
1

White Paper

Arm® Custom Instructions, which was announced in

October 2019, is now available in the Cortex-M33 and

Cortex-M55 processors. In this paper, we review some of

the design considerations and decisions when we created

this architecture extension, a range of design considerations

for SoC designers when they deploy their hardware

accelerators based on this technology, and how it compares

to the existing coprocessor interface feature available on

the Cortex-M33 and Cortex-M55 processors.

The paper also covers some of the uses cases that Arm

has investigated, such as mathematics accelerators, and

finally, the topic of how software developers access the

accelerators implemented using Arm Custom Instructions

is also explained.

Innovate by Customized Instructions,
but Without Fragmenting the Ecosystem

by Joseph Yiu

2

Introduction
In the last few years, the processing requirements in recent embedded systems has

increased dramatically. This is partly due to the shifting of user’s expectations following

the enhancements in high-end consumer products. At the same time, the increasing

communication speed and the exponential growth of information (e.g. more sensors, better

quality cameras) also lead to the changing landscape of embedded computing. For example,

there is a trend of increasing computing requirements for endpoint devices, including AI

processing capabilities. The change is not just limited to the IoT market, but also industrial,

automotive, healthcare, etc. As a result, the design of many modern microcontroller

products not only need to address the “control” functions, but also need to address the

“compute” needs.

The increasing processing performance has certainly been driving the rising processor

performance in microcontrollers and SoCs. At the same time, the use of custom hardware

accelerators has also become more widespread. This is not entirely new however, as

hardware accelerators, like crypto engines, were already widely available in microcontroller

products. The recent expansion in processing needs has seen hardware accelerators being

used in a wider range of processing.

Due to the increasing use of these hardware accelerators, new Arm Cortex-M processors

have also been adapted to provide better support for custom-defined accelerator solutions.

Traditionally, silicon vendors integrate hardware accelerators as memory mapped units

(Figure 1.1) externally to the processor and software access those units using memory read/

write operations. These accelerators can also have their own bus interface for accessing

memories directly.

Figure 1.1:

 Concept of memory

mapped hardware

accelerator

3

In 2016, Arm announced the Cortex-M33 processor that supports a coprocessor interface.

This feature (Figure 1.2) allows up to 8 external coprocessor hardware units to be connected

to the processor via a dedicated interface.

The coprocessor interface allows the hardware accelerators to be closely integrated to the

processor, reducing latency in data and command transfers. The 64-bit bandwidth of the

coprocessor interface on the Cortex-M33 also doubles the data transfer bandwidth when

compared to the 32-bit AMBA® AHB bus interface. However, for some applications there

is a strong need to merge specialized data processing functions into the processor to

operate directly on general purpose registers. As a result, during Arm TechCon 2019,

Arm announced the Arm Custom Instructions feature (Figure 1.3) which allows chip

designers to include custom defined data processing instructions directly at the heart of

the new Cortex-M processors.

Figure 1.2:

Concept of hardware

accelerator coupling

to a processor using

the coprocessor

interface

Figure 1.3:

Concept of hardware

accelerator based

on Arm Custom

Instructions

https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m33

4

The Arm Custom Instructions feature is implemented in the Cortex-M33 revision 1 and

Cortex-M55 revision 1.

The Challenges of Introducing Arm
Custom Instructions
To support Arm Custom Instructions, Armv8-M architecture requires a new architectural

extension, and this is named Custom Datapath Extension (CDE). From the original concepts

of allowing customized instructions, to the creation of the CDE architecture extension and

then finally to the implementation, there is a range of challenges to consider and resolve:

Fragmentation of the Ecosystem

 One of the first worries is about ecosystem fragmentation. While we love to see innovations

in the product designs, we need to avoid fragmentation of the processor architecture which

can lead to issues with compilation tools, debug tools and middleware (e.g. RTOS). For many

years, the consistent architecture of Arm processors enabled software developers to use a

single tool chain to develop software for multiple Arm products from different vendors, and

offered the ability to reuse their Cortex-M middleware across a wide range of Cortex-M

devices. We want to keep this unchanged.

Limitation of the Instruction Encoding Space

The second key challenge is that the instruction encoding space for the Thumb instruction

set is already quite crowded, and therefore it is hard to allocate a big block of instruction

encoding space for Arm Custom Instructions. The justification of allocating a block of

reserved instruction encoding space for the this feature is even harder when considering

many customers might not use customized instructions in their design at all. At the same

time, Arm must also ensure that there are spaces available for future extensions for the

Thumb instruction set.

Scalability of the Design

The design of Arm Custom Instructions needs to be deployable in multiple processor designs.

While the Cortex-M33 processor is the first product that supports Arm Custom Instructions,

it will also be added to the Cortex-M55 processor and other future Cortex-M processors.

Therefore, the design must be scalable so that it can work with processors designs with

different pipeline designs.

In addition to these challenges, the design must also satisfy a range of requirements:

 General purpose/Generic – the design of Arm Custom Instructions needs to be

 able to support a wide range of use cases. While it is impossible to optimize the

 design for all different processing requirements, it is important to be able to cover

 a wide range.

5

 Ease-of-use – The design of Arm Custom Instructions needs to be easily accessible

 by software developers. For example, the features need to be accessible in C/C++

 environment, do not require special changes in existing software (e.g. RTOS) and must

 not need specialized debug tools.

 Conserve the key characteristics of the Cortex-M processors – Addition of Arm Custom

 Instructions must not affect the key benefits of the Cortex-M processors, including low

 interrupt latency, security, and low power.

 Verification – The verification of the design needs to be straight forward, and the

 interface protocol of signals between the processor and the custom accelerator logic

 should be easy to understand and implement.

Overview of Arm Custom Instructions
A. Custom Datapath Extension (CDE)

Following over a year of architecture development, the Custom Instructions was born.

This optional extension is called the Custom Datapath Extension (CDE) in the architecture

reference manual. Whereas the name “Arm Custom Instructions” is for the CDE support

feature implemented on Arm processors.

Unlike the custom instruction extensions you can find in other architectures, the encoding of

the instructions in CDE are architecturally defined. These instructions are just like instruction

templates, with the actual data processing operations inside being defined by silicon vendors.

The CDE contains 15 classes of instructions for:

 Different data types

 Various numbers of input parameters

The CDE instruction classes are listed in Table 3 1. (Note: Pn is coprocessor number (0 to 7),

Rd/Rn/Rm are integer registers, Sd/Sn/Sm are 32-bit floating-point registers, Dd/Dn/Dm are

64-bit floating-point registers and Qd/Qn/Qm are 128-bit vector registers.)

6

INSTRUCTION ASSEMBLY INPUTS OUTPUTS
General-purpose registers and NZCV flags
CX1{A} CX1{A} Pn, Rd,#imm Immediate (13bit) and

1x 32-bit GPR/NZCV
{same as output}

1x 32-bit GPR or NZCV

CX2{A} CX2{A} Pn, Rd,Rn,#imm Immediate (9bit) and
2x 32-bit GPR/NZCV
{one same as output}

1x 32-bit GPR or NZCV

CX3{A} CX3{A} Pn, Rd,Rn,Rm,#imm Immediate (6bit) and
3x 32-bit GPR/NZCV
{one same as output}

1x 32-bit GPR or NZCV

CX1D{A} CX1D{A} Pn, Rd,Rd+1,#imm Immediate (13bit) and
1x 32-bit GPR/NZCV
{two same as output}

2x 32-bit GPR

CX2D{A} CX2D{A} Pn, Rd,Rd+1,Rn,#imm Immediate (9bit) and
2x 32-bit GPR/NZCV
{two same as output}

2x 32-bit GPR

CX3D{A} CX3D{A} Pn, Rd,Rd+1,Rn,Rm,#imm Immediate (6bit) and
3x 32-bit GPR/NZCV
{two same as output}

2x 32-bit GPR

Floating-point / Vector registers
VCX1{A} VCX1{A} Pn, Sd,#imm Immediate (11bit) and

1x 32-bit fp32 register
{same as output}

1x 32-bit fp32 register

VCX2{A} VCX2{A} Pn, Sd,Sn,#imm Immediate (6bit) and
2x 32-bit fp32 register
{one same as output}

1x 32-bit fp32 register

VCX3{A} VCX3{A} Pn, Sd,Sn,Sm,#imm Immediate (3bit) and
3x 32-bit fp32 register
{one same as output}

1x 32-bit fp32 register

VCX1{A} VCX1{A} Pn, Dd,#imm Immediate (11bit) and
1x 64-bit fp64 register
{same as output}

1x 64-bit fp64 register

VCX2{A} VCX2{A} Pn, Dd,Dn,#imm Immediate (6bit) and
2x 64-bit fp64 register
{one same as output}

1x 64-bit fp64 register

VCX3{A} VCX3{A} Pn, Dd,Dn,Dm,#imm Immediate (3bit) and
3x 64-bit fp64 register
{one same as output}

1x 64-bit fp64 register

VCX1{A} VCX1{A} Pn, Qd,#imm Immediate (12bit) and
1x 128-bit vector
register {same as
output}

1x 128-bit vector register

VCX2{A} VCX2{A} Pn, Qd,Qn,#imm Immediate (7bit) and
2x 128-bit vector
register {one same as
output}

1x 128-bit vector register

VCX3{A} VCX3{A} Pn, Qd,Qn,Qm,#imm Immediate (4bit)
and 3x 128-bit vector
register {one same
as output}

1x 128-bit vector register

For each instruction, there is

 a coprocessor number (0 to 7)

 destination register (can be flags)

 source register(s) (can also be flags)

 an immediate data value (see pages 9 “Supporting multiple custom instructions” and

 16 “Handling of multiple instructions”)

Table 3 1:

15 classes of CDE

instructions

7

For example, the syntax of the CX3 instruction is as follows:

CX3 1, R1, R2, R3, #0

Coprocessor #

Destination
Source(s)

Immediate
data value

For each class of instruction, there is also an “Accumulative” variant, noted by the A suffix

(Figure 3.2). Accumulative variant means that the destination register is also an input of the

data processing operation. While the term accumulative is used, it does not necessarily imply

an “addition” of the previous value involved in the processing, but any operator implemented

by the custom instruction.

Figure 3.1:

Example of CDE

instruction syntax

Figure 3.2:

Examples of 32-

bit integer CDE

instructions with and

without “A” suffix

For integer CDE operation, the “Dual” variant of the CDE instructions provides 64-bit data

operations (Figure 3.3). Whereas for floating-point CDE instructions, the double precision

variant provides 64-bit data operations. For processors that support the Helium® vector

extension, the vector variant of CDE instructions provides 128-bit data operations.

8

Figure 3.3:

Dual variant of

integer CDE

instructions with and

without “A” suffix

The CDE implementation in the Cortex-M33 processor supports integer (32-bit and 64-

bit), and single precision floating-point operations. (The optional FPU in the Cortex-M33

processor supports single precision floating-point operations only). The floating-point and

vector versions of CDE instructions are similar to the integer CDE instructions (Figure 3.2)

in the sense that they support 0 to 3 inputs and an immediate data value. However, the

floating-point and vector CDE instruction does not support the use of flags. Revision 1

of the Cortex-M55 supports the full set of CDE instructions.

B. Hardware Design

From a hardware designer point of view, there is no need to fully understand the internal

operations of the processor to start designing the custom accelerator logic because the

Cortex-M processor already included the logic for instruction decode, register read/

write ports, and the immediate value extraction for the CDE instructions. An example is

provided in the deliverable as a placeholder so that chip designers can replace the example

data processing functions with their own designs. They also need to implement glue logic if

multiple CDE accelerator units are implemented as they shared the same hardware interface.

The hardware interface provides:

 Handshaking signal to support multi-cycle operations.

 Instruction decode error response signal to allow unsupported operations to be flagged

 up and handled by fault exception.

With such arrangement, the chip designers using the Cortex-M processor do not need to

have a detailed understanding of the processor pipeline to make use of the CDE instructions.

(Figure 3.4)

9

Figure 3.4:

Designing hardware

accelerators with

CDE does not require

in depth knowledge

of the processor’s

pipeline

To support verification, interface protocol checkers are included in the deliverable.

C. Supporting Multiple Custom Instructions

Each CDE instruction supports an immediate data field, from 3 bits to 13 bits based on the

instruction class. The width of the immediate value available for each class is listed in the

INPUTS description in Table 3 1. This can be used to support multiple instructions with

the same class. The immediate data value is extracted by the instruction decode logic and

is provided to the hardware interface of the CDE logic so that the hardware can easily

determine which operation is specified.

D. Security Management

For Cortex-M processors with the TrustZone® security extension, each coprocessor/ACI

hardware unit can be assigned as Secure or Non-secure using the Non-secure Access

Control Register (NSACR). This allows certain CDE instructions to be restricted to

secure software only.

Design Decisions and Trade-Offs
Due to the range of technical challenges and requirements, several design decisions were

made when defining the CDE architecture extension.

A. CDE Operations are Limited to Data Processing Operations

One of the most significant decisions in the early design stage is to restrict the extension

to data processing operations only. This is needed to allow all CDE instructions to be

implemented as data processing intrinsic functions, thus voided the need for customizing

the C/C++ compilers, which would result in the fragmentation of the Arm tool ecosystem. In

addition, this restriction also helps ensuring that the design can be scalable across a range of

Cortex-M processor designs.

10

Some might wonder if it is a problem that CDE does not offer any branch operations.

Because Armv8-M architecture already provides a very rich set of branch operations (e.g.

conditional branch, table branch, conditional execution), for most applications there is not

any performance benefits of having additional branch operations. To support such operations

would also require C compilers to be modified and would result in fragmentation of the

architecture and ecosystem – the first item in the design concerns. In addition, while a custom

branch instruction can be possible in a short pipeline, it can be problematic for a future high-

performance processor with a longer pipeline.

At this stage there are also no memory load/store instructions in the CDE. This is because

we cannot ensure correct memory access ordering when the C compiler does not understand

the custom defined addressing. In addition, memory access is closely coupled with security

features like TrustZone and this area is fairly complex. Given that designs can already get

performance gain by using CDE instruction(s) for address generation, and then use the

generated address for data accesses, there is little benefit of having custom memory

access instructions.

B. CDE Operations are Limited to 3 Inputs

The CDE supports only up to 3 data inputs and 1 result. This is needed to ensure that existing

read/write ports can be reused. While it is true that some custom data operations could

benefit from having more inputs/outputs, such capability is not supported because:

 The instruction encoding space is limited.

 If additional read/write ports are needed, it will likely increase power and area of the

 processor and be wasteful for designs that do not need the additional read/write ports.

Operations that require a large number of registers would be better implemented in

external coprocessor hardware where the designers can include more hardware registers

and can include dedicated bus interface to transfer the data between the accelerator and

the memories.

C. No Internal Architectural State Inside CDE Hardware

The architecture does not allow CDE instructions to have custom defined architectural state

across instruction boundaries for several reasons:

 Software debug aspect – Because the CDE hardware do not have hidden architectural

 state, the operations of the CDE operations can be debugged easily.

 Easy context switching – Because all CDE instructions only use processor’s registers,

 context switching in RTOS environment is supported out-of-the-box as RTOS context

 switching software does not require any changes. In the same aspect, for a processor

 with the TrustZone security extension both Secure and Non-secure software can use

 the same Arm Custom Instructions without the risk of accidentally leaking secure

 information.

11

 Enable real-time capability – To allow the Cortex-M processor to have a low interrupt

 latency, the CDE interface design needs to allow multi-cycle CDE instructions to be

 terminated early in the case of an interrupt event. If the custom accelerator logic has

 internal states, the states could have been updated while the instruction is abandoned,

 and can result in incorrect operation when the instruction is restarted.

Please note that internal state is allowed during the execution of a CDE instruction (e.g. Finite

State Machine, temporary data storage). It is just that the CDE instruction’s operation must

not rely on the state from previous execution. For application scenarios where persistent

internal state is required, the coprocessor hardware solution would be more suitable.

D. Reuse of Coprocessor Instruction Encoding Space

Since the instruction encoding space is limited, Arm made the decision to reuse coprocessor

instruction encoding space for Arm Custom Instructions. The CDE/coprocessor instructions

both have a coprocessor number bit field. So, when a coprocessor/CDE instruction is

decoded, the coprocessor number is extracted from the instruction, and processed as either

a CDE instruction or as a coprocessor instruction based on the hardware configuration of the

processor, which is defined by the chip designer (Figure 4.1).

With this arrangement, CDE and coprocessor accelerators can coexist. And for each

coprocessor number it can only be either a CDE accelerator or an external coprocessor

accelerator (not both). This should not be an issue because each hardware accelerator

can carry multiple functions, and therefore it is unnecessary to have a large number of

coprocessor or CDE accelerators.

Figure 4.1:

Decision of whether

an instruction is

handled as CDE

or coprocessor

operation

Execution of an CDE /
coprocessor
instruction

Extracts coprocessor
number from the

instruction

Looks up processor’s
configuration

Executes as a
CDE instruction

Executes as a
coprocessor
instruction

The coprocessor number is
configured as CDE

The coprocessor
number is configured as

a coprocessor

12

E. Execution of a Multi-Cycle CDE Instruction can Block Subsequent Instructions

Because CDE instruction execution uses the processor’s register bank, it can block

subsequent instructions if the CDE operation takes multiple clock cycles. However, in cases

where background processing is desirable, the existing coprocessor interface solution can

satisfy the needs because the hardware accelerator built around the coprocessor interface

has its own register file.

F. Return of NZCV Flags in CDE Instructions

CDE instructions with 32-bit integer result can optionally update NZCV flags (Negative,

Zero, Carry, Overflow) in the Application Program Status Register (APSR) if the destination

register is set to APSR_nzcv. While it cannot provide a data processing result value and

update the NZCV flags at the same time, it is not possible to utilize both information at the

same time in typical C/C++ programming method (e.g. via intrinsic functions) anyway.

In addition, by updating NZCV flags only when needed, the branch prediction hardware

in a high-end processor does not have to consider potential flag changes caused by CDE

instructions unless the CDE instruction explicitly specifies the flags as its output. It means

the branch predication hardware in the processor is easier to implement.

If there is a need to have a conditional branch based on the result of a CDE instruction, one

quickest method is to use an integer CDE instruction that returns a value (zero / non-zero),

and branch if that value is zero or non-zero. In Armv8-M processors, the Compare-and-

Branch instructions (CBZ and CBNZ) allows the result from such CDE instruction to be

used as branch condition directly, hence provides efficient conditional branches based on

CDE operations.

Comparison Between Arm Custom
Instructions and Coprocessor Solutions
At first glance, the architecture of Arm Custom Instructions might look a bit restrictive.

However, it is important to consider the fact that Arm Custom Instructions and the

coprocessor interface are both available and complement each other. Chip designers can

use either one based on their application requirements. Table 5.1 lists the key differences

between the two features.

13

Table 5.1:

Comparison between

Arm Custom

Instructions and the

coprocessor feature

 Arm Custom Instructions Coprocessor
Placement of the accelerator(s) Inside the processor Outside the processor
Registers used Processor’s registers Coprocessor hardware have

their own registers
Data width 32, 64, and 128 bits (Cortex-M33

does not support 128-bit vector)
32 and 64-bit transfer operations
are supported.

Execution Serialize with other instructions in
the pipeline (except for the case of
vector lane overlap in a processor
with Helium® technology).

Able to operate in the
background using its own
register set

Other interface(s) Not allowed Can have optional bus manager
interface for direct memory
accesses.
Can have optional bus
subordinate interface for debug
access to coprocessor registers.
Can have optional output(s) to
NVIC and other hardware.

Hardware sharing It is not possible to share an ACI
hardware accelerator between two
processors

If the coprocessor has a bus
subordinate interface, it can be
accessed by another processor

Power domain Same power domain as the
processor’s integer/floating-point
data-path

Each coprocessor can have its
own power domain.
Architectural power control
mechanism is provided.

In general:

 If a data processing operation is very short, i.e. single cycle or just a few clock cycles,

 implementing it as a CDE instruction could be better because it does not have the

 overhead of transferring the data to the coprocessor and back to the processor.

 If a data processing operation takes a long time to handle, then using the coprocessor

 method is better – while waiting for the data processing operations to be completed,

 the processor can work on other tasks.

Depending on the requirements, in some cases the hardware accelerator(s) can only be

implemented using one of these methods. For example, if the hardware accelerator requires

local data storage, or require additional bus interface, then it is obvious that the coprocessor

interface method should be used. However, some of the hardware accelerator needs can be

addressed by either Arm Custom Instructions or coprocessor interface methods and there

is no clear boundary of when to use what. For example, a math function like sine/cosine,

which might take less than 10 clock cycles, could use either method - both methods have

their advantages:

 If using coprocessor method, the processor can interleave coprocessor offloaded

 instructions with other data operations. By allowing the processor to handle other

 workloads when the coprocessor is being used, we can achieve higher performance.

 If using Arm Custom Instructions, the same math function could be used by multiple

 tasks in a multi-tasking system, or by interrupt handlers, without worrying about access

 conflicts between tasks / handlers. If a coprocessor hardware is shared by multiple tasks,

 semaphores and context saving/restoring might be needed.

14

Software Support
A. Achieving the Goal of Avoiding Ecosystem Fragmentation

Software support is a critical part of the Arm Customer Instructions development. Earlier we

mentioned that the instructions defined in CDE are restricted to data processing instructions

only. This means that the compiler support for CDE instructions can be handled as intrinsic

functions. And by introducing standardized intrinsic functions for CDE as a part of the Arm

C Language Extension (ACLE, reference 1), CDE became a regular supported feature in all

ACLE compliant tool chains without the need for any further customization. This allows us to

meet the goal of avoiding fragmentation in the ecosystem and at the same time make it easier

for software developers to take advantage of Arm Custom Instructions.

B. Intrinsic Functions

The details of the intrinsic functions defined in ACLE for supporting CDE is available on the

Arm website (reference 2). Here we list the function prototypes:

Table 6.1:

Intrinsic functions for

32-bit integer CDE

instructions

Table 6.2:

Intrinsic functions for

64-bit integer CDE

instructions

Instruction Intrinsic function
CX1 uint32_t __arm_cx1(int coproc, uint32_t imm);
CX1A uint32_t __arm_cx1a(int coproc, uint32_t acc, uint32_t

imm);
CX2 uint32_t __arm_cx2(int coproc, uint32_t n, uint32_t imm);
CX2A uint32_t __arm_cx2a(int coproc, uint32_t acc, uint32_t n,

uint32_t imm);
CX3 uint32_t __arm_cx3(int coproc, uint32_t n, uint32_t m,

uint32_t imm);
CX3A uint32_t __arm_cx3a(int coproc, uint32_t acc, uint32_t n,

uint32_t m, uint32_t imm);

Instruction Intrinsic function
CX1D uint64_t __arm_cx1d(int coproc, uint32_t imm);
CX1DA uint64_t __arm_cx1da(int coproc, uint64_t acc, uint32_t

imm);
CX2D uint64_t __arm_cx2d(int coproc, uint32_t n, uint32_t

imm);
CX2DA uint64_t __arm_cx2da(int coproc, uint64_t acc, uint32_t n,

uint32_t imm);
CX3D uint64_t __arm_cx3d(int coproc, uint32_t n, uint32_t m,

uint32_t imm);
CX3DA uint64_t __arm_cx3da(int coproc, uint64_t acc, uint32_t n,

uint32_t m, uint32_t imm);

15

Table 6.3:

Intrinsic functions for

32-bit FPU

CDE instructions

Table 6.4:

Intrinsic functions for

64-bit FPU

CDE instructions

Table 6.5:

Intrinsic functions

for 128-bit vector

CDE instructions –

multiple variants are

available to support

different vector

types and optional

predication feature

Instruction Intrinsic function
VCX1 uint64_t __arm_vcx1d(int coproc, uint32_t imm);
VCX1A uint64_t __arm_vcx1da(int coproc, uint64_t acc, uint32_t

imm);
VCX2 uint64_t __arm_vcx2d(int coproc, uint64_t n, uint32_t

imm);
VCX2A uint64_t __arm_vcx2da(int coproc, uint64_t acc, uint64_t

n, uint32_t imm);
VCX3 uint64_t __arm_vcx3d(int coproc, uint64_t n, uint64_t m,

uint32_t imm);
VCX3A uint64_t __arm_vcx3da(int coproc, uint64_t acc, uint64_t

n, uint64_t m, uint32_t imm);

Instruction Intrinsic function
VCX1 uint8x16_t __arm_vcx1q_u8 (int coproc, uint32_t imm);

T __arm_vcx1q_m(int coproc, T inactive, uint32_t imm,
mve_pred16_t p);

VCX1A T __arm_vcx1qa(int coproc, T acc, uint32_t imm);
T __arm_vcx1qa_m(int coproc, T acc, uint32_t imm,
mve_pred16_t p);

VCX2 uint8x16_t __arm_vcx2q_u8(int coproc, T n, uint32_t
imm);
T __arm_vcx2q(int coproc, T n, uint32_t imm);
T __arm_vcx2q_m(int coproc, T inactive, U n, uint32_t
imm, mve_pred16_t p);

VCX2A T __arm_vcx2qa(int coproc, T acc, U n, uint32_t imm);
T __arm_vcx2qa_m(int coproc, T acc, U n, uint32_t imm,
mve_pred16_t p);

VCX3 uint8x16_t __arm_vcx3q_u8(int coproc, T n, U m,
uint32_t imm);
T __arm_vcx3q(int coproc, T n, U m, uint32_t imm);
T __arm_vcx3q_m(int coproc, T inactive, U n, V m,
uint32_t imm, mve_pred16_t p);

VCX3A T __arm_vcx3qa(int coproc, T acc, U n, V m, uint32_t
imm);
T __arm_vcx3qa_m(int coproc, T acc, U n, V m, uint32_t
imm, mve_pred16_t p);

Instruction Intrinsic function
VCX1 uint32_t __arm_vcx1(int coproc, uint32_t imm);
VCX1A uint32_t __arm_vcx1a(int coproc, uint32_t acc, uint32_t

imm);
VCX2 uint32_t __arm_vcx2(int coproc, uint32_t n, uint32_t

imm);
VCX2A uint32_t __arm_vcx2a(int coproc, uint32_t acc, uint32_t

n, uint32_t imm);
VCX3 uint32_t __arm_vcx3(int coproc, uint32_t n, uint32_t m,

uint32_t imm);
VCX3A uint32_t __arm_vcx3a(int coproc, uint32_t acc, uint32_t

n, uint32_t m, uint32_t imm);

16

The vector CDE instructions are supported in Armv8.1-M processors supporting Helium

technology. Because there can be different data types inside vectors, the intrinsic functions

in Table 6.5 are polymorphic in the T, U and V types. Additional helper intrinsic functions are

also introduced (also a part of ACLE) for converting vector types. Because Helium technology

supports vector predication (conditional execution on a vector lane basis), Helium CDE

intrinsic functions support the “_m” suffix (merging) which indicates that false-predicated

lanes are not written to and keep the same value as they had in the first argument of the

intrinsic (reference 6).

Today, Arm Custom Instructions is supported by Arm Compiler 6 which is available

through Arm Development Studio and Keil® Microcontroller Development Kit (MDK)

and GNU Compiler (GCC). Arm Custom Instructions will also be supported in future

releases of IAR Embedded Workbench for Arm. Please contact IAR Systems® for details

of the release schedule.

C. Handling of Multiple Instructions

Each CDE instruction supports an immediate data value which can be used to support

multiple instructions in the same class. Arm Custom Instructions support the hardware

extract of the immediate data value and passes it to the custom accelerator logic so that

the accelerator can determine which operation is needed.

It is also possible to divide the immediate data field into two parts:

 One part to allow selection of multiple instructions, and

 Another part to be used as a parameter for the custom processing function

For example, assuming a custom instruction is created for an LCD controller application to

map a pixel position {X, Y} into a memory address:

 Coprocessor ID is 1 in this example

 Return value is 32-bit

 A 3-bit “mode” parameter is needed to define the LCD’s display mode

With such operation, we can use the CX3 instruction. Since the CX3 instruction supports

6 bits of immediate data, after taking 3 bits for the mode parameter, there are 3 bits left

reserved for separating different custom instructions that also use CX3. To support software

development, we can define some C macros as follows:

 #define conv_address(X, Y, mode) __arm_cx3(1, X, Y, ((0<<3) | (mode & 0x7)))

 #define range_check(X, Y, mode) __arm_cx3(1, X, Y, ((1<<3) | (mode & 0x7)))

17

The custom accelerator logic receiving the immediate data value can determine if the

instruction is the address conversion operation from bit 5 to bit 3 of the value and extract

the mode parameter using bit 2 to bit 0.

Please note that since the mode parameter is encoded into the instruction, the parameter

must be a compile time constant.

D. Check List for using Arm Custom Instructions / CDE features

To use the CDE intrinsic functions, software developers need to ensure that:

 The program code included the C header file <arm_cde.h>

 The CDE access for the corresponding coprocessor number is enabled. If the TrustZone

 security extension is used, the software developers need to make sure the CDE hardware

 is enabled for the correct security domain. More information about the registers to be

 programmed is listed below.

 Additional command line options are required to tell the toolchain which coprocessor

 number are allocated for Arm Custom Instructions / CDE feature.

To enable software to access CDE, the program code needs to take care of:

1. Coprocessor Access Control Register (SCB->CPACR)

This register enables access to Arm Custom Instructions / Coprocessor feature for each

coprocessor number.

For each coprocessor number, two bits are allocated:

 00 = disabled

 01 = Privileged only

 11 = Full access

The setting up of this register is always needed.

Figure 6.1:

Bit fields in CPACR

18

2. Non-secure Access Control Register (SCB->NSACR)

If TrustZone security extension is implemented, this register determines if Non-secure world

is allowed to access an Arm Custom Instructions hardware unit / coprocessor unit. This

register is accessible in Secure privileged state only.

If a bit in NSACR is set to 0 (default), it is Secure access only. To enable Non-secure world

access, the corresponding bit needs to be set to 1.

The setting up of this register is required only if the TrustZone security extension is used.

3. Coprocessor Power Control Register (SCB->CPPWR)

The SU[n] bits in this register defines for each Arm Custom Instructions / Coprocessor unit,

whether it is allowed to enter a non-retentive power state (e.g. powered down for power

saving). In the case of a coprocessor hardware which is outside the processor, it can have its

only power domain and it can be powered down if its SU[n] bit is set to 1.

Figure 6.2:

Bit fields in NSACR

Figure 6.3:

Bit fields in CPPWR

If TrustZone security extension is implemented, the SUS[n] bits in this register defines

whether the SU[n] bit is Secure access only (i.e. if set to 1, it is Secure only).

Because Arm Custom Instructions hardware in the Cortex-M33 processor uses the same

power domain as the processor, it cannot be powered down when the processor is powered

up. However, to access an Arm Custom Instructions hardware accelerator, the corresponding

SU[n] bit in the CPPWR must still be 0.

19

The configuration of this register is optional because by default the SU[n] bits are 0, which

means that they are not powered down.

4. Command Line Options

Because the encoding of CDE instructions and coprocessor instructions overlaps, tool chains

need a way to know which coprocessor number(s) is assigned for Arm Custom Instructions.

To address this requirement, new command line options are added to tool chains.

In Arm Compiler 6, the compiler (armclang, from release 6.14.1, reference 3) allows the CDE

features to be specified. For example:

 “--target=arm-arm-none-eabi -march=armv8-m.main+cdecpN” or “--target=arm-arm-

 none-eabi -mcpu=cortex-m33+cdecpN”, where N is in the range 0-7, for an Armv8-M /

 Cortex-M33 target with the Main Extension.

 “--target=arm-arm-none-eabi -march=armv8.1-m.main+cdecpN” or “--target=arm-arm-

 none-eabi -mcpu=cortex-m55 +cdecpN”, where N is in the range 0-7, for an Armv8.1-M /

 Cortex-M55 target with the Main Extension.

The binary utility (fromelf) also has a new command line option, for example, for it to know

how to disassemble instructions correctly:

 “--coprocN=value”

 • Where N is the coprocessor ID in the range of 0 to 7, and

 • value = cde (or upper case CDE). By default the coprocessor IDs are

 assigned as coprocessors (value = generic).

For example, to disassemble a program image called image.elf, the command line can be

 “fromelf -c --cpu=8.1-M.Main.mve.fp --coproc0=cde image.elf”

Please note when using “--coprocN=cde”, the CPU option (e.g. “--cpu=cortex-m33”) must

be used.

In GNU C compiler (GCC) similar options has been added (available in GCC 10, reference 4).

For example:

 “-march=armv8-m.main+cdecpN –mthumb” (Cortex-M33 processor with Arm

 Custom Instructions)

 “-march=armv8-m.main+fp+cdecpN –mthumb” (Cortex-M33 processor with floating-

 point and Arm Custom Instructions)

 “-march=armv8.1-m.main+mve+cdecpN –mthumb” (Cortex-M55 processor with Arm

 Custom Instructions)

20

A number of commercial GCC based toolchains provide proprietary linkers and binary

utilities. Please refer to the documentation for those tool chains for additional information

about using Arm Custom Instructions with them.

Applications of Arm Custom Instructions
A. Overview

The Arm Custom Instructions feature can be used in a wide range of scenarios. For example:

 Specialized bit field processing:

 • Colour conversion in image processing

 • Population count (counting the number of bits set to 1 in a register).

 Acceleration of general data processing:

 • Cyclic redundancy check (CRC)

 • Mathematic functions (e.g. sine, cosine)

 • Functions using non-standard data types (e.g. 4-bit machine learning)

In contrast, the following examples would be more suitable to coprocessor implementation

because they could benefit from having their own bus manager interface for accessing data

in memories directly:

 Cryptographic engines that encrypt / decrypt blocks of data (e.g. AES engine)

 DSP data engines that process blocks of data (e.g. FFT engine)

To demonstrate what can be achieved, the Arm engineering team has prepared a number of

examples, and prototyped some of them in FPGA prototypes. These examples are explained

on pages 20-30.

B. Trigonometric Functions

1. Methods Investigated

Sine & Cosine trigonometric functions are common in motor control, power electronics and

robotics applications, but are quite slow to evaluate. Typically, pre-computed values stored in

a look-up table are linearly interpolated, or a Taylor polynomial is evaluated in software. These

approaches take around 30 clock cycles for 32-bit fixed point numbers. This could be reduced

significantly by evaluating them in a hardware using ACIs. There are many approaches for

sine & cosine hardware designs, and in this evaluation, we focus on:

 Method 1: Taylor series expansion

 Method 2: CORDIC (COordinate Rotation DIgital Computer) methods

21

Both methods apply to fixed-point and floating point. It has been chosen to concentrate on

32-bit fixed point implementations with 16-bit result accuracy (+/-2.5e-5). These methods

can be easily adjusted to suit specific precision requirements and PPA (Performance,

Power, Area) trade-offs.

2. Taylor Series Expansion Method

For a 16-bit accurate result, the Taylor series expansion hardware need to be an 8th order

approximation (or higher). The input (32-bit value, i.e. 0 to 2^32) is mapped to a full circle of

the trigonometric function. In order to simplify the design, the hardware accelerator only

process the first quadrant of the input data range:

 The input angle needs to be pre-processed (by hardware), and,

 The Taylor series expansion hardware ignores the top two bits of the input, and

 The output needs to be negated accordingly.

Figure 7.1:

The nature of Sine

and Cosine functions

means only the first

quadrant is needed

0

(232-1)

Input

Output

Implemented
Mirror and/or negate

π 2ππ/2 3π/2

The operations to be implemented were thus reduced to the following:

In fact, the sine and cosine functions can also share the same hardware as the output values

are mirrored within the quadrant. So, we have implemented the Cosine function only, which is

able to obtain sine(θ) function result by calculating cosine(π/2 – θ).

Multipliers and flops can be reused across the 4 clock cycles, to save area further. A circuit

diagram of the datapath synthesized for the Taylor series approach is shown in Figure 7.2.

22

In an ACI prototype created with Cortex-M55, the hardware cost is about 14K gates. The

synthesis trial is carried out with a 40LP 9 track library, and from the results the ACI module

can run at 220MHz. If higher resolution is needed, the area of the hardware accelerator

increases significantly because wider multipliers are needed and can end up slower – either

running at a lower clock frequency, or change the design so that each multiplication is

pipelined into two clock cycles.

3. CORDIC Method

The CORDIC (COordinate Rotation DIgital Computer) algorithm uses only additions,

subtractions, bitshifts and a small LUT, meaning no multipliers are required. It operates by

iteratively rotating an initial vector in one or the other direction by size-decreasing steps,

until the desired angle has been achieved (usually taking 1 iteration per bit of precision). More

details are available at https://www.mathworks.com/help/fixedpoint/ug/compute-sine-and-

cosine-using-cordic-rotation-kernel.html.

When compared to the Taylor series method, the CORDIC method can be much smaller, but

take a larger number of clock cycles. For an experiment, several implementations were tested:

 1 iteration per cycle (19 iterations, 20 clock cycles) – ~3k gates

 2 iterations per cycle (20 iterations, 11 clock cycles) – ~9k gates

 3 iterations per cycle – this ended up slowing down the maximum clock frequency of the

 system and therefore was abandoned.

Figure 7.2:

The design of the

cosine/sine hardware

accelerator based

on Taylor series

expansion

https://www.mathworks.com/help/fixedpoint/ug/compute-sine-and-cosine-using-cordic-rotation-kernel.html.
https://www.mathworks.com/help/fixedpoint/ug/compute-sine-and-cosine-using-cordic-rotation-kernel.html.

23

The CORDIC based designs behave differently from the Taylor series design in several ways:

 The input angle scales differently – Because CORDIC operation works only if the

 iteration converges, the input of the accelerator is designed to support input in the

 range of [-π/2, π/2]. Similar to Taylor series, calculation outside this range can be handled

 by additional logic. To simplify scaling, we use an input of [-4, 4] maps to input range of

 [-231, 231-1]. However, the actual supported input values are limited to [-π, π].

 Output is an integer in range [-231, 231-1] mapped to [-1,1] by 2’s complement.

The internal data path is designed to be 24-bit. However, the design implemented 16-bit

accuracy and the lowest bits are truncated at the output stage. The result is expressed as a

17-bit value including 1 sign bit.

The first implementation, producing 1 iteration per cycle is shown in Figure 7.3. The left-hand

side logic detects which quadrant the input range is and then scale the input to the correct

quadrant range. The arctan values are hardcoded and selected by the iteration counter, and

then feed into the hardware that handles the iterated processing.

Figure 7.3:

CODRIC

hardware design

implementation 1 – 1

iteration per cycle

After the first implementation was completed, a second implementation processing two

iterations per cycle was designed and tested. The only difference is the duplication of

processing hardware and the iteration count increment by 2 per cycle.

24

Figure 7.4:

CODRIC

hardware design

implementation 2 – 2

iterations per cycle

Most of the possible input values has an output error of 0 or 1 (LSB). There are a few cases

where the output error is slightly higher than 1 (LSB). Due to the nature of the algorithm, the

hardware cannot compute when the input angle is zero, and therefore a special case is needed

in the hardware logic to deal with this.

4. Performance Gains in the Trigonometric Functions

The use of hardware accelerators enables trigonometric functions to be carried out

much quicker.

Figure 7.5:

Sine/cosine hardware

design performance

summary

30

20

11

4

0

5

10

15

20

25

30

35

Cortex-M55
Baseline

CORDIC-1 CORDIC-2 Taylor Series

Cy
cl

es
 P

er
 C

al
cu

la
tio

n

Configuration

Sine/Cosine Calculation Time
(lower is better)

Not surprisingly, there is a trade-off between performance and area/power.

25

C. Image/Pixel Handling Functions

1. Overview

The Arm Custom Instructions feature supports multiple data types, including vector data

if Helium technology is available on the processor. The ability to support vector data makes

Arm Custom Instructions very attractive for image pixel manipulations (for example, in

graphic user interface designs), because this can significantly improve the performance

and user experiences.

Two areas of image processing algorithms have been investigated:

 Colour information conversions (RGB16 unpacking, packing)

 RGB16 Alpha blending

2. RGB16 Unpacking and Packing

Usually, images are represented by arrays of RGB pixels. In order to reduce data storage size,

sometimes image pixels could be stored as 16-bit (RGB565, reference 5) and they need to

be unpacked into individual colour channels for further processing before being displayed.

Sometimes pixel data packing could also be needed for storage of computed images, or for

display methods that do not support 8-bit colour scheme (RGB888 format).

Multiple types of packing and unpacking instructions have been developed. For unpacking, 12

variants of unpacking instructions are designed:

 3 groups of unpacking instructions for the 3 colour channels (R, G and B)

 For each group, unpacked data can be in the lower 8 bit or upper 8 bit of the 16-bit space.

 Accumulative variant that reserves the other 8 bits unchanged, and non-accumulative

 variant that clears the other 8 bits.

In the unpack operations, each time 8 pixels are unpacked. Half of the destination vector

register is either cleared to zero or unchanged. The additional bits can be useful later during

processing (e.g. scaling by multiplication) to reduce the chance of overflow. The 12 unpacking

instructions implemented with CDE is shown in Figure 7.6.

26

Figure 7.6:

RGB unpack

instructions

7 6 1 0

7 6 1 0
VRGB16UNPR Qd, Qm

7 6 1 0
VRGB16UNPRA Qd, Qm
00000000 00000000 00000000 00000000

7 6 1 0
VRGB16UNPRT Qd, Qm

7 6 1 0
VRGB16UNPRTA Qd, Qm

0000000000000000 00000000 00000000

7 6 1 0
VRGB16UNPG Qd, Qm

7 6 1 0
VRGB16UNPGA Qd, Qm

00000000
7 6 1 0

VRGB16UNPGT Qd, Qm

7 6 1 0
VRGB16UNPGTA Qd, Qm

0000000000000000 00000000

0000000000000000 00000000 00000000

7 6 1 0
VRGB16UNPB Qd, Qm

7 6 1 0
VRGB16UNPBA Qd, Qm

7 6 1 0
VRGB16UNPBT Qd, Qm

7 6 1 0
VRGB16UNPBTA Qd, Qm

0000000000000000 00000000 00000000

00000000 0000000000000000 00000000

Input vector before unpacking

Pack operations can be viewed as the reverse of unpacking. There are a total of 8 variants

of packing:

 3 groups of packing instructions for each of the 3 colour channels (R, G and B), and

 1 group of packing instructions that handles R, G and B input channels at the same time.

 For each group, there are two instructions: the input of the colour channel can be lower

 8 bits or upper 8 bits

Unlike unpacking operations, all these instructions use the accumulative variant of CDE

instructions because the other bits in the destination registers always have data from other

colour channels after the packing is carried out.

The packing instructions for individual colour channels are shown in Figure 7.7:

27

The packing instructions that process all three colour channels at the same time are as

follows (Figure 7.8):

Figure 7.7:

RGB pack instructions

for individual colour

channels

Figure 7.8:

RGB pack

instructions for three

colour channels at the

same time

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

VRGB16PRB Qd, Qm

VRGB16PRT Qd, Qm

VRGB16PGB Qd, Qm

VRGB16PGT Qd, Qm

VRGB16PBB Qd, Qm

VRGB16PBT Qd, Qm

VRGB16PB Qd, Qd, Qn, Qm
7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

VRGB16PT Qd, Qd, Qm, Qn

Qd

Qn

Qm

7 6 1 0

7 6 1 0

7 6 1 0

7 6 1 0

Qd

Qn

Qm

Qd’

Qd’

These packing and unpacking instructions allow the colour channels to be extracted,

processed, and remerged efficiently. Intensive pixel manipulation operations like these packing

and unpacking can be time-consuming in software, but can be implemented as custom vector

instructions with minimal hardware cost.

28

3. Alpha Blending

Alpha blending operation allows two images to be merged based on a mixing ratio alpha (α):

z = x * α + y * (1- α)

Where:

 x is the colour information from the 1st image,

 y is the colour information from the 2nd image,

 α is the mixing ratio alpha (range of 0 to 1), and

 z is the output image pixel

For each pixel, the R, G, and B colour channels are processed in the same way. The operation

“VRGB16MIX Qd, Qn, Qm” is designed using one of the vector CDE instruction “VCX3A” to

support the colour mixing where:

 Qd is a vector of 8 pixels from image 1, and is also the computed output

 Qn is a vector of 8 pixels from image 2

 Qm holds the mixing ratios (0 to 1 range is mapped in 0-127 unsigned short range)

The design of the mixing operation is as follows:

Figure 7.9:

Alpha blending

custom instruction

module

Due to the presence of multiple single-cycle multipliers, the area cost of the design is

about 8.69KGates.

29

4. Demonstration of Alpha Blending

After the alpha blending module is designed, it has been prototyped in a Cortex-M55

FPGA platform.

Figure 7.10:

The images being

used for alpha

blending test

Table 7.1:

Comparison of

alpha blending using

various methods

 Frames per
minute

Processing time per frame
(ms)

Image processing time
excluding LCD interface

(ms)
Processor running LCD interface code only (no
alpha blending)

981 61.2 -

Processor running LCD interface code with alpha
blending in optimized scalar code

471 127.4 66.2

Processor running LCD interface code with alpha
blending in Helium optimized code

829 72.4 11.2

Processor running LCD interface code with alpha
blending in Helium + CDE optimized code

928 64.7 3.5

Due to the nature of the LCD interface on the FPGA board being used, a significant amount

of the processor time is spent on transferring image data to the LCD module. However, the

test result demonstrates that Helium optimized software can shorten the alpha blending

processing time, and Arm Custom Instructions push this optimization further.

30

In addition to speeding up processing, the use of custom instructions can also reduce the

code size for the processing functions. While the code size reduction might not be significant

when considering the size of the whole program image, reducing the code size in compute

intensive operations might help reduce cache misses in the instruction cache for other parts

of the application.

Figure 7.11:

Comparison of

the speedup of

processing time per

frame using various

methods

31

Conclusions
In summary, Arm Custom Instructions is now available in Arm Cortex-M33 and

Cortex-M55 processors.

With the architecturally defined instructions in the Custom Datapath Extension (CDE)

and standardized software interface using intrinsic functions defined in Arm C Language

Extension (ACLE), software developers can make use of the custom defined instructions

with standard tool chains, avoiding the fragmentation of the ecosystem for Arm

development tools.

The design of the CDE also ensures that:

 software utilizing CDE features can be debugged,

 there is no impact to existing software (e.g. RTOS),

 there is no need to have full understanding of the processor’s pipeline to integrate

 custom accelerator hardware,

 the architecture is scalable to multiple generations of Cortex-M processors.

Arm Custom Instructions can coexist with existing coprocessor instructions and complement

each other. While Arm Custom Instructions can offer custom processing operations with

very low latency, in some application scenarios, the coprocessor interface features could

be more suitable.

32

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. 2021

References
[1] Arm C Language Extension (ACLE) specifications

https://developer.arm.com/architectures/system-architectures/software-standards/acle

[2] Custom Datapath Extension (CDE) in Arm C language Extension (ACLE)

https://developer.arm.com/documentation/101028/0012/9--Custom-Datapath-Extension

[3] Armclang command line options

https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_chr1392632801932.

htm#/chr1392632801932__custom_datapath_extension

[4] GNU C Compiler Arm options

https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

[5] RGB555

http://www.barth-dev.de/online/rgb565-color-picker/

[6] M-profile Vector Extension (MVE) intrinsics

https://developer.arm.com/documentation/101028/0012/14--M-profile-Vector-

Extension--MVE--intrinsics

https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/documentation/101028/0012/9--Custom-Datapath-Extension
https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_chr1392632801932.htm#/chr13926328019
https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_chr1392632801932.htm#/chr13926328019
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
http://www.barth-dev.de/online/rgb565-color-picker/
https://developer.arm.com/documentation/101028/0012/14--M-profile-Vector-Extension--MVE--intrinsics
https://developer.arm.com/documentation/101028/0012/14--M-profile-Vector-Extension--MVE--intrinsics

