

floating-point registers, relevant configuration registers and EL1 MPU settings, 

and then re-load these for another virtual core. A virtual core context switch 

is analogous to a process context switch in an Operating System. 

Using virtual cores effects interrupt latency. With a static scheduling algorithm,  

an interrupt that arrives for a virtual core that is not currently running will not  

be handled until the virtual core next runs. With a dynamic scheduling algorithm 

that automatically switches to the virtual core that handles an interrupt, the 

virtual core context switch time will be added to the interrupt latency.

A system designer needs to evaluate which applications can make use  

of virtual processor cores. If the overhead of context switching virtual cores  

is not acceptable, the system designer should consider different options.
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Software Integration Recommendations

Unfortunately, there is no “one size fits all” approach to integrating multiple 

applications into a microcontroller. The previous section has outlined several 

mechanisms that can be used to enable integration. Which mechanisms  

are appropriate will depend on the types of application being integrated. 

Decide if Hypervisor-type Separation Is Needed or Would OS-level 

Separation Be Better?

The mechanisms described above allow a hypervisor to create the illusion that 

guest software has its own microcontroller and to enforce separation between 

the VMs running the guest software. If the applications to be integrated are 

tightly coupled (tightly coupled means that applications make synchronous 

functions calls into each other or rely on activities within all applications being 

scheduled by the same scheduler), then integration using Operating System 

containers may be more appropriate. AUTOSAR operating systems allow tasks 

and ISRs to be grouped into containers called “Operating System applications” 

and MPUs can be used to separate these different containers. Integration  

at the Operating System level means that a single scheduler is used to schedule 

all tasks and tightly coupled communication is better supported. New initiatives 

like AUTOSAR Flex-CP are being developed to support more dynamic 

integration of applications into Classic AUTOSAR systems.

Treat Each VM as a Separate ECU Connected by a Network

Where running each application in a VM is the best approach, it is important  

to treat each VM as a sperate Electronic Control Unit (ECU) connected  

by a network. Each VM likely contains guest software with its own Operating 

System and scheduling policy. Tight coupling between tasks in different VMs, 

both in terms of scheduling and communication, is very hard to manage and 

likely to result in a fragile system. It is better to treat each VM as a separate 

ECU and use the mechanisms built into AUTOSAR to handle systems built 

from multiple ECUs. This leads to a more robust, simpler, and easier to reason 

about system. 
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Use Core-local and Cluster-local Resources

It is better to use resources like memory and peripherals that are “close”  

to the core that uses them. Each Cortex-R core has TCMs that are much 

faster to access than other types of RAM. Often microcontrollers have 

cluster local Flash and RAM, and in some cases peripherals (e.g., CAN and 

LIN controllers) can be assigned to a cluster. As well as usually being faster, 

using cluster local resources often results in less memory bus contention 

because a core accessing cluster local resources may not have to contend  

with cores in other clusters for access to the memory bus.

Note that using resources close to a core may limit any migration of virtual   

processor cores between physical processor cores at run-time (if this  

is supported). For example, if a virtual core is linked to use FLASH local  

to Cortex-R core cluster 0, the virtual core would run more slowly if migrated  

to cluster 1.

Consider the Interrupt Latency and Real-time Requirements

A summary of the techniques applicable to applications with different 

interrupt latency and real-time requirements are summarised in the table 

below. A more detailed discussion can be found in subsequent sub-sections.

T A B L E  5 Application 
Type

Interrupt 
Virtualization

Virtual 
Processor Cores

Para-virtualization/
Trap-and-emulate Example Applications

Ultra-Low 
Latency Hard 
Real-Time

No No Yes, if the application 
allows it

Powertrain, Braking

Low-Latency 
Hard Real-Time

Yes, dynamic 
scheduling may 
be needed

Yes, dynamic 
scheduling may 
be needed

Yes, if the application 
allows it

Other chassis

Latency 
Focussed  
Real-Time

Yes Yes Yes, if the application 
allows it

General Body functions 
(e.g. immobilizer, ambient 
lightning, etc.)

Best Effort Yes Yes Yes Convenient Body 
functions (e.g. road  
noise suppression) 
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Ultra-low Latency Hard Real-time Applications

Here we are considering applications that require very short and predicable 

interrupt latencies. In essence, we want the “bare metal” behaviour. In these 

cases, interrupt virtualization and hosting multiple virtual cores on a physical  

core is more challenging, because of the increased and less predictable interrupt  

latencies that result from using these techniques.

Virtualizing GIC access, either with para-virtualization or trap-and-emulate, will  

reduce performance and may or may not be appropriate. While the hypervisor  

is carrying out GIC access on behalf of guest software, interrupts will most 

likely be disabled. However, this interrupt blocking will happen at times that 

are under the control of the guest software (e.g., during initialization).

The same argument applies to using EL2 device drivers for sharing  

peripherals  and creating virtual peripherals. The para-virtualization  

or trap-and-emulate required is relatively slow, but when it occurs  

it is under the control of the application.

Using memory local to a core or cluster is particularly advisable for this  

type of application. 

Low-latency Hard Real-time Applications

Here we are considering applications that require short and predictable 

interrupt latencies, but interrupt latencies longer and less predictable than 

“bare metal” are acceptable.

Depending on the acceptable upper bound on interrupt latencies for these 

types of applications, interrupt virtualization and hosting multiple virtual cores 

per physical core may be viable if a suitable virtual core scheduling algorithm 

is used. A dynamic scheduling algorithm, such as reservation-based scheduling 

with deferrable servers, can lead to fairly short and fairly predictable interrupt 

latencies – albeit longer than “bare metal” latencies because of the need for 

virtual core context switches when the virtual core that handles an interrupt  

is not currently running.
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The discussion on virtualizing GIC access and using EL2 device drivers  

in the section on ultra-low latency hard real-time applications is also 

applicable here.

Latency Focussed Real-time Applications

Here we are considering applications that do not need particularly short 

interrupt latencies, but do need bounded interrupt latencies.

Again, depending on the acceptable upper bound on interrupt latencies,  

for these types of applications interrupt virtualization and hosting multiple 

virtual cores per physical core may be viable. Whether or not a static  

or dynamic virtual core scheduling is used will depend on the acceptable 

upper bound for interrupt latencies. If the upper bound is quite long, then 

a static scheduling algorithm may work. For example, if the longest time 

between a virtual core being scheduled is shorter than the upper bound  

on interrupt latency. If the upper bound is shorter, then a dynamic scheduling 

algorithm would be needed.

The discussion on virtualizing GIC access and using EL2 device drivers  

in the section on ultra-low latency hard real-time applications is also 

applicable here.

Best-effort Applications

For best effort (non-real time) applications, multiplexing multiple virtual  

cores onto a single physical core and shared and virtual device support can 

allow a far more optimal use of microcontroller resources. In some domains, 

many applications perform functions that have no hard real-time constraints, 

and these applications often perform their function in response to a stimulus 

and are then quiescent until the stimulus occurs again. Such systems are 

amenable to hosting multiple applications on a single physical core.
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If the system needs to handle asynchronous events with short latencies, then 

a dynamic virtual core scheduling algorithm may be needed. However, if there 

is no need to handle asynchronous events with short latencies, a simple static 

scheduling algorithm will have a lower run-time overhead.

Legacy Software

When integrating legacy applications, one wants to minimize changes to the 

software. If the applications do not have hard real-time constraints, then  

most of the above mechanisms can be used except for para-virtualization. 

Trap-and-emulate would allow legacy peripherals to be emulated using EL2 

device drivers.

If a legacy application has ultra-low latency hard real-time requirements, then 

the only solution may be to give the application a complete Cortex-R cluster 

and just firewall the cluster from the rest of the microcontroller using  

an SMPU and peripheral protection.
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Recommendations for  
Future Microcontrollers

Provide Fine Grained Assignment of Peripherals to VMs

The need for EL2 device drivers can be reduced if peripherals can be assigned 

to VMs at a fine grain. For example, it would be useful to be able to assign 

individual Controller Area Network (CAN) channels, or even individual 

General-Purpose Input/Output (GPIO) pins, to a VM. This reduces the need  

for para-virtualization or trap-and-emulate with the consequent improvement 

in performance. While full peripheral virtualization would be ideal (see below), 

a compromise would be to use para-virtualization/trap-and-emulate to carry 

out initialization and configuration of peripherals, but allow direct access  

for the data plane. 

Provide as Many MPU Regions as Possible

Assigning memory or peripherals to VMs often uses a lot of SMPU and core MPU  

regions. The more (S)MPU regions available the better (this statement implies 

that silicon partners include the EL2 MPU in the design synthesis). It is also  

good if MPU region granularity is small. A small MPU region granularity makes 

it easier to assign peripherals to VMs.

Support Virtualization in Peripherals

Even better than fine-grain peripheral to VM assignment is full virtualization 

of peripherals. Here a peripheral would be configured by a hypervisor to present 

a separate “view” of itself to multiple VMs. Each of the VMs could then use 

the peripheral as if it has been assigned a unique instance of the peripheral.
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Ensure that DMA is Virtualization Aware

When a VM uses a DMA transfer, or uses a peripheral that uses a DMA transfer,  

the DMA transfer must not allow the VM to read or write from memory 

addresses that would normally be prohibited by the SMPU or core MPUs. 

The ideal would be for the DMA module/channel to automatically inherit the  

identity of the VM that configured the DMA module/channel or of the VM that  

configured the peripheral that uses the DMA module/channel. The VM identifier 

would then be checked by at least the SMPU on a DMA transfer, and the DMA 

transfer blocked if the VM did not have permission to read or write the memory 

involved in the DMA transfer. To support such behaviour, the Armv8-R VMID 

should be distributed to peripherals and DMA controllers.

If this automatic inheritance of VM identity is not possible, it should be possible 

to programmatically assign, by a privileged software entity, DMA modules/

identifiers to VMs, so that SMPU control of DMA transfers can be done.

Control of DMA by VM, rather than just the bus-manager, is important  

when a single physical core may be running multiple VMs.

Adopt Available Virtualization Standards to Ease Software Mobility

Virtualization is a relatively new topic for the microcontrollers typically used  

to run Classic AUTOSAR systems, and naturally microcontroller manufacturers  

are adding features to give themselves an advantage over their competitors.  

However, users of these microcontrollers would like to develop software with  

the confidence that they can move that software to a different microcontroller,  

if necessary. Therefore, the combination of the microcontroller and a hypervisor  

needs to provide the users of microcontrollers with a fairly standard set  

of features and methods of feature usage. To this end, where industry 

standards are available, they should be adopted.

Some work as already been done in this area for the Armv8-R architecture,  

and a good example can be found in the Arm “Device virtualization principles 

for real time systems” paper.



W H I T E  P A P E R 32

Summary/Conclusion

The evolution of EE-architecture, including zonal controllers, demands 

further solutions for real-time software integration. Classic AUTOSAR  

is a de-facto standard in the automotive real-time software world, but further 

integration options, such as for legacy software, are a must moving forward. 

The Armv8-R architecture with the EL2 separation option represents a good 

option to enable intelligent integration options. How to use this integration 

option is highly dependent on the application though, and dedicated application 

demands will define which way of integration is most suitable. 

This paper presents a variety of different techniques that can be used  

to support integration of different types of applications. This should help  

the system designer to understand how to best use Cortex-R52+ cores  

to support application integration.
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Glossary (in alphabetical order):

— ABI — Application Binary Interface 

— ASIL — Automotive Safety Integrity Level

— BOM — Bill Of Material

— EE — Electrical/electronic

— ECU — Electronic Control Unit

— EL2 — Exception Level 2

— GIC — Generic Interrupt Controller

— ISR — Interrupt Service Routine

— MCU — Microcontroller 

— MMU — Memory Management Unit 

— NEON — Arm Neon is an advanced single instruction 

multiple data (SIMD) architecture extension for the 

Arm Cortex-A and Arm Cortex-R series of processors

— OBD — On Board Diagnostics

— PPI — Private Peripheral Interrupt

— SGI — Software Generated Interrupt

— SMPU — System Memory Protection Unit 

— SIMD — Single Instruction Multiple Data 

— SoC — System on Chip

— VM — Virtual Machine 


