
i
i

i
i

i
i

i
i

Adaptive Scalable Texture
Compression
Stacy Smith, ARM

1.1 Introduction

Adaptative Scalable Texture Compression (ASTC) is a new texture com-
pression format which is set to take the world by storm. Having been
accepted as a new Khronos standard, this compression format is already
available in some hardware platforms. This article shows how it works, how
to use it, and how to get the most out of it. For more in-depth information,
there is a full specification provided with the encoder [Eva].

1.2 Background

ASTC was developed by ARM Limited as the flexible solution to the
sparsely populated list of texture compression formats previously avail-
able. In the past, texture compression methods were tuned for one or more
specific sweet spot combinations of data channels and related bit rates.
Worsening the situation was the proprietary nature of many of these for-
mats, limiting availability to specific vendors, and leading to the current
situation where applications have to fetch an additional asset archive over
the internet after installation, based on the detected available formats.
The central foundation of ASTC is that it can compress an input image
in every commonly used format (Table 1.1) and output that image in any
user selected bit rate, from 8bpp to 0.89bpp, or 0.59bpp for 3D textures
(Table 1.2).

Bitrates below 1bpp are achieved by a clever system of variable block
sizes. Whereas most block based texture compression methods have a single
fixed block size, ASTC can store an image with a regular grid of blocks of
any size from 4x4 to 12x12 (including non square block sizes). ASTC can
also store 3D textures, with block sizes ranging from 3x3x3 to 6x6x6.

Regardless of the blocks’ dimensions, they are always stored in 128 bits,
hence the sliding scale of bit rates.

1

i
i

i
i

i
i

i
i

2 1. Adaptive Scalable Texture Compression

Raw input format Bits per pixel
HDR RGB+A 64
HDR RGBA 64
HDR RGB 48

HDR XY+Z 48
HDR X+Y 32

RGB+A 32
RGBA 32
XY+Z 24
RGB 24

HDR L 16
X+Y 16
LA 16
L 8

Table 1.1. Bitrates of raw image for-
mats

Output Block Size 1 Bits per pixel
4x4 8.000
5x5 5.120
6x6 3.556
8x8 2.000

10x10 1.280
12x12 0.889
3x3x3 4.741
4x4x4 2.000
5x5x5 1.024
6x6x6 0.593
4x6 5.333
8x10 1.600
12x10 1.067

Table 1.2. Bitrates of ASTC output

1.3 Algorithm

Figure 1.1. Different partition
patterns

Each pixel in these blocks is defined as a
quantised point on a linear gradient be-
tween a pair of boundary colours. This
allows for fairly smooth areas of shading.
For blocks containing boundaries between
areas of completely different colours, the
block can use one of 2048 colour partition-
ing patterns, which split the block into dif-
ferent designs of 1-4 colour gradients.

These blocks are algorithmically gener-
ated and selecting the right one is where
the majority of the compression time goes.
This technique allows a block to contain
areas of completely different hues with ar-
bitrary shading or multiple intersecting
hard-edged patches of different tones.
Each block defines up to four pairs of
colours and a distribution pattern ID, so
that each pixel knows which of those pairs
it uses to define its own colour. The individual pixels then have a quan-

1This is by no means an exhaustive list of available block sizes, merely the
square/cube block sizes to show data rates, with a few non square examples.

i
i

i
i

i
i

i
i

1.3. Algorithm 3

tised value from 0 to 1 to state where they are on the gradient between the
given pair of colours.1 Due to the variable number of bounding colours and
individual pixels in each 128 bit block, the precision of each pixel within
the block is quantised to fit in the available remaining data size.

During compression, the algorithm must select the correct distribution
pattern and boundary colour pairs, then generate the quantised value for
each pixel. There is a certain degree of trial and error involved in the
selection of patterns and boundary colours, and when compressing, there is
a trade off between compression time and final image quality. The higher
the quality, the more alternatives the algorithm will try before deciding
which is best. However long the compression takes, the decompression
time is fixed, as the image data can always be re-extrapolated from the
pattern and boundary colours in a single pass.

The compression algorithm can also use different metrics to judge the
quality of different attempts, from pure value ratios of signal to noise,
to a perceptual judgement weighted towards human visual acuity. The
algorithm can also judge the channels individually rather than as a whole,
to preserve detail for textures where the individual channels may be used
as a data source for a shader program, or to reduce angular noise, which is
important for tangent space normal maps.

Overall, correct usage of these options can give a marked improvement
over existing compression algorithms, as shown in Figure 1.2.

1Indices are encoded at variable resolution using a scheme developed by researchers
at Advanced Micro Devices, Inc.

i
i

i
i

i
i

i
i

4 1. Adaptive Scalable Texture Compression

Figure 1.2. From top to bottom on the right we see a close up of the original
image, the 2bpp PVRTC [PVR] compressed image then the 2bpp ASTC image
at the bottom.

1.4 Getting started

After downloading the evaluation compression program [Eva] the com-
mand line interface can be used to compress textures. This program sup-
ports input images in PNG, Targa, JPEG, GIF(non-animated only), BMP,
Radiance HDR , Khronos Texture KTX , DirectDraw Surface DDS and
Half-Float-TGA. There is also limited support for OpenEXR.

The astcenc application provides a full list of available command line
arguments, the most basic commands are:

astcenc -c <input.file> <output.file> <rate> [options]

The -c tells the program to compress the first file, and save the com-
pressed form into the second file. The rate is used to decide a block size. A
block size can either be directly chosen as block size, such as 5x4 or 3x3x3,
or the algorithm can be given the bpp to aim for and it chooses automat-
ically. The bit rate must always have one decimal place, in the range 8.0
to 0.8 (or as low as 0.6 for 3D textures).

When wishing to decompress a texture to view, use the following com-
mand:

i
i

i
i

i
i

i
i

1.4. Getting started 5

astcenc -d <input.file> <output.file> [options]

In this case, the -d denotes a decompression, the input file is a tex-
ture which has already been compressed, and the output file is one of the
uncompressed formats.

To see what a texture would look like compressed with a given set of
options, use the command:

astcenc -t <input.file> <output.file> <rate> [options]

The -t option compresses the file with the given options then immediately
decompresses it into the output file. The interim compressed image is not
saved, and the input and output files are both in a decompressed file format.

The options can be left blank but to get a good result there are a few
useful ones to remember.

The most useful arguments are the quality presets:

-veryfast

-fast

-medium

-thorough

-exhaustive

There are many available options to set various compression quality factors
including:

• The number and scope of block partition patterns to attempt.

• The various signal to noise cut-off levels to early out of the individual
decision making stages.

• The maximum iterations of different bounding colour tests.

Most users won’t explore all of these to find the best mix for their own
needs. Therefore, the quality presets can be used to give a high level hint
to the compressor, from which individual quality factors are derived.

It should be noted that veryfast, whilst almost instantaneous, gives good
results only for a small subset of input images. Conversely, the exhaustive
quality level (which does exactly what it says and attempts every possible
bounding pattern combination for every block) takes a very much longer
time, but will often have very little visible difference to a file compressed
in thorough mode.

i
i

i
i

i
i

i
i

6 1. Adaptive Scalable Texture Compression

1.5 Using ASTC Textures

ASTC capability is a new hardware feature available from late 2013. To
get started with ASTC right away the ARM R© Mali

TM

OpenGL R© ES 3.0
Emulator [Ope] is available from ARM’s website and this is compatible
with ASTC texture formats and as such can be used to test ASTC based
programs on a standard desktop GPU.

Loading a texture in ASTC format is no different to loading other com-
pressed texture formats, but the correct internal format must be used. Files
output by the compressor have a data header containing everything needed
to load the compressed texture.

struct a s t c heade r
{

u i n t 8 t magic [4] ;
u i n t 8 t blockdim x ;
u i n t 8 t blockdim y ;
u i n t 8 t blockdim z ;
u i n t 8 t x s i z e [3] ;
u i n t 8 t y s i z e [3] ;
u i n t 8 t z s i z e [3] ;

} ;

Listing 1.1. ASTC Header Structure

Using the data-structure in Listing 1.1 the application can detect the
important information needed to load an ASTC texture. Please see the
Mali Developer Center web site for source code examples.

1.6 Quality settings

This article has already mentioned some of the high level quality settings,
but there are far more precisely-targeted ways to tweak the quality of the
compressor’s output. The command line compressor has two main cate-
gories of argument, search parameters and quality metrics.

The algorithm for compressing a texture relies heavily upon trial and
error. Many combinations of block partition and boundary colours are
compared and the best one is used for that block. Widening search param-
eters will compare more combinations to find the right one, enabling the
algorithm to find a better match, but also lengthening search time (and
therefore compression time).

plimit is the maximum number of partitions tested for each block before
it takes the best one found so far.

i
i

i
i

i
i

i
i

1.6. Quality settings 7

preset plimit dblimit 2 oplimit Mincorrel bmc maxiters
veryfast 2 18.68 1.0 0.5 25 1

fast 4 28.68 1.0 0.5 50 1
medium 25 35.68 1.2 0.75 75 2
thorough 100 42.68 2.5 0.95 95 4

exhaustive 1024 999 1000.0 0.99 100 4

Table 1.3. Preset quality factors

dblimit is the Perceptual Signal to Noise Ratio (PSNR) cut off for a
block in dB. If the PSNR of a block attempt exceeds this, the algorithm
considers it good enough and uses that combination. This PSNR may not
be reached, since the algorithm may hit the other limits first.

oplimit implements a cut off based on comparing errors between single
and dual partitioning. That is, if the dual partition errors are much worse
than the single partition errors, it’s probably not worth trying three or four
partitions. The oplimit defines how much worse this error must be to give
up at this point.

mincorrel defines the similarity of colour coefficients which the algo-
rithm will try to fit in a single colour plane. The smaller this number, the
more varied colours on the same plane can be, and therefore the block will
not be tested with higher numbers of partitions.

bmc is a cut off for the count of block modes to attempt. The block
mode defines how the individual colour values are precision weighted using
different binary modes for each partition.

maxiters is the maximum cut off for the number of refining iterations
to colours and weights for any given partition attempt.

These values can be set individually to extend searching in specific
directions; for example:

• A texture which has lots of subtle detail should probably have a high
oplimit to ensure subtle colour variations don’t get bundled into the
same partition plane.

• A texture which has very busy randomised patterns should probably
search more partition types to find the right one.

Usually however these are set to default levels based on the general quality
setting, as seen in Table 1.3 Improving quality with these factors is a trade
off between compression time and quality. The greater the search limits
and the less willing the algorithm is to accept a block as ‘good enough’ the

2dblimit defaults for levels other than exhaustive are defined by an equation based
on the number of texels per block.

i
i

i
i

i
i

i
i

8 1. Adaptive Scalable Texture Compression

more time is spent looking for a better match. There is another way to get
a better match though, and that is to adjust the quality metrics, altering
the factors by which the compressor judges the quality of a block.

1.6.1 Channel weighting

The simplest quality factors are channel weighting, using the command line
argument:

-ch <red-weight> <green-weight> <blue-weight> <alpha-weight>

This defines weighting values for the noise calculations. For example the
argument -ch 1 4 1 1 makes error on the green channel four times more
important than noise on any other given channel. The argument -ch 0.25

1 0.25 0.25 would appear to the same effect but that assumption is only
partly correct. This would still make errors in the green channel four times
more prevalent, but the total error would be lower, and therefore more
likely to be accepted by a ‘good enough’ early out.

Channel weighting works well when combined with swizzling, using the
-esw argument. For textures without alpha, for example, the swizzle -esw

rgb1 saturates the alpha channel and subsequently doesn’t count it in noise
calculations.

1.6.2 Block weighting

Though human eyesight is more sensitive to variations in green and less
sensitive to variations in red, channel weighting has limited usefulness.
Other weights can also improve a compressed texture in a number of use
cases. One of these is block error checking, particularly on textures with
compound gradients over large areas. By default there is no error weight
based on inter-block errors. The texels at the boundary of two adjacent
blocks may be within error bounds for their own texels, but with noise in
opposing directions, meaning that the step between the blocks is noticeably
large. This can be countered with the command line argument:

b <weight>

The equation to judge block suitability takes into account the edges of any
adjacent blocks already processed. Figure 1.3 and 1.4 show this in action.
However this simply makes the search algorithm accept blocks with better
matching edges more readily than others, so it may increase noise in other
ways. Awareness of adjacent smooth blocks can be particularly helpful for
normal maps.

i
i

i
i

i
i

i
i

1.6. Quality settings 9

Figure 1.3. An example of block weighting. The left image shows block errors,
the right image is recompressed with b 10.

Figure 1.4. A second example of improvements from block weighting, using the
same settings as Figure 1.3.

1.6.3 Normal weighting

When compressing normal maps or maps used as a data source rather
than colour information, there are arguments which implement a number
of additional settings all in one. These are -normal psnr, -normal percep

and -mask. Only one of these should be used at a time, as they override
each other.

The first two of those are geared towards the compression of 2 channel
normal maps, swizzling the X and Y into luminance and alpha, overriding
the default oplimit and mincorrel, and adding weight on angular error,
which is far more important in normal maps. -normal percep is similar
but has subtly different weighting for better perceptual results. These can
be seen in Figure 1.5.

Both of these functions swizzle the X and Y into luminance and alpha,
with an implied esw rrrg argument, and also have an internal decode

i
i

i
i

i
i

i
i

10 1. Adaptive Scalable Texture Compression

Figure 1.5. The leftmost normal map is compressed with default settings, the
second uses normal psnr and the normal map on the right uses -normal percep

Figure 1.6. The left image is the uncompressed data, the second is compressed
with default settings, the right image uses the mask argument.

swizzle of dsw raz1 placing the luminance into X, the alpha into Y and
reconstruct Z using:

z =
√

1 − r2 − a2

The argument rn, adds an error metric for angular noise. Other texture
compression methodologies have lacked this option. Normal maps tradi-
tionally have been a problem to compress, as the minor variations in the
angular component implied by the X and Y value can get ignored in pure
signal to noise calculations.

1.6.4 Masking channel errors

The argument -mask tells the compressor to assume that the input texture
has entirely unrelated content in each channel, and as such it is undesirable
for errors in one channel to affect other channels.

This is shown in Figure 1.6, an example of a bitmap font where the red
channel represents the characters, the blue is a rear glow and the green is
a drop shadow.

i
i

i
i

i
i

i
i

1.7. Other color formats 11

The perceptual and mask filters are based upon combinations of the -v
and -va arguments. These two arguments give low level access to the way
an error value for a block is collected from its individual texel differences.
The full syntax is:

-v <radius> <power> <baseweight> <avgscale> <stdevscale> <mixing-factor>

The radius is the area of neighbouring texels for which the average and
standard deviations in error are combined using the equation:

weight =
1

baseweight + avgscale ∗ average2 + stdevscale ∗ stdev2

The individual error values are raised to power before average and stan-
dard deviation values are calculated. The mixing-factor is used to decide if
the individual channel errors are combined before or after averaging. If the
mixing-factor is 0, each colour channel has its own average and standard
deviation calculated, which are then combined in the equation above. If the
mixing-factor is 1, the errors of each channel are combined before a single
average is calculated. A value between 1 and 0 provides a combination of
these two values.

The result is an erratic error value which, if just averaged over a block,
can lead to a fairly noisy output being accepted. Using the standard de-
viation over a given radius gives the error calculations visibility of any
added noise between texels, in much the same way that step changes be-
tween blocks can be checked with the block weighting (see Section 1.6.2)
argument.

This equation of average noise works on the colour channels, the alpha
channel is controlled separately, with a similar set of values in the command
line arguments:

-va <baseweight> <power> <avgscale> <stdevscale>

-a <radius>

The alpha channel is controlled separately as, particularly with punch
through textures, a little bit of quantisation noise may be preferable to
softening of edges2.

1.7 Other color formats

ASTC supports images with 1 to 4 channels, from luminance only all the
way to RGBA. Additionally, the algorithm has support for different colour

2It’s worth reassuring the reader that yes, that is quite a lot of powers and coefficients
to throw at a somewhat chaotic system, so manual adjustments can often feel like a stab
in the dark - hence the presets.

i
i

i
i

i
i

i
i

12 1. Adaptive Scalable Texture Compression

space encodings:

• Linear RGBA3

• sRGB + linear A

• HDR RGB + A4

• HDR RGBA

1.7.1 sRGB

ASTC supports non-linear sRGB colour space conversion both at compres-
sion and decompression time.

To keep images in sRGB colour space until the point that they are used,
simply compress them in the usual way. Then when they’re loaded, instead
of the regular texture formats, use the sRGB texture formats. These are the
ones that contain SRGB8 ALPHA8 in the name. There’s an sRGB equivalent
of every RGBA format.

Helpfully the constants for the sRGB formats are always 0x0020 greater
than the RGBA constants, allowing an easy switch in code between the two.

As an alternative to using sRGB texture types at run time, there is also
a command line argument for the compressor to transform them to linear
RGBA prior to compression. The -srgb argument will convert the colour
space and compress the texture in linear space, to be loaded with the usual
RGBA texture formats.

1.7.2 HDR

ASTC also supports HDR image formats. Using these requires no addi-
tional effort in code and the same loading function detailed above can be
used. When encoding an image in a HDR format the encoder doesn’t use
HDR encoding by default. For this one of two arguments must be used:

-forcehdr_rgb

-forcehdr_rgba

In this mode, the encoder will use a HDR or LDR as appropriate on a
per-block basis. In -forcehdr rgb mode, the alpha channel (if present) is
always encoded LDR. There are also the the simpler arguments:

-hdr

-hdra

3the most commonly understood and supported colour space
4HDR RGB channels with an LDR alpha

i
i

i
i

i
i

i
i

1.8. 3D Textures 13

Which are equivalent to -forcehdr rgb and -forcehdr rgba but with
additional alterations to the evaluation of block suitability (a preset -v and
-va) better suited for HDR images. Also available are:

-hdr_log

-hdra_log

These are similar but base their suitability on logarithmic error. Images
encoded with this setting typically give better results from a mathematical
perspective but don’t hold up as well in terms of perceptual artefacts.

1.8 3D Textures

The compression algorithm can also handle 3D textures at a block level.
Although other image compression algorithms can be used to store and
access 3D textures, they are compressed in 2D space as a series of single
texel layers, whereas ASTC compresses 3 dimensional blocks of texture
data, improving the cache hit rate of serial texture reads along the Z axis.
Currently there are no suitably prolific 3D image formats to accept as
inputs, as such encoding a 3D texture has a special syntax:

-array <size>

With this command line argument the input file is assumed to be a prefix
pattern for the actual inputs, and decorate the file name with 0, 1, and so
on all the way up to <size-1>. So for example if the input file was slice.png
with the argument array 4 the compression algorithm would attempt to
load files named slice 0.png, slice 1.png, slice 2.png, and slice 3.png. The
presence of multiple texture layers would then be taken as a signal to use
a 3D block encoding for the requested rate (see Table 1.2).

1.9 Summary

This article shows the advantages of ASTC over other currently available
texture compression methodologies, and provides code to easily use ASTC
texture files in an arbitrary graphics project, as well as a detailed expla-
nation of the command line arguments to get the most out of the the
evaluation codec.

ARM provides a free Texture Compression Tool [Tex] that automates
the ASTC command line arguments explained in this paper via a Graphical
User Interface (GUI) which simplifies the compression process and provides
visual feedback on compression quality.

i
i

i
i

i
i

i
i

14 BIBLIOGRAPHY

Bibliography

[et. al. 12] Jorn Nystad et. al. “Adaptive Scalable Texture Compression.”
pp. 105–114.

[Eva] “ASTC Codec and Source.” Available online (http://malideveloper.
arm.com/develop-for-mali/tools/astc-evaluation-codec/).

[Ope] “OpenGL ES SDK Emulator.” Available on-
line (http://malideveloper.arm.com/develop-for-mali/sdks/
opengl-es-sdk-for-linux/).

[PVR] “Texture Compression using Low-Frequency SignalModulation.”
Available online (http://web.onetel.net.uk/∼simonnihal/assorted3d/
fenney03texcomp.pdf/).

[Tex] “Texture Compression Tool.” Available on-
line (http://malideveloper.arm.com/develop-for-mali/
mali-gpu-texture-compression-tool/).

