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As the capabilities and features deployed to modern 
automotive platforms is increasing at an exponential pace 
with the addition of features such as Advanced Drivers 
Assistance Systems (ADAS), Autonomous Driving  
(AD) and enhanced In-Vehicle Infotainment (IVI), 
automotive manufacturers are looking at a transition  
to a software-defined future.

This transition is key to the future of the market,  
providing extensive opportunities for margin enhancement 
through cost saving as well as new revenue opportunities.  
The rising costs of development and integration  
can be managed by enabling the consolidation  
of functional blocks within the car. Re-use of code 
between vehicle models and generations will help  
amortise the initial cost of investment in software.

The historical problem of developing code for embedded 
systems like those in the automotive domain has been  
that the software is written on the supplied API’s  
available in the BSP that is delivered with the selected 
processor. There is no guarantee of portability of the 
application code from one processor to another due  
to its dependence on specific API’s in the underlying BSP.
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This paper introduces a solution to the problem  
of software portability and composability being  
delivered by Arm And leading technology partners  
in the Automotive industry.

Introduction
When we think about delivering complex software solutions made up of many functional 

components in a secure and managed way, we think of the large-scale applications that  

are running in the cloud. The infrastructure market and Cloud Service Providers (CSP’s)

have addressed the question of complex software deployments by adopting best  

“cloud-native” practices in software development and building workflows and tooling  

that help constrain the complexity and improve quality.  

Cloud-native defines a number of technologies, workflows and design patterns that should  

be adopted in order to manage the complexities of developing, deploying and updating  

the applications live in production. 

The aim of the SOAFEE project is to bring the benefits of a cloud-native development 

environment to address the specific challenges and constraints of the automotive domain 

such as Functional Safety (FuSa) and fast and precise Real time control.  

One of the fundamental requirements in cloud-native is being able to decouple software 

from hardware. It should be possible to ensure that a workload can be easily deployed  

to different hardware without needing to fundamentally re-architect the underlying 

software. The ideal solution would be to enable binary portability without needing  

to recompile application code. 
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How Cloud-Native Applies to Automotive 
 
The Cloud-Native Computing Foundation (CNCF) is an open source foundation  

that manages the specification and implementation of a number of the tools used  

in a Cloud-Native deployment. The following definition of Cloud-Native is owned  

and agreed by the members of the community: 

 

“Cloud-Native technologies empower organizations to build and run scalable applications  

in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service 

meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach. 

 

These techniques enable loosely coupled systems that are resilient, manageable, and observable. 

Combined with robust automation, they allow engineers to make high-impact changes frequently 

and predictably with minimal toil. 

The Cloud-Native Computing Foundation seeks to drive adoption of this paradigm by fostering  

and sustaining an ecosystem of open source, vendor-neutral projects. We democratize  

state-of-the-art patterns to make these innovations accessible for everyone.”

It can be seen from this definition that there is no mandate for cloud-native solutions 

to be deployed to the cloud. Instead, they are encouraging the use of technologies  

such as containers, microservices and declarative API’s that build upon state-of-the-art 

design patterns. 

These goals align very closely with our objectives in the automotive domain.  

The next few sections of this paper will explain some of the technologies in more  

detail and how they relate to the SOAFEE objectives. 

 

SOAFEE Uses OCI Compliant Containers 
 
The definition of a container as prescribed by Google: “Containers are lightweight packages 

of your application code together with dependencies such as specific versions of programming 

language runtimes and libraries required to run your software services.”

 

So, at a basic level, a container is a convenient way to package and deploy your application.

The container environment is defined by the Open Container Initiative (OCI) and is made 

up of two main parts, with a third expressing standards for communicating with a container 

registry (such as hub.docke r.com)  

 

  Container Runtime Specification

  Container Image Specification

  Container Distribution Specification

https://www.cncf.io/
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://cloud.google.com/learn/what-are-containers
https://opencontainers.org/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/distribution-spec
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The runtime specification covers the system requirements and interfaces that need  

to be made available in order to allow a container to operate successfully on your system. 

Whilst the image specification defines how the images should be composed for them  

to be acceptable to the container runtime. 

 

The power of this standards-based approach to the container ecosystem is that  

it encourages people to innovate around the container runtime implementation  

to create a solution that meets the domain specific requirements of a particular 

deployment. And whilst the OCI have the reference implementation of a container  

runtime with runc, there are many other container runtimes which apply  

to different domains. 

A non-exhaustive list of available container runtimes includes:

Runtime Characteristics
runc Reference runtime from OCI, implemented in go-lang

crun Small footprint lightweight runtime implemented in C

gvisor Sandboxed runtime with increased security by limiting  

system API access

kata Virtualized runtime that leverages KVM for better security  

and separation

runx Virtualized runtime built on Xen

... Other container runtimes are available

 

The point to be made here is that there is not a one-size-fits-all solution to which  

container runtime you should use. But you are guaranteed that any container built  

to the OCI container specification will work unmodified on your platform. 

SOAFEE aims to make use of this powerful separation between application and runtime 

to ensure that a container runtime exists that meets the demanding deployment 

characteristics of the automotive domain, and that the upstream standards within  

the OCI are able to express these requirements where needed.

https://github.com/opencontainers/runc
https://github.com/containers/crun
https://gvisor.dev/
https://github.com/kata-containers
https://github.com/lf-edge/runx
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Microservice 
 
The Microservice Architecture is a software design pattern that enforces the creation  

of loosely coupled, collaborating services that can create a functional solution  

by composing the services together. These services have a clearly defined inbound  

and outbound interfaces, which creates the contract the service has with other 

components in the system. 

In a cloud-native deployment, the microservice would be encapsulated in a container.  

This enables it to execute in the defined container runtime environment, and deployment  

to be managed and monitored by an orchestrator - more on this later. 

Microservices are defined as loosely coupled because changes to one service should  

not impact the performance of another service in the system so long as the expected 

behaviour as defined in the contract of the inbound and outbound API’s are honoured.  

This characteristic also means that the microservice can be tested in isolation from  

the rest of the system, which enables the larger complex system to be decomposed  

into unit testing for the individual service before going to integration testing of the fully 

composed system. 

 

Orchestrator 
 

The Orchestrator is a vital component of the cloud-native system. It manages  

the configuration, deployment and monitoring of the microservice based solution.  

The orchestrator itself is composed of several standard interfaces:

Interface Description
CRI The interface between the orchestrator and the container runtime

CNI Container Network Interface, a standard mechanism 

for configuring and controlling network, firewall, etc.

CSI Container Storage Interface, how to expose storage available  

to your container instances

Device Plugin Enables managed access to system resource within containers  

such as /dev/video0

... There are other standards that may be applicable

 

As with all aspects of the cloud-native ecosystem, there are multiple implementations  

of these standard interfaces that meet use-case specific needs. If you want your container 

runtime to be managed by the orchestrator, it needs to implement the CRI interface,  

all of the runtimes described earlier in this document comply with that requirement.

https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/container-storage-interface/spec/blob/master/spec.md
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
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When these interfaces are bought together under the control of the orchestrator,  

it enables complex application deployments to be managed by configuring the network  

to enable communication between the microservices and access to data sources that  

are needed for them to function properly. 

There are a number of options for your orchestrator, the default being kubernetes  

(aka k8s) but there are implementations with smaller footprints such as k3s which  

are more suited to embedded and resource constrained environments. 

 

DevOps 
 
The workflow aspect of the cloud-native is often referred to as a DevOps process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: commons.wikimedia.org/wiki/File:Devops-toolchain.svg 

 

The workflow is split into two main parts. Dev covers the development workflow,  

and Ops covers the operations aspect of the deployment. By bringing these two disciplines 

together in a clearly defined and managed way, it is possible to streamline the development, 

deployment and continual improvement of the applications managed under this workflow. 

You can see from the image that this is a continual process where the output  

of monitoring the operation of the container in deployment feeds back into  

the next phase development cycle. 

This is how continual improvement of the quality of the delivered workloads is enabled.  

Over time, adoption of this process will increase overall quality whilst reducing time  

to market and overall cost.

https://kubernetes.io/
https://k3s.io/
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg 
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How SOAFEE Extends Cloud-Native
The SOAFEE project leverages cloud-native framework in order to benefit from the best 

practices and standards that are used, the problem is that there are additional requirements 

and constraints that come into scope when working with Automotive solutions.  

These include the ability to deploy workloads to heterogeneous compute architectures  

with a mixture of application processors and real time processors with an array  

of accelerators available. 

Through the SOAFEE Working Groups, SOAFEE aims to understand the current gaps  

in cloud-native implementations and work upstream within the relevant standards bodies. 

Collaborative effort to close those gaps will enable cloud-native solutions to be applicable  

in the automotive and safety relevant domains. 

 

Orchestrator Enhancements – For Safety and Real Time 
 

There are some aspects of the orchestrator scheduling framework that can cope  

with these additional requirements today with use of standard techniques such as: 

  Node affinity to constrain where a workload will be deployed

  Taints and Tolerations to describe how certain nodes attract or repel each other

  Pod overhead to describe the amount of system resources that will be consumed  

by a particular workload

But there are gaps in this system as it stands today, and SOAFEE will work upstream  

with the standards community to normalize the language by which real time and safety 

requirements are described. 

Examples – Real Time Requirements

  Required I/O bandwidth

  Guaranteed execution time

  Cache policies

These areas of extension will be worked on within the respective SOAFEE technical  

working groups to come up with a common language that can be used to express intent  

to the Orchestrator. This will enable workloads to be deployed to the correct part  

of the underlying system and low-level architectural features to be configured  

for each Pod to guarantee meeting those requirements.

Examples - Safety Requirements

  Freedom from interference

  Split-lock core

  Availability

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/
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Container Runtime Enhancements 
 

Now that the orchestrator is able to express properly the additional runtime requirements 

of our workloads, work will be done to enhance the container runtime to enable  

it to meet these needs. The prime path proposal is to use a virtualized container runtime 

such as runx mentioned earlier, to enable use of the VMM in collaboration with the runtime 

itself to separate the control of privileged system resources through the VMM from  

the lower privileged execution environment of the container runtime. 

The SOAFEE working groups will be responsible for selecting the correct initial execution 

environment and then working upstream with the OCI standards body when modifications 

are needed, but also with the chosen container runtime to implement the enhancements. 

Portable Workloads 
 

A key SOAFEE value proposition is the reuse of workloads. This is how we enable reducing 

the cost of deployment for these complex software solutions by enabling the specific 

microservices that compose the final application to be reused across different product  

lines and solutions without modification. 

 

In order to achieve this, we need to understand how we can give consistent access  

to accelerators and high bandwidth IO devices to the workloads without needing  

them to be recompiled against an architecture specific implementation of the accelerator  

or IO device. We have to be aware that in exploring this concept, we need to keep  

in mind the domain specific requirements around Functional Safety and Realtime. 

One industry standard that comes to mind is VirtIO. VirtIO providers para-virtualised access 

to accelerators which effectively standardises the workloads view of the accelerator whilst 

enabling efficient offload to a backend accelerator. 

On the surface, VirtIO seems like the perfect solution to the portability question, but there  

are problems with the current release of VirtIO. Firstly, it has not been designed with 

Functional Safety or Realtime workloads in mind. Secondly, the interfaces do not cover  

all of the requirements of the Automotive domain. For example, there is no VirtIO interface 

for Machine Learning acceleration through a userspace like TVM, and there are no standard 

interfaces to Automotive specific IO devices like the CAN bus. 

As SOAFEE prioritises adoption of pre-existing standards and adapts them  

to be fit-for-purpose in a functionally safe domain, rather than try and create  

a new standard which could drive ecosystem fragmentation, SOAFEE will work  

upstream within the VirtIO standards body to resolve the issues. This would include  

work items around ensuring we can express realtime constraints on virtqueues, 

and that there is industry collaboration to define sensible VirtIO implementations  

for the missing interfaces.
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Testing and Validation 
 

One great opportunity that comes from creating a microservices based solution  

is that we enable tooling for CI/CD for component and system level testing and validation. 

For example, we can make use of the workload portability features of SOAFEE  

to allow execution of workload training and testing in the cloud to give a first level  

confidence in the workloads performance. This same workload can then be deployed  

to a lab-based infrastructure to enable application of both software and hardware 

in the loop validation.

The standard DevOps workflow introduced earlier outlines how the cloud-native 

deployments manage the quality of complex workloads, SOAFEE enables adoption  

and enhancements of this workflow. The SOAFEE project is working with System  

Integrators, Tool Vendors and CSP’s to make this capability a reality. 

There will be more details on this very important aspect of SOAFEE soon.

Open Source Reference Implementation 
 

All of this effort will come together in the form of an open source reference  

implementation of the SOAFEE requirements, including all the necessary components  

to realise the cloud-native vision of the project. The reference will be delivered in the form  

of Yocto recipes that will enable porting the base platform to alternate hardware. 

This reference implementation can then be used by upstream rich software stacks  

such as Autoware, AGL, and others to implement truly portable, containerized,  

microservice based implementations that will run on any platform that implements  

the SOAFEE architecture. 

Details of how to build the current SOAFEE stack and the supported hardware is available  

on the SOAFEE project page. Details can be found at gitlab.arm.com/soafee.

https://gitlab.arm.com/users/sign_in
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Conclusion
The SOAFEE project brought together automakers, semiconductor and cloud technology 

leaders to define a new open-standards based architecture for the software-defined 

vehicle. It delivers a reference implementation which enables cloud concepts like container 

orchestration to be combined with automotive functional safety for the first time.  

It builds on the successes of the Arm initiative Project Cassini, which defines standard  

boot and security requirements for Arm architecture.  

By embracing cloud-native technologies, we enable advanced CI/CD techniques  

such as software and hardware in the loop, and the use of cloud-based infrastructure 

for training and validation.  

 

With SOAFEE, we can reduce the complexity of the software-defined vehicle whilst  

also reducing the cost of development and deployment. It will also enable maximum  

reuse of the ecosystems investment in software by enabling deployment of existing 

workloads to new architectures without the need to re-integrate. For more information, 

please visit our website. 

 

Glossary of Terms

Term Meaning
AD Autonomous Drive

ADAS Advanced Driver-Assistance Systems

AGL Automotive Grade Linux

API Application Programming Interface

BSP Board Support Package

CI/CD Continunal Integration / Continual Deployment

CNCF Cloud-Native Computing Foundation

CSP Cloud Service Providers

IVI In Vehicle Infotainment

OCI Open Container Initiative

https://www.arm.com/solutions/infrastructure/edge-computing/project-cassini
https://www.arm.com/solutions/automotive/software-defined-vehicles

