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1 Introduction 
 

The automotive industry has recognized the need for rigorous security analysis of its embedded microcontrollers. Major advances in the 
functionality of these Electronic Control Units (ECUs), as well as a rapid and widespread increase in their implementation, have boosted incentives 
to reassess security specifications. This whitepaper describes how existing Arm technology can implement Hardware Security Modules (HSMs) that 
are based on the E-safety Vehicle Intrusion proTected Application (EVITA) framework, in a simple and low-cost manner within the automotive 
industry. 

The development of standards for automotive software, such as AUTOSAR, has allowed a large increase in the functional complexity of deployed 
Electronic Control Units (ECUs). This development has been accompanied by the need for regular updates in the field of security, and by separate 
vehicular systems, to manage communication. Modern cars can be thought of as heterogenous automotive networks. 

Several future e-safety applications are based on wireless vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications. V2I and V2V, 
collectively called V2X, have the potential to increase the efficiency and operational performance of all vehicles, in an intelligent transportation 
system. Together with the growing deployment of e-Toll, tachographic, odometric, and location-based functions, this means that the number of 
assets in automotive systems that require security can be expected to increase rapidly. From the perspective of potential security threats, this 
increased complexity implies that, not only will the attack surface expand for each vehicle, the number of vehicles a potential attacker can target 
with the same exploitation technique will grow. 

The EVITA project was a European Commission-funded project, the primary aim of which was to specify a secure architecture for automotive 
networks, in order to provide a basis for the secure deployment of electronic safety aids, based on V2I and V2V communications. EVITA analyzed 
use cases, assets, threats, and attack methods, in order to derive a set of security requirements for automotive ECUs. The project designed an 
architectural framework to meet those requirements. Building on the Trusted Platform Module (TPM) specification for secure cryptographic 
processors, EVITA specified the design and use of Hardware Security Modules (HSMs), to act as trusted subsystems within ECU systems-on-chip. 

The EVITA specification describes how an HSM can provide security benefits to a network of ECUs, in a vehicle. The principle use cases are proving 
the identity of an ECU, providing secure communications between ECUs, reporting the identity of software executing on the ECU, and the remote 
deployment of maintenance updates. 

An HSM is implemented as an isolated subsystem, which typically includes a boot ROM, secure Non-Volatile Memory (NVM) for holding keys and 
other assets, some hardware accelerators to meet real-time cryptographic functions, a high-entropy source of random numbers, and a dedicated 
CPU with which it coordinates security functions and manages the interface with the application processor.  

This allows: 

       • Confirming that an authentic OS starts in a trusted environment and can subsequently be trusted. 

       • Attesting the authenticity of a platform, and its OS, to third parties (attestation). 

       • Enabling security capabilities for a trusted OS and its applications. 
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Figure 1 - A Generic Automotive ECU with HSM 

A key aspect of an HSM design is certification. Arm recommends that third party, independent testing labs are used to verify that the HSM satisfies 
its security claims. Automotive OEMs might gain timescale and cost advantages by specifying a common HSM architecture for all their silicon 
suppliers. Commonality would allow re-use of the security audit of an HSM, across and within vehicle families.   
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2 Platform Trust 
 

In order to trust a platform, the identity of the current execution environment and the identity of any software that could have influenced the 
security of the current execution environment must be established. 

The standard way of confirming code integrity involves computing a cryptographic hash function over the code, a process known as measurement. 
It is best to measure a software module before it begins execution, because it will be in a known state and will not have started to generate any 
divergent local state. This is commonly done by using the code which was previously loaded on the platform, and is therefore trusted, to measure 
the successor code before it relinquishes control. As a result of this, a chain of trust can be constructed in which each loaded software module 
measures the next one, before transferring control. This sequence of measurements creates a log of the chain of trust. However, the question 
naturally arises of how the first code to be executed on the platform, becomes trusted. 

EVITA solves this problem by using a security anchor that has to be trusted implicitly. In practice, the security anchor is a small immutable piece of 
verifier code, ideally isolated within ROM, that is the first code that is executed during any boot process, and that initializes the root of trust (RoT) 
of the ECU. Here, the RoT is a computing engine with code and data that are co-located on the same ECU platform as the application, and that 
provide security services for the ECU application.  

In a trusted boot scenario, the HSM constructs the chain of trust by measuring the bootloader and subsequent software finishing with the 
operating system.   

 

Figure 2 - EVITA boot chain for integrity protection 

The process of building the measurement chain is typically extended to include application code that runs under an OS, in a less privileged 
execution mode. For an automotive ECU, the chain can be used to decide if the platform is in a trusted state, because many operating systems are 
not sufficiently secure to provide this information directly. 
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EVITA proposes HSMs that are based on cryptographic hash chains. This makes efficient use of secure memory because it requires a set of fixed size 
ECU configuration registers (ECRs), to store an arbitrarily long concatenation of code measurements (the log). The HSM places these measurements 
in secure RAM, with each measurement associated with a reference value that is provisioned before deployment, and held in NVM. 

The HSM initializes each secure ECR to a known value at boot. Each entity in the chain of trust calls a secure HSM function, that computes a 
cryptographic hash over the code and data that is to be loaded next, together with the current value of the ECR. Given the cryptographic strength 
of the hash function and the hardware security of the storage of the ECR, the integrity of the measurement log is secure. Short of rebooting the 
machine and losing control of the platform, this effectively prevents malware from hiding its presence from the log. 

Even though code measurement at boot time is a powerful technique, it is sometimes not enough to assure trust in the current state of the 
platform. Simply because a platform starts in a trusted state, does not guarantee that it is not subsequently compromised by external inputs. There 
are two common defenses against this. One is to augment the software with monitors that impose certain dynamic properties, such as control flow 
and stack integrity. These monitors then become part of the measured code base. The other defense is for the platform to run service daemons 
that oversee and impose behavioral policies on less privileged code. EVITA proposes a number of these services, which can dynamically monitor 
communication, memory access patterns, and API usage. This is specified as part of the EVITA software security modules. 

2.1. Secure Boot 

Each ECU in the EVITA architecture implements secure boot, supported by its HSM. Starting with a secure boot ROM, the code measurement of 
each component is compared to a reference value that is provisioned by the root of trust owner, or by an entity which the root of trust owner has 
authorized to this. On detecting a difference, the secure boot procedure terminates the boot so that final applications, simply because they are 
actually executing, can be assured that the platform started in an approved state. 

2.2. Attestation 

Attestation is the process by which a remote agent determines the hardware and software configuration of the platform. The remote agent can use 
this information, in order to make authorization decisions for the platform.  

For example, a remote agent can be the cloud-based software update server of an OEM.  Even following a secure boot, the remote agent 
communicating with an ECU can only infer that an automotive ECU has booted into some authorized state, which might be an unknown state. In 
addition, the remote agent must also be sure that a specific measurement chain authentically represents the software state of the ECU before it 
can make a trust decision, regarding the ECU. Because communication between a remote agent and an ECU will typically be mediated by untrusted 
software running on the application processor, this untrusted software must be authenticated back to the root of trust of the ECU. Following boot, 
the HSM derives an attestation keypair from its device-unique key, the public half of which is already known to the remote agent. Attestation 
proceeds by the remote agent requesting a quote and sending a nonce to the attestor, to protect against the replay of stale attestations. The HSM 
generates the quote by retrieving the current measurement log held in secure storage, concatenating the nonce, and digitally signing it with its 
private attestation key. The log contains the measurement chain values and associated meta data, to allow the verifier to parse the chain.  

The HSM is able to generate random session keys for the communication with the remote agent, as a counter-measure against a reboot attack, 
that might occur in the middle of attestation and exploit a difference between the system, at the time of check and the time of use. 

The precise details of the quote and measurement chain depend on the attestation protocol that is used. However, it is intended that the hardware 
features supported by EVITA HSMs, together with trusted firmware running on the CPU in an HSM (for example, an Arm® Cortex®-M processor), 
will give sufficient flexibility for OEMs to adopt or develop appropriate attestation infrastructures. 



 

Architecting Secure Automotive Systems Arm technology for next generation vehicular microcontrollers 
Platform Trust 

 

 Copyright © 2017 Arm Limited or its affiliates. All rights reserved. 7 

 

2.3. Device Security Lifecycle Management 

A key aspect of automotive ECUs is the process of supporting the security of the device, from manufacture through to disposal. At each stage in the 
real-world existence of a device, its security profile is different, and this can be reflected in the set of allowable features. 

The HSM supports the transition of the device, through four possible lifecycle states (LCS), illustrated below. 

LCS Description Event triggering transition into this LCS 

Chip Manufacturing  

Affiliation: IC vendor. 

Initial state post manufacturing of the IC 
The default state of the chip coming out of 
fabrication and while on the IC vendor premises. 

Device 
Manufacturing  

Affiliation: OEM. 

Population of chip manufacturer flag in the on-chip NVM 
State of the chip during device assembly, on the 
production line of the OEM. 

Deployed 

Affiliation: User (Car Owner) 

Population of device manufacture flags in the on-chip NVM 
The state of the chip (device) when it is deployed 
in the market (all security features switched ON). 

RMA 

Affiliation: lab (for example, lab of the OEM). 

Population of an RMA indication in the on-chip persistent 
memory by an authorized entity (post authentication). 

The state of the chip (device) when it is returned 
for failure analysis.  Functional aspects are 
operational but RMA must not compromise car 
owner data/privacy and must not extend the 
attack surface. 

Table 1 - ECU lifecycle states 

The RMA state is intended for post-field deployment. Debug and testing features can be restored in a manner which does not reveal user or service 
sensitive data. Entering RMA state requires certified authentication that is cryptographically checked by the HSM. Also, at the transition into the 
RMA state, all key storage is programmed into a recognized erased state, for example, a zeroed state. However, the LCS state continues to be 
protected. This can act as a countermeasure against the grey market deployment of the device, as a security-disabled but otherwise functional 
ECU. 

Because the lifecycle state determines the security level of the device, it must remain protected within the secure NVM of the chip. In this way, 
access is restricted to the HSM and the authentication of its transitions are enforced.  



 

Architecting Secure Automotive Systems Arm technology for next generation vehicular microcontrollers 
Platform Trust 

 

 Copyright © 2017 Arm Limited or its affiliates. All rights reserved. 8 

 

 

Figure 3 - Device Security Lifecycle 

Arm CryptoCell is a secure subsystem, comprising functions for cryptographic acceleration and management of secure resources. Secure lifecycle 
management is fully integrated within an Arm CryptoCell-based implementation of an HSM, and enforces policies, including: 

• Execution of unsigned code. 

• On-chip NVM programming policy. 

• On-chip NVM read policy. 

• Confidential (that is, encrypted) code accessibility. 

• Secure debug.  
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2.4. Secure Debug 

Secure debug relates to the granting of debugging rights, based on a signature from a trusted entity. Arm CryptoCell uses a certificate-based 
scheme, in which a debugger first has to present a certificate for inspection by the HSM CPU, before initiating a debug session. The CPU uses a root 
of trust (or predecessor in a chain of trust) to validate the certificate and enables debug permissions, as indicated by the certificate. Authenticated 
debug can be enforced by the lifecycle state management - the default policy (which can be changed by the IC vendor) is shown below. 

LCS Debug Status 

Chip Manufacturing All debugging enabled 

Device Manufacturing All debugging enabled 

Deployed Authenticated debug (certificate based) active 

RMA All debugging enabled 

Table 2 - Secure Debug 

CryptoCell implements a unified root of trust for the verification of certificates that originate from the same entity (that is, those where both the 
code-loading certificate and the debug authentication certificate are signed by the same key). It is important to ensure that a debugger does not 
exceed its debugging permissions. CryptoCell makes use of a bus filtering unit that partitions the address space into areas of accessibility and 
inaccessibility, for each valid certificate. This allows isolation between agents with similar access rights, for example, software belonging to 
separate application vendors. 

 

Figure 4 - Example Authenticated debug implementation 
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2.5. CryptoCell NVM management 

NVM management is fundamental to the operation of HSMs because significant amounts of persistent data serve as trust anchors for the platform. 
The integrity, and in some cases the confidentiality, of these roots of trust must be assured. This data must be stored on-die in NVM, as indicated in 
the EVITA framework.  

1. There are three main ways in which the root of trust fields can be populated:  
2. The IC Vendor does not populate the chip with any sensitive or confidential data, and ships it in the Chip Manufacturer LCS. In this case, 

code encryption and asset provisioning by the IC vendor can be done using embedded RTL secrets. This is low cost but less secure than 
other methods. 

3. The IC vendor populates the HW Unique Key (HUK), relevant flags and, optionally, any key fingerprints. This transitions the chip to Device 
Manufacturer LCS, before shipping it to the OEM.  

The IC vendor is authorized to populate all the fields (some on behalf of the OEM), and ships the IC in the Deployed LCS. 

Many platforms will use some combination of mask ROM, OTP, eFlash, and external Flash, to provide sufficient (RoT and Non-RoT) NVM resource 
for the ECU. CryptoCell provides support for directly or indirectly interfacing to these implementations.  

ECUs that are designed to hold much of their persistent state off-chip, can make use of secure external flash partitions, called Replay-Protected 
Memory Blocks (RPMB), that are present in standard eMMC and UFS devices. CryptoCell is able to derive and protect a device-unique key, suitable 
for use in securing RPMBs. In the Device Manufacture lifecycle state (in a secure environment), CryptoCell supports the export and insertion of a 
shared secret into the Flash device. As the CryptoCell is the only entity capable of accessing the RPMB key, a CryptoCell-based HSM can guard 
access to this resource and manage the storing of non-RoT secrets, for example, derived keys and storage of confidential code and data. 

2.6. Cryptographic Hardware 

Cryptographic specific hardware is widely used to accelerate processor-intensive encryption and decryption computations. There are several 
reasons why they are deployed in automotive HSMs. 

• Real time performance is important. Secure boot might rely on cryptographic operations being performed on large amounts of code and 
data, before an application can launch. Rapid establishment and maintenance of secure communication channels is critical to V2X 
applications. 
 

• Significantly less power is used when performing cryptographic operations in hardware, even relative to small CPUs. On an automotive 
ECU, this might ease thermal management for intensive use cases. 
 
 

• Cryptographic computation is vulnerable to side channel attacks (SCAs). The three main classes of SCAs, power and electromagnetic 
signature analysis, timing analysis, and fault injection, all have good countermeasures that are generally known, and that are 
implemented by CryptoCell. The alternative, hardening a CPU and software against SCAs, can be challenging if there is a tight cost and 
performance budget.         
                                                                                                                           

• There is a requirement for high entropy, random number generation. These numbers are heavily used in cryptographic computation for 
deriving keys, creating nonces, and producing initial values for encryption and decryption schemes. 
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The EVITA HSM architecture defines a set of cryptographic functions, all of which are implemented by Arm CryptoCell, including a rich set of 
symmetric and asymmetric computation capabilities, together with a set of Hash and MAC functions, and a digital true random number generator, 
that complies with the AIS-31 and NIST SP 800-90B standards1. 

  

                                                                                    
1 BSI:  Application Notes and Interpretation of the Scheme (AIS) 31 – Functionality Classes and Evaluation Methodology for Physical Random Number 
Generators 
  NIST:  SP 800-90 Recommendation for Random Number Generation Using Deterministic Random Bit Generators 
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3 The Design of Secure ECU Architectures 
 

Secure automotive ECU architectures are heavily influenced by cost concerns. In order to minimize the silicon area required for security hardware, 
EVITA specifies three types of HSM, according to the type of communication in which the host ECU is expected to engage. These types are: 

• V2X messages. These messages require high-speed, asymmetric encryption and key storage because the time to establish and 
authenticate secure connections, is critical. HSMs that support this profile are what EVITA refers to as full HSMs. 
 

• Communication between ECUs within the same vehicle. This communication requires lower-speed, asymmetric cryptography and high-
speed, symmetric encryption, together with secure key storage. HSMs that support this profile are what EVITA refers to as medium 
HSMs. 
 

• Simple and secure communication between small ECUs and clusters of sensors and actuators. This communication requires static 
symmetric encryption. HSMs that support this profile are what EVITA refers to as light HSMs. 

Stability Control 
(ESC)BodyM

Engine 
Control

Airbag 
Actuator 

Power Steering 
(EPS)

Transmission

Sensor Cluster

GatewayIVI/Head Unit
(V2X)

EVITA FULLEVITA 
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EVITA 
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HSM Security 
Level

ADAS 

ADAS: Advanced driver assistance 
system

 

Figure 5 - Example of EVITA hardware security modules deployment 
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Figure 5 is an example of an automotive network topology that shows a distribution of HSM types, among ECUs. It is increasingly common to see 
architectures making use of a gateway ECU, whose role is to ensure that only permitted messaging routes are employed, and to convert between 
protocols.  

The EVITA full HSM profile specifies hardware ECC-256 and Whirlpool2 Hash functions. The Medium HSM profile does not require these 
accelerators, and its isolated CPU is dimensioned accordingly. The Light HSM profile is focused on meeting the smallest cost and therefore, its sole 
major accelerator is an AES-128 accelerator, to support end-to-end protection of data exchange with sensors and actuators, with critical data.   

An EVITA light HSM is based on enabling sensors and actuators to enforce the authenticity, integrity, and confidentiality of the data that is 
exchanged. The necessary shared secret for symmetric cryptography can be established in several ways, for example, by pre-configuration by the 
OEM or by performing a software key establishment routine on the ECU application processor. It must be noted that a standard light HSM has no 
internal NVM, no internal RAM, and that all secrets are accessible by application software, running on the host CPU. 

3.1. EVITA Light HSM Architectures with an Arm Cortex-M processor 

This absence of secure RAM, NVM, and isolated processing capability, in the light HSM profile, limits the scope of ECUs in which these low cost 
HSMs can be used. If the application CPU is an Armv8-M processor, then Arm TrustZone® technology can increase the security level of the EVITA 
Light profile, with no significant increase in cost. TrustZone technology can isolate partitions within existing NVM and RAM resources, so that they 
can only be accessed by software running in the secure mode of the CPU. This allows hardware supported separation of secure HSM functions and 
applications software. This HSM profile is, in Arm terminology, called trusted light. A trusted light HSM could generate, process, and store its 
secrets (that is, AES keys and secure boot references) more securely in hardware, and is therefore able to enforce the cryptographic boundary and 
secure boot, more strongly.  

The TrustZone technology is a hardware security technology that is incorporated into Arm processors. It consists of security extensions to an Arm 
system-on-chip (SoC) covering the processor, memory, and peripherals. These mechanisms can be leveraged by system designers, to run secure 
services in isolation from the OS. With TrustZone technology, the processor can execute instructions in one of two possible security modes. These 
modes are referred to as the normal world- where untrusted code executes- and the secure world- where secure services run. These processor 
modes have independent memory address spaces and different privileges.  

While code running in the normal world cannot access the secure world address space, code running in the secure world can access the normal 
world address space, in certain conditions. A special processor bit- the NS bit- indicates which world the processor is currently executing in, and this 
bit accompanies transactions over the memory bus and certain I/O buses for peripherals. This enables the system designer to allocate memory, 
solely to the secure world, and to control which devices are accessible from the different worlds. Hardware interrupts can trap directly to the 
secure world interrupt handler, which then enables flexible routing of those interrupts to either secure world or normal world. As the processor 
executes in one security mode at a time, it must switch worlds in order to execute software in the other security mode. In a Cortex-M processor 
that is implementing TrustZone technology, a mode switch is very lightweight and can be achieved by issuing a special branch instruction (BLSF), 
whose target must be a Secure Gateway (SG) instruction that is located in a memory region marked as being suitable for secure mode switches, 
Non-Secure Callable (NSC). 

These features allow ECUs using an Armv8-M processor, to isolate HSM processing from application code, and also to create secure partitions 
within existing memory resources. A design for an ECU, based on a trusted light HSM, is outlined in Figure 6. 

It is typically less expensive to have a single, large memory device and partition it into secure and non-secure regions, than it is to provide separate, 
dedicated memories for each secure world and normal world. In some designs, this will permit low-cost, secure partitions to be established in 

                                                                                    
2 Or another cryptographically strong hash function. 
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already existing resources. The TrustZone Memory Adapter (TZMA) enables a design to secure a region within an on-SoC static memory, such as an 
ROM or an SRAM. The TZMA allows a single static memory, of up to 2MB, to be partitioned into two regions, where the lower part is secure and 
the upper part is non-secure.  

 

Figure 6 - EVITA Trusted Light HSM architecture 

In fact, this technique can also be used to design low cost ECUs that are in accordance with the medium HSM, or full HSM profile. If the application 
performance profile can be met with an Armv8-M processor, then TrustZone technology can provide hardware-isolated compute and storage 
resources for the HSM. 
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3.2. Virtualized EVITA Full HSM/Medium HSM with Arm Cortex-R processors 

Automotive networks show a clear trend towards the centralization of functionality. The consolidation of functions that were previously performed 
by individual ECUs, into a single ECU, allows for a significant reduction of the required number (and type) of in-vehicle ECUs, and therefore helps to 
mitigate the overall complexity. There are automotive standards and interfaces that have been designed, in order to create platforms where 
software from different suppliers can be progressively integrated, for example AUTOSAR.  

Security architectures, based on virtualization technologies, use a single computing platform to securely execute multiple, independent (fully 
featured) runtime environments (also known as virtual machines) concurrently, while enabling an efficient sharing of available physical resources. 
In addition to the cost-efficient utilization of available hardware resources, the most important safety and security advantage that virtualized 
security architecture provides, is strong runtime isolation. This feature ensures that subsystems, components, or even individual applications can 
communicate only through strictly controlled communication channels, in a way that provides strong defenses against illegally accessing data, 
functions or affecting the execution or performance of other applications, without having proper authorization. To enforce strong isolation, 
virtualization architectures employ a very small, highly efficient kernel. In practice, this can be realized in hardware, in software, or by a 
combination of both. 

Applying virtualization techniques on consolidated ECUs provides for separation of processes and applications. Crucially, these techniques allow 
both lower-cost deployment models and independent certification of applications, with different supply chains and different trust levels, to exist on 
the same ECU.  

Figure 7 illustrates a consolidated ECU architecture. This consolidated ECU consists of a virtualized hardware platform, with an Armv8-R 
architecture CPU, running a hypervisor for securely scheduling and isolating a number of virtual machines (VMs). In addition, a medium profile HSM 
incorporating a dedicated Armv8-M architecture processor (full profile if the ECC and HASH engines are instantiated) is shown. Armv8-A 
architecture CPUs provide several options for implementing the most computationally intensive tasks.  

 

Figure 7 - A Hypervisor-based ECU design 
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A VM runs on the interface to the bare hardware, constructed by the hypervisor. Each VM runs its own software environment, which consists of a 
fully instantiated and configured application, with its run time environment (RTE) and operating system. Each VM is usually configured to host only 
a single automotive application (the firmware of a single-function ECU), and the RTE and OS that are included are adapted (that is, minimized) to 
the essential requirements of the application. This method promotes ease of porting and implementation efficiency, and also simplifies validation 
procedures, by isolating certification. 

Figure 8 shows an example of software distribution for a multi-purpose ECU that is consistent with the EVITA framework. Here, the hypervisor 
implements and isolates a VM for each application domain and runs directly on the CPU hardware (type 1 hypervisor). The hypervisor can be 
implemented as a microkernel, to minimize the trusted computing base. The EVITA Security Domain is a trusted VM that includes modules that are 
required to provide security services for applications, together with platform integrity. These modules provide confidentiality, integrity 
authentication, access control, secure communication, and system monitoring. Platform attestation services might also be located here. One 
implementation option is to include a virtual EVITA HSM, to allow AUTOSAR VMs to interact with a dedicated virtual HSM, through a security 
domain virtual machine. This is to allow AUTOSAR VMs to be implemented, ported and certified within such an environment, with the highest 
efficiency in terms of time and security. 

 

Figure 8 - Software distribution for a medium profile HSM 

A head-unit or IVI design will exhibit a software architecture that is similar to Figure 8, with the possible addition of one or more VMs, for richer 
operating systems (than AUTOSAR), such as QNX or Linux. It must be noted that both Armv8-A and Armv8-R architecture processors can exploit the 
advantages of virtualization. 
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3.3. Armv8-R CPU architecture 

An important difference between the current Armv8-A and Armv8-R processors is the memory system architecture. The Armv8-A profile uses the 
Virtual Memory System Architecture (VMSA) to provide virtual memory support. VMSA supports rich operating systems, such as Linux or Green 
Hills’ INTEGRITY, by using translation tables located in memory and cached in a Translation Lookaside Buffer (TLB). In contrast, an Armv8-R 
processor uses the Protected Memory System Architecture (PMSA), to provide memory protection without translation. The non-deterministic 
behavior, caused by potential TLB misses, is avoided by use of a memory protection unit (MPU) that is based on registers, and that is tightly linked 
to the core. Real-Time Operating Systems (RTOS) can use the PMSA to provide memory protection, between tasks. 

Armv8-R introduces support for hardware virtualization, through the provision of three Exception Levels (EL) that can be virtualized. When 
combined with a secure hypervisor, virtualization enables stronger isolation between applications than can be achieved within a single operating 
system, by virtue of having a smaller code base, that can be more strongly audited. 

 

Figure 9 - Armv8-R 3 Exception Levels 

Tasks or applications commonly run at EL0 and guest operating systems run at EL1, while hypervisors execute at EL2. Stage-1 MPUs are controlled 
by a guest OS, that allows kernels to manage their memory protection independently from the hypervisor, although all memory accesses are 
ultimately subject to memory permissions in the stage-2 MPU. Therefore, the integrity of the hypervisor code, and the address-space isolation of 
each guest operating system, rely on the stage-2 MPU. 
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4 Summary 
 

In terms of silicon, certification and deployment infrastructure, the uptake of strong security measures can be expensive. However, the increasing 
cost of insecurity, in terms of OEM reputation and vehicle recalls, combined with the possibility that safety features relying on V2X communication 
might be accompanied by regulations, will increase the motivation for achieving meaningful, low-cost security. 

The adoption of secure architectures, based on the EVITA framework, allows OEMs to standardize their security approach across the range of ECUs 
that they deploy. When drawing up requirements, system architects ought to consider that a common HSM architecture, that is reused across 
several ECU application types, can achieve considerable savings in NRE costs, as well as a significant reduction in certification time. An HSM using 
an Arm Cortex-M processor, CryptoCell accelerators and security management, provides a flexible, low-cost solution with sufficient longevity to be 
used across a generation of designs. TrustZone technology for Cortex-M processors can be used throughout low cost HSMs (trusted light 
architecture), to provide hardware isolation for security assets, without the full cost of implementing physically separate architecture resources. 

For more complex ECUs, head units, and communication gateways, implementing a real-time host CPU, with strong virtualization support, is key to 
lowering cost. Virtualization allows the creation of trusted execution environments, that allow the secure co-habitation of mutually distrustful 
applications, on the same CPU. Together with enabling technologies, such as AUTOSAR, this simplifies the aggregation of several applications on a 
single ECU, and hence mitigates the silicon cost of the security and its supporting infrastructure.  

For silicon providers, standardizing ECU offerings, on Arm-based HSM designs, can lower the cost of developing and certifying the security of their 
designs, while focusing on the highly differentiated application performance area. 
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