
1

Accelerating Software-Defined  
Vehicles through Cloud-To-Vehicle  
Edge Environmental Parity

White Paper

Introduction
As the automotive industry embarks on a software-defined future, a vision pursued by 

many OEMs is to be able to develop software with the agility and flexibility described in the 

above narrative, delivering functionality incrementally into the vehicle with no compromise 

on quality or safety.

A cloud-native approach [1], able to preserve automotive specific characteristics in terms  

of functional safety concepts and real-time execution, is key to creating such a software-

centric ecosystem with modern digital services and in-vehicle user-friendly applications.  

With innovative and efficient workflows, it’s an approach that enables more developers  

to be involved in the development process. It also enables automotive companies to shorten 

development time and achieve the agility needed to rapidly evolve and update features to 

meet the pace of modern consumer expectations.

Vision
2025. Judith, software engineer at a major automotive supplier, is working from home  

to address feedback from customers on an automatic cruise control function. She works  

in a cloud workspace, accessing a huge set of data related to the problematic behavior and 

utilizing this to adapt the control algorithm. She uses a software-in-the-loop testbench  

with a vehicle dynamics simulator to evaluate and validate the new performance, then marks 

her package ready to deploy. At the same time Mark — thousands of miles away on a different  

continent, working for a design company — is making final touches to UI software being 

localized in a new region where a vehicle is going to be launched next week. He makes  

the modifications in a cloud panel provided by the OEM, running a massively parallel test 

suite leveraging virtual agents. On passing this, he marks the new UI package as ready  

for deployment. Kay, a DevOps validation engineer, is working at the OEM’s headquarters.  

He sees the two new software packages and runs the final hardware-in-the-loop test  

suite to fully validate and certify the content to be deployed to the entire production  

vehicle fleet in the upcoming weekly release.

Girish Shirasat 
Director of Software Strategy and Architecture, Automotive, Arm 
 

Stefano Marzani 
Principal Specialist Solutions Architect, Autonomous Vehicles, AWS

https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/cloud-native-approach-to-the-software-defined-car?_ga=2.151152317.520136951.1632177846-1561847816.1625634626


2

A first key technical enabler to implementing automotive cloud-native development pipelines 

is achieving environmental parity between cloud environments and the target embedded 

automotive edge platforms for eventually deploying the workload. As described by leading 

information architect Kevin Hoffman [2]: 

“The purpose of applying rigor and discipline to environment parity is to give your team and your 

entire organization the confidence that the application will work everywhere.”

Achieving this parity allows development, verification, and validation in-cloud, independent  

of embedded hardware on developers’ desks, and radically reduces the time-to-market  

for solutions across the automotive value chain, making applications portable and the 

development workflow future-proof.

To achieve environmental parity, and to support the increased demand for software in 

vehicles [3], a multi-core well-dimensioned embedded system is required inside the vehicles. 

In this paper, we look at how to implement a cloud-native approach to automotive system 

development, focusing particularly on achieving environmental parity between the execution 

environments in-cloud and vehicle-edge, and we explore the impact of this approach in 

accelerating the time to market of software-defined vehicle trends. 

 

What is Software-Defined Vehicle (SDV)?

Figure 1 — Vehicle 
functions on top of 
abstracted hardware

https://spectrum.ieee.org/software-eating-car


3

“Software-defined” as it relates to software-defined vehicle can be described as the 

characterization and implementation of vehicle features as software functions and services 

running on shared or centralized compute, as opposed to being implemented as individual 

physical ECU control units or similar. Furthermore, “software-defined” also infers the 

capability to develop and deploy these software-defined functions in an agile way during the 

entire automotive system development life cycle, including pre- and post-manufacture.  

As shown in Figure 1, these software services in an ideal world would be hardware and 

vendor agnostic and interpreted as a set of data-providing (sensors), data-processing 

(application logic), and data-consuming (actuators) services enabling specific functionality. 

This level of flexibility allows not just the OEMs but also pure-play software companies 

to create new functionality for a specific application domain. The ability to add new 

functionality post sale has been a widespread practice in segments like smartphones for at 

least a decade, and there is now a huge appetite to enable a similar approach for traditional 

embedded markets, including automotive.

SDV could be summarized as systems which comprise of the following characteristics:

	� A vehicle provided with connectivity features, able to continuously transmit  

data and receive software updates over the air, in a “big loop” perspective [5].

	� Software abstracted from underlying hardware.

	� Vehicle functions and capabilities enabled through software, upgradable  

and manageable throughout the vehicle life cycle.

	� Adoption of cloud-native design paradigms across the hardware platforms from the cloud 

to the vehicle-edge, in an automotive development operations (DevOps) perspective.

	� Mixed-critical management of automotive applications, enabling workloads  

with different levels of assurance against failure [6].

Cloud-Native In SDV
“Software-defined” isn’t a new concept. In addition to the smartphone example above, it 

has been existent in telecommunications and datacenters, through software-defined 

networking, software-defined storage and software-defined compute design paradigms, 

along with being prevalent in the enterprise application domain. In these domains, cloud-

native concepts have been successfully used to deliver software-defined systems through  

a wealth of design patterns and ecosystem tools [12]. It is thus quite logical to explore what 

it means to apply cloud-native concepts in the automotive space such that the vast technical 

and commercial ecosystem developed around it can be leveraged to increased effectiveness 

and speed of innovation.

https://newsroom.porsche.com/en/2021/innovation/porsche-engineering-big-data-loop-25029.html
https://www-users.cs.york.ac.uk/burns/review.pdf
https://www.computerweekly.com/news/252502600/How-containerisation-helps-VW-develop-car-software


4

Figure 2 — Cloud 
Native Applied to 
Automotive System 
Development 

Figure 2 makes it easy to imagine a developer sitting in a café with their laptop, connecting 

to the cloud, developing their infotainment or advanced driving assistance system (ADAS), 

such as adaptive cruise control or lateral line control, application, commiting the code, and 

triggering a build and integration cycle in the cloud on a virtual execution environment 

closely representing the physical automotive target system, assuming environment parity 

between cloud and automotive edge. The level of environmental parity that can be achieved 

between cloud and automotive edge and speed of the simulation directly impact the 

developer’s efficiency. 

With automotive systems software complexity now beginning to exceed that found  

in the Boeing 787 Dreamliner [7], the automotive developer would likely prefer to use 

proven software design patterns that are service oriented architecture/microservice based, 

where containers form the fundamental technology to achieve workload mobility and 

complexity  [11,12]. Automotive application development presents unique challenges that have 

not historically been considered in enterprise or smartphone segments where utilization 

of containers is a norm. Automotive workloads can be mixed-critical in nature where — 

depending upon safety and real-time requirements — the microservices forming the workload 

will be constrained by specific spatial and temporal requirements in addition to corresponding 

safety decomposition. Depending on the application, some of these microservices may 

demand requirements, such as being quality managed (QM) or achieving ASIL-B/Avcv-D 

integrity levels as defined by ISO26262 specification. This introduces the requirements 

for safety certified compilers and tools to be integrated as part of the cloud-based tooling 

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.computerweekly.com/news/252502600/How-containerisation-helps-VW-develop-car-software
https://www.youtube.com/watch?v=CEvjB-79tOs


5

framework. Additionally, the hardware on which automotive applications are deployed is 

traditionally highly distributed (a modern vehicle can have 100+ electronic control units, 

(ECUs)) and quite diverse in nature, making it difficult to achieve a decoupling of software 

from hardware. Finally, the existing cloud-native infrastructure, including orchestrators 

capable of being able to deploy the microservices to the most optimal hardware node based 

on enterprise-class platform awareness, need to be extended such that they understand the 

capabilities of these unique embedded automotive hardware systems and can deploy the 

microservices in the most optimal way.

When all these requirements and issues find appropriate solutions, the developer can safely 

run simulations in the cloud, leveraging its inherent benefits, such as scalability and elasticity. 

For example, as part of the DevOps infrastructure, they would expect to be able to run a 

complete software-in-the-loop (SiL) validation by running various simulated operational 

design domains (ODD) using a simulator running in the cloud, feeding a vast set of simulated 

data into the software under test and rapidly verifying the output. Such a vast set of real 

or simulation environment could scale to verify thousands of scenarios simultaneously, 

launching parallel execution on thousands of cores. This is a scale that is not possible to 

achieve relying on embedded systems in hardware-in-the-loop (HiL) rigs.

Based on preliminary investigations with customers, we estimate that with parity in  

place, approximately 70% of the tests currently executed on HiL rigs could be moved  

to cloud based SiL environments and leverage this cloud scalability.

Some functionality will always need to be validated on hardware — for example, testing input/

output — related to the physical nature of the embedded system, but moving from cloud to 

the vehicle-edge, the expectation from a system development perspective is that the same 

software that is validated in the cloud can be deployed through cloud-native orchestration 

techniques to a physical ECU to perform in-lab HiL validation before scaling it to post sale 

deployment when the car is on the road.

Cloud to Vehicle-Edge Environmental Parity 

For Enabling Cloud Native In Automotive
One of the critical infrastructure requirements for cloud native automotive system 

development is the requirement for a variety of virtual system execution environments 

for development, integration, and validation purposes that closely resemble the physical 

environment and that achieves, as much as possible, vehicle-edge environmental parity.  

Achieving a high level of environmental parity directly impacts the developers’ feedback  

loop and lets them achieve a higher level of development effectiveness [8].  Let’s dig a bit 

further into the environmental parity aspects from different developer viewpoints and  

how they can be enabled in the cloud by reviewing different kinds of parity and personas.

https://martinfowler.com/articles/developer-effectiveness.html


6

Figure 3 — Cloud 
to Vehicle-Edge 
Environmental Parity 

Application Developer

From an automotive developer standpoint, the primary expectation from the cloud-based 

execution environment is to have instruction set architecture (ISA) and CPU architecture 

parity between the cloud and automotive edge environment. Taking Arm-based automotive 

computing platforms as an example, it is now possible to host a cloud environment on the  

new Arm-based cloud instances provided by AWS Graviton. This is something as a landmark,  

as it is now possible to achieve a complete end-to-end Arm-based cloud-to-automotive-

edge compute continuum. There are several reasons why this can be considered an ideal 

development environment: 

	� Developer efficiencies: Reducing developer feedback loops, as identified by developer 	

effectiveness expert Tim Cochran in [9], is critical to increasing development efficiencies 	

which impact the bottom line of companies. Some of the benefits of developing code on 

Arm for Arm are listed below:

	 —  �Cross-compilation is avoided, the process of compiling code on a  

development system of one architecture to run on a target with a different 

architecture, inherently adds an additional step to the develop-deploy-test  

process, extending the developer feedback loop.

	 —  �Cross-compilation additionally introduces another source of potential errors  

to the software.

	 —  �Hosting Arm CPU models in the cloud enables those cases where ISA parity is 

insufficient and CPU architecture parity is required. Emulation on a different 

architecture can be slow and inefficient. In an Arm-on-Arm environment, the  

Arm hypervisor extensions can be used directly, thus enabling faster execution  

of models.

https://aws.amazon.com/ec2/graviton
https://martinfowler.com/articles/developer-effectiveness.html


7

	� Performance optimizations. There is a perception that compilers take care of all 

the optimizations needed, but when it comes to creating truly optimized libraries or 

functional blocks, developers still occasionally need to make architecture specific 

optimizations by hand to get the last ounce of performance for critical segments, as we 

see today from multiple partners and third-party ecosystem providers. In this scenario, 

cloud and edge parity enables a “seamless” transition of these optimizations from 

development to deployment.

Platform Developers

Beyond application development, another major layer of software that goes into modern 

vehicles is the base platform system software which includes firmware, OS/RTOS, device 

drivers and related components. Platform developers need a virtual environment which 

simulates the SoC (system-on-chip) built using CPU cores with additional features to satisfy 

specific functionality) with the appropriate device interfaces along with the corresponding 

SoC system architecture. This can be enabled by hosting virtual SoC models in the cloud 

and integrated as part of the overall automotive software CI/CD framework. A key concern 

in this area is standardizing basic system architecture, such that off-the-shelf OS images can 

boot with little to no per-platform modifications. This is a challenge the Arm SystemReady 

certification program is directly addressing, with widespread industry support.

System Developers

As discussed earlier in this white paper, the workloads that run on an automotive system are  

mixed-critical and distributed in nature. To be able to develop, verify and validate these 

workloads, there must be a digital twin of the vehicle hosted in the cloud which simulates 

the functional and non-functional aspects of the system including the real-time, safety, and 

performance characteristics. The digital twin must also model different operational design 

domains encountered in the physical environment when executed in the cloud. Major 

ecosystem partners who are already developing automotive digital twin technologies are 

making significant progress in closing the environmental parity gap.



8

SOAFEE – An Industry-led Initiative to Drive 

Cloud Native in Automotive
To make the vision of the café-based ADAS developer a reality, an ecosystem of partners 

across the value chain must come together and coordinate on delivering it. Arm, in concert 

with key partners like AWS, recently announced the SOAFEE initiative — Scalable Open 

Architecture for Embedded Edge. SOAFEE offers a cloud-native architecture enhanced for 

mixed-criticality for automotive applications, and will also provide an open-source reference 

implementation to enable commercial and non-commercial offerings. SOAFEE is being driven 

by an industry-led special interest group (SIG), which is defining the SOAFEE architecture 

based on open standards and producing an open-source implementation.  More information 

about this initiative can be found on the SOAFEE website.

Figure 5 — SOAFEE 
high-level reference 
architecture

Arm DevSummit Workshop — Demo Using 

Initial SOAFEE-Based Implementation
A live workshop at the Arm DevSummit 2021 [9] introduced the first reference 

implementation of SOAFEE.

http://www.soafee.io
https://devsummit.arm.com/en


9

As described in the architecture, this workshop introduced a novel automotive-native 

software development infrastructure able to execute the same containerized workload  

— with environmental parity — on a set of targeted compute elements: an AWS EC2  

Graviton2 instance, a Raspberry Pi , and an AVA Developer Platform.

In this architecture, we use AWS services to create a CI/CD pipeline that builds, 

containerizes, evaluates, and enables deployment — at scale in the cloud and on  

embedded devices — of a perception network, YOLO . This network is used as a stand-in  

for an automotive application workload to demonstrate the design paradigm. The specific 

version of YOLO used in this workshop is the (YOLOv2-Tiny), running on Ubuntu Linux 20.04. 

Note that for the first time the full system under test (SUT) stack included an embedded 

operating system (a Yocto-Linux distribution) running with native properties in the cloud, 

thanks to Arm’s Edge Workload Abstraction and Orchestration Layer (EWAOL), a reference 

implementation of the SOAFEE architecture.

Figure 6 —  
Automotive 
development pipelines 
with parity between 
cloud and vehicle edge.   

Figure 7 — System 
Under Test: a full 
stack, from the OS up

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.ipi.wiki/pages/com-hpc-altra
https://pjreddie.com/darknet/yolo/
https://ewaol.sites.arm.com/meta-ewaol/overview.html


10

All the SUT components from the OS up were executed with instruction set parity, leveraging 

the same Aarch64 underlying architecture for all the targets. Arm’s EWAOL provides users 

with a standards-based framework using containers for the deployment and orchestration  

of applications on multiple embedded platforms. This combined set of features enables:

	� The cloud execution of the entire embedded software stack, from the embedded OS  

up, and not just of the unit of software in development (the YOLOv2-Tiny perception  

module itself, in this specific case).

	� The SUT seamless portability from cloud to embedded edge; no more cross compilation 

or emulation (and related issues, like compilation errors or performance degradation).

In fact, this approach enables the possibility to start writing and testing embedded code in the 

cloud, shifting-left the embedded development workflow, and significantly extending testing 

coverage by leveraging cloud scalability features (in the specific example, using AWS Batch as 

a way to launch multiple SUT executions in parallel).

https://mobex.io/webinars/innovation-at-the-intersection-of-hardware-and-software-will-drive-the-future-of-safe-and-affordable-mobility/


11

Conclusion and Future Activities 
In conclusion, the software-defined vehicle is clearly no longer an over-the-horizon topic, 

but a key current trend that is already happening, evidenced by examples across the 

automotive ecosystem. In the future, software is set to be the key differentiator between  

competing OEMs, with software developers becoming one of the most critical personas in the 

future of automotive system development. As the industry traverses this pivotal shift, there 

are challenges which can and should be solved leveraging existing cloud native technologies 

for automotive. With this in mind, initiatives like SOAFEE play a critical role in the adoption 

and acceleration of cloud native in automotive. 

The first key technology enabler for cloud native automotive software development is being 

able to achieve environmental parity between cloud-based development environments and 

the automotive edge, such that automotive software developers can develop and validate 

their software in the cloud and deploy it onto the edge. This will enable shift-left, scale-

out, and post-sale deployment models that will enable efficiencies in automotive system 

development and drive innovative new business model to transform the automotive industry. 

Arm-based automotive target systems and AWS Graviton instances are an example of this 

parity, available today, and demonstrated end-to-end at Arm DevSummit 2021 [9].

Lastly, as we march towards developing new technologies and concepts, having code  

to demonstrate the concepts and providing developers platforms to innovate and seed  

the ecosystem is crucial. In addition to the DevSummit workshop demonstrations with AWS,  

Arm, in collaboration with Autoware Foundation (AWF), recently announced the creation  

of Open AD Kit [13] which intends to provide a complete end-to-end development kit  

allowing development of autoware as a reference autonomous software stack natively  

on AWS Graviton instances with seamless deployment to automotive edge platforms  

using cloud native orchestrators.

This is the beginning of a transformative journey for the automotive industry. Arm,  

AWS, and the SOAFEE SIG members will continue to collaborate on accelerating the  

path to cloud native in automotive. If you are equally passionate in realizing this vision,  

we invite you to join SOAFEE SIG. Please refer to soafee.io/ for more details.

https://devsummit.arm.com/en
https://www.autoware.org/post/the-autoware-foundation-releases-quick-starter-kit-to-accelerate-cloud-native-autonomous-development


12

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained 
in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission  
of the copyright holder. The product described in this document is subject to continuous developments and improvements. All particulars  
of the product and its use contained in this document are given in good faith. All warranties implied or expressed, including but not limited  
to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information to  
the reader about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of  
any information in this document or any error or omission in such information.
	 © Arm Ltd. 2022

References 
[1] 		  Girish Shirasat, The Cloud-native Approach to the Software Defined Car, 		

		  September 2021 

[2] 		  Kevin Hoffman, Beyond the Twelve-Factor App, April 2016, O’Reilly  

		  Media, Inc.

[3] 		  Robert N. Charette, How Software Is Eating the Car, June 2021

[4] 		  Robert Day, The Software-Defined Vehicle Needs Hardware That Goes  

		  the Distance, June 2021 

[5] 		  Constantin Gillies, The Big Loop: Artificial Intelligence and Machine 	 	

		  Learning, July 2021

[6] 		  Alan Burns and Robert I. Davis, Mixed Criticality Systems — A Review, 		

		  March 2019

[7] 		  Information is Beautiful — Million Lines of Code

[8] 		  Great Article by Martin Fowler on Developer Effectiveness

[9] 		  “Getting Started with Cloud-Native Automotive Software Development” 		

		  workshop, recording available here and step-by-step tutorial available here

[10] 	 Netflix Move to Cloud Native Architecture

[11] 	 Computer Weekly — How Containerisation Helps VW Develop 			 

		  Car Software 

[12] 	 DevOps at Jaguar Land Rover

[13] 	 The Autoware Foundation — The Autoware Foundation Releases  

		  Quick-starter Kit to Accelerate Cloud-native Autonomous Development

[14] 	 Arm Scalable Open Architecture for Embedded Edge Soafee

https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/cloud-native-approach-to-the-software-defined-car?_ga=2.151152317.520136951.1632177846-1561847816.1625634626
https://spectrum.ieee.org/software-eating-car
https://www.arm.com/blogs/blueprint/software-defined-vehicle
https://www.arm.com/blogs/blueprint/software-defined-vehicle
https://www.arm.com/blogs/blueprint/software-defined-vehicle
https://newsroom.porsche.com/en/2021/innovation/porsche-engineering-big-data-loop-25029.html
https://newsroom.porsche.com/en/2021/innovation/porsche-engineering-big-data-loop-25029.html
https://www-users.cs.york.ac.uk/burns/review.pdf
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://martinfowler.com/articles/developer-effectiveness.html
https://devsummit.arm.com/en
https://catalog.us-east-1.prod.workshops.aws/v2/workshops/12f31c93-5926-4477-996c-d47f4524905d/en-US
https://slides.yowconference.com/yow2013/Cockcroft-CloudNativeArchitectureNetflix.pdf?feature=oembed
https://www.computerweekly.com/news/252502600/How-containerisation-helps-VW-develop-car-software
https://www.computerweekly.com/news/252502600/How-containerisation-helps-VW-develop-car-software
https://www.youtube.com/watch?v=CEvjB-79tOs
https://www.autoware.org/post/the-autoware-foundation-releases-quick-starter-kit-to-accelerate-cloud-native-autonomous-development
https://www.autoware.org/post/the-autoware-foundation-releases-quick-starter-kit-to-accelerate-cloud-native-autonomous-development
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-scalable-open-architecture-for-embedded-edge-soafee.pdf

