
1

How the SOAFEE Architecture Brings
A Cloud-Native Approach To Mixed
Critical Automotive Systems
Matt Spencer, Principal Software Architect at Arm
September, 2021 White Paper

As the capabilities and features deployed to modern
automotive platforms is increasing at an exponential pace
with the addition of features such as Advanced Drivers
Assistance Systems (ADAS), Autonomous Driving
(AD) and enhanced In-Vehicle Infotainment (IVI),
automotive manufacturers are looking at a transition
to a software-defined future.

This transition is key to the future of the market,
providing extensive opportunities for margin enhancement
through cost saving as well as new revenue opportunities.
The rising costs of development and integration
can be managed by enabling the consolidation
of functional blocks within the car. Re-use of code
between vehicle models and generations will help
amortise the initial cost of investment in software.

The historical problem of developing code for embedded
systems like those in the automotive domain has been
that the software is written on the supplied API’s
available in the BSP that is delivered with the selected
processor. There is no guarantee of portability of the
application code from one processor to another due
to its dependence on specific API’s in the underlying BSP.

2

This paper introduces a solution to the problem
of software portability and composability being
delivered by Arm And leading technology partners
in the Automotive industry.

Introduction
When we think about delivering complex software solutions made up of many functional

components in a secure and managed way, we think of the large-scale applications that

are running in the cloud. The infrastructure market and Cloud Service Providers (CSP’s)

have addressed the question of complex software deployments by adopting best

“cloud-native” practices in software development and building workflows and tooling

that help constrain the complexity and improve quality.

Cloud-native defines a number of technologies, workflows and design patterns that should

be adopted in order to manage the complexities of developing, deploying and updating

the applications live in production.

The aim of the SOAFEE project is to bring the benefits of a cloud-native development

environment to address the specific challenges and constraints of the automotive domain

such as Functional Safety (FuSa) and fast and precise Real time control.

One of the fundamental requirements in cloud-native is being able to decouple software

from hardware. It should be possible to ensure that a workload can be easily deployed

to different hardware without needing to fundamentally re-architect the underlying

software. The ideal solution would be to enable binary portability without needing

to recompile application code.

3

How Cloud-Native Applies to Automotive

The Cloud-Native Computing Foundation (CNCF) is an open source foundation

that manages the specification and implementation of a number of the tools used

in a Cloud-Native deployment. The following definition of Cloud-Native is owned

and agreed by the members of the community:

“Cloud-Native technologies empower organizations to build and run scalable applications

in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service

meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable.

Combined with robust automation, they allow engineers to make high-impact changes frequently

and predictably with minimal toil.

The Cloud-Native Computing Foundation seeks to drive adoption of this paradigm by fostering

and sustaining an ecosystem of open source, vendor-neutral projects. We democratize

state-of-the-art patterns to make these innovations accessible for everyone.”

It can be seen from this definition that there is no mandate for cloud-native solutions

to be deployed to the cloud. Instead, they are encouraging the use of technologies

such as containers, microservices and declarative API’s that build upon state-of-the-art

design patterns.

These goals align very closely with our objectives in the automotive domain.

The next few sections of this paper will explain some of the technologies in more

detail and how they relate to the SOAFEE objectives.

SOAFEE Uses OCI Compliant Containers

The definition of a container as prescribed by Google: “Containers are lightweight packages

of your application code together with dependencies such as specific versions of programming

language runtimes and libraries required to run your software services.”

So, at a basic level, a container is a convenient way to package and deploy your application.

The container environment is defined by the Open Container Initiative (OCI) and is made

up of two main parts, with a third expressing standards for communicating with a container

registry (such as hub.docke r.com)

 Container Runtime Specification

 Container Image Specification

 Container Distribution Specification

https://www.cncf.io/
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://cloud.google.com/learn/what-are-containers
https://opencontainers.org/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/distribution-spec

4

The runtime specification covers the system requirements and interfaces that need

to be made available in order to allow a container to operate successfully on your system.

Whilst the image specification defines how the images should be composed for them

to be acceptable to the container runtime.

The power of this standards-based approach to the container ecosystem is that

it encourages people to innovate around the container runtime implementation

to create a solution that meets the domain specific requirements of a particular

deployment. And whilst the OCI have the reference implementation of a container

runtime with runc, there are many other container runtimes which apply

to different domains.

A non-exhaustive list of available container runtimes includes:

Runtime Characteristics
runc Reference runtime from OCI, implemented in go-lang

crun Small footprint lightweight runtime implemented in C

gvisor Sandboxed runtime with increased security by limiting

system API access

kata Virtualized runtime that leverages KVM for better security

and separation

runx Virtualized runtime built on Xen

... Other container runtimes are available

The point to be made here is that there is not a one-size-fits-all solution to which

container runtime you should use. But you are guaranteed that any container built

to the OCI container specification will work unmodified on your platform.

SOAFEE aims to make use of this powerful separation between application and runtime

to ensure that a container runtime exists that meets the demanding deployment

characteristics of the automotive domain, and that the upstream standards within

the OCI are able to express these requirements where needed.

https://github.com/opencontainers/runc
https://github.com/containers/crun
https://gvisor.dev/
https://github.com/kata-containers
https://github.com/lf-edge/runx

5

Microservice

The Microservice Architecture is a software design pattern that enforces the creation

of loosely coupled, collaborating services that can create a functional solution

by composing the services together. These services have a clearly defined inbound

and outbound interfaces, which creates the contract the service has with other

components in the system.

In a cloud-native deployment, the microservice would be encapsulated in a container.

This enables it to execute in the defined container runtime environment, and deployment

to be managed and monitored by an orchestrator - more on this later.

Microservices are defined as loosely coupled because changes to one service should

not impact the performance of another service in the system so long as the expected

behaviour as defined in the contract of the inbound and outbound API’s are honoured.

This characteristic also means that the microservice can be tested in isolation from

the rest of the system, which enables the larger complex system to be decomposed

into unit testing for the individual service before going to integration testing of the fully

composed system.

Orchestrator

The Orchestrator is a vital component of the cloud-native system. It manages

the configuration, deployment and monitoring of the microservice based solution.

The orchestrator itself is composed of several standard interfaces:

Interface Description
CRI The interface between the orchestrator and the container runtime

CNI Container Network Interface, a standard mechanism

for configuring and controlling network, firewall, etc.

CSI Container Storage Interface, how to expose storage available

to your container instances

Device Plugin Enables managed access to system resource within containers

such as /dev/video0

... There are other standards that may be applicable

As with all aspects of the cloud-native ecosystem, there are multiple implementations

of these standard interfaces that meet use-case specific needs. If you want your container

runtime to be managed by the orchestrator, it needs to implement the CRI interface,

all of the runtimes described earlier in this document comply with that requirement.

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/container-storage-interface/spec/blob/master/spec.md
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

6

When these interfaces are bought together under the control of the orchestrator,

it enables complex application deployments to be managed by configuring the network

to enable communication between the microservices and access to data sources that

are needed for them to function properly.

There are a number of options for your orchestrator, the default being kubernetes

(aka k8s) but there are implementations with smaller footprints such as k3s which

are more suited to embedded and resource constrained environments.

DevOps

The workflow aspect of the cloud-native is often referred to as a DevOps process.

Source: commons.wikimedia.org/wiki/File:Devops-toolchain.svg

The workflow is split into two main parts. Dev covers the development workflow,

and Ops covers the operations aspect of the deployment. By bringing these two disciplines

together in a clearly defined and managed way, it is possible to streamline the development,

deployment and continual improvement of the applications managed under this workflow.

You can see from the image that this is a continual process where the output

of monitoring the operation of the container in deployment feeds back into

the next phase development cycle.

This is how continual improvement of the quality of the delivered workloads is enabled.

Over time, adoption of this process will increase overall quality whilst reducing time

to market and overall cost.

https://kubernetes.io/
https://k3s.io/
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

7

How SOAFEE Extends Cloud-Native
The SOAFEE project leverages cloud-native framework in order to benefit from the best

practices and standards that are used, the problem is that there are additional requirements

and constraints that come into scope when working with Automotive solutions.

These include the ability to deploy workloads to heterogeneous compute architectures

with a mixture of application processors and real time processors with an array

of accelerators available.

Through the SOAFEE Working Groups, SOAFEE aims to understand the current gaps

in cloud-native implementations and work upstream within the relevant standards bodies.

Collaborative effort to close those gaps will enable cloud-native solutions to be applicable

in the automotive and safety relevant domains.

Orchestrator Enhancements – For Safety and Real Time

There are some aspects of the orchestrator scheduling framework that can cope

with these additional requirements today with use of standard techniques such as:

 Node affinity to constrain where a workload will be deployed

 Taints and Tolerations to describe how certain nodes attract or repel each other

 Pod overhead to describe the amount of system resources that will be consumed

by a particular workload

But there are gaps in this system as it stands today, and SOAFEE will work upstream

with the standards community to normalize the language by which real time and safety

requirements are described.

Examples – Real Time Requirements

 Required I/O bandwidth

 Guaranteed execution time

 Cache policies

These areas of extension will be worked on within the respective SOAFEE technical

working groups to come up with a common language that can be used to express intent

to the Orchestrator. This will enable workloads to be deployed to the correct part

of the underlying system and low-level architectural features to be configured

for each Pod to guarantee meeting those requirements.

Examples - Safety Requirements

 Freedom from interference

 Split-lock core

 Availability

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

8

Container Runtime Enhancements

Now that the orchestrator is able to express properly the additional runtime requirements

of our workloads, work will be done to enhance the container runtime to enable

it to meet these needs. The prime path proposal is to use a virtualized container runtime

such as runx mentioned earlier, to enable use of the VMM in collaboration with the runtime

itself to separate the control of privileged system resources through the VMM from

the lower privileged execution environment of the container runtime.

The SOAFEE working groups will be responsible for selecting the correct initial execution

environment and then working upstream with the OCI standards body when modifications

are needed, but also with the chosen container runtime to implement the enhancements.

Portable Workloads

A key SOAFEE value proposition is the reuse of workloads. This is how we enable reducing

the cost of deployment for these complex software solutions by enabling the specific

microservices that compose the final application to be reused across different product

lines and solutions without modification.

In order to achieve this, we need to understand how we can give consistent access

to accelerators and high bandwidth IO devices to the workloads without needing

them to be recompiled against an architecture specific implementation of the accelerator

or IO device. We have to be aware that in exploring this concept, we need to keep

in mind the domain specific requirements around Functional Safety and Realtime.

One industry standard that comes to mind is VirtIO. VirtIO providers para-virtualised access

to accelerators which effectively standardises the workloads view of the accelerator whilst

enabling efficient offload to a backend accelerator.

On the surface, VirtIO seems like the perfect solution to the portability question, but there

are problems with the current release of VirtIO. Firstly, it has not been designed with

Functional Safety or Realtime workloads in mind. Secondly, the interfaces do not cover

all of the requirements of the Automotive domain. For example, there is no VirtIO interface

for Machine Learning acceleration through a userspace like TVM, and there are no standard

interfaces to Automotive specific IO devices like the CAN bus.

As SOAFEE prioritises adoption of pre-existing standards and adapts them

to be fit-for-purpose in a functionally safe domain, rather than try and create

a new standard which could drive ecosystem fragmentation, SOAFEE will work

upstream within the VirtIO standards body to resolve the issues. This would include

work items around ensuring we can express realtime constraints on virtqueues,

and that there is industry collaboration to define sensible VirtIO implementations

for the missing interfaces.

9

Testing and Validation

One great opportunity that comes from creating a microservices based solution

is that we enable tooling for CI/CD for component and system level testing and validation.

For example, we can make use of the workload portability features of SOAFEE

to allow execution of workload training and testing in the cloud to give a first level

confidence in the workloads performance. This same workload can then be deployed

to a lab-based infrastructure to enable application of both software and hardware

in the loop validation.

The standard DevOps workflow introduced earlier outlines how the cloud-native

deployments manage the quality of complex workloads, SOAFEE enables adoption

and enhancements of this workflow. The SOAFEE project is working with System

Integrators, Tool Vendors and CSP’s to make this capability a reality.

There will be more details on this very important aspect of SOAFEE soon.

Open Source Reference Implementation

All of this effort will come together in the form of an open source reference

implementation of the SOAFEE requirements, including all the necessary components

to realise the cloud-native vision of the project. The reference will be delivered in the form

of Yocto recipes that will enable porting the base platform to alternate hardware.

This reference implementation can then be used by upstream rich software stacks

such as Autoware, AGL, and others to implement truly portable, containerized,

microservice based implementations that will run on any platform that implements

the SOAFEE architecture.

Details of how to build the current SOAFEE stack and the supported hardware is available

on the SOAFEE project page. Details can be found at gitlab.arm.com/soafee.

https://gitlab.arm.com/users/sign_in

10

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. 2021

Conclusion
The SOAFEE project brought together automakers, semiconductor and cloud technology

leaders to define a new open-standards based architecture for the software-defined

vehicle. It delivers a reference implementation which enables cloud concepts like container

orchestration to be combined with automotive functional safety for the first time.

It builds on the successes of the Arm initiative Project Cassini, which defines standard

boot and security requirements for Arm architecture.

By embracing cloud-native technologies, we enable advanced CI/CD techniques

such as software and hardware in the loop, and the use of cloud-based infrastructure

for training and validation.

With SOAFEE, we can reduce the complexity of the software-defined vehicle whilst

also reducing the cost of development and deployment. It will also enable maximum

reuse of the ecosystems investment in software by enabling deployment of existing

workloads to new architectures without the need to re-integrate. For more information,

please visit our website.

Glossary of Terms

Term Meaning
AD Autonomous Drive

ADAS Advanced Driver-Assistance Systems

AGL Automotive Grade Linux

API Application Programming Interface

BSP Board Support Package

CI/CD Continunal Integration / Continual Deployment

CNCF Cloud-Native Computing Foundation

CSP Cloud Service Providers

IVI In Vehicle Infotainment

OCI Open Container Initiative

https://www.arm.com/solutions/infrastructure/edge-computing/project-cassini
https://www.arm.com/solutions/automotive/software-defined-vehicles

