
Real-time GPU-driven Ocean
Rendering on Mobile

Hans-Kristian Arntzen

ARM Game Developer Day - London

Engineer, ARM

03/12/2015

© ARM 2015 3

 Tessendorf Fast Fourier Transform method

 Procedural frequency domain

 Choppy waves

 Jacobian factor

 Efficient compute shader FFTs on Mali

 Heightmap rendering with LOD

 Tessellation

 Continous LOD Morphed Geo-MipMap

 Mali SDK samples

Topics

© ARM 2015 4

 Began as offline rendering, now realtime with GPU compute

 Ocean waves can be seen as a sum of many waves

 Power distribution can be modelled in the frequency domain

 Stochastic process

 Phillips spectrum popular

 Lots of artistic freedom

 Water can be animated by rotating the phase in frequency domain

 Different wavelengths traverse at different speeds

 Inverse FFT for heightmap

Tessendorf Fast Fourier Transform Method

© ARM 2015 5

 Ocean waves do not behave quite like pure sinusoids

 Not visually exciting

 Rather, large peaks tend to sharpen

 Significant visual improvement when applied correctly

Choppy Waves

© ARM 2015 6

Without Choppiness

© ARM 2015 7

With Choppiness

© ARM 2015 8

 Adding choppiness directly to Y displacement is impractical

 Warping the heightmap mesh instead is a simple alternative

 Extend pure Y displacement to XZ displacement

 XZ displacement follows the gradient of the heightmap

 The mesh will compact at peaks and stretch elsewhere

Choppiness Implementation

© ARM 2015 9

 Most of the fine details are caused by high frequency waves

 These waves contribute very little to overall displacement

 Higher frequency content should be built in a separate normalmap

Adding a High-Frequency Normalmap

© ARM 2015 10

Without High-Frequency Normals

© ARM 2015 11

With High-Frequency Normals

© ARM 2015 12

 The Jacobian factor lets the fragment shader detect ”compaction”

 Cost-effective method of adding highlights

 Modulate the low frequency Jacobian with normalmap for a more

turbulent look

 Compute shader particle system ideas:

 Spawn new particles conditionally at crests when computing Jacobian

 Spawn new particles where intersecting with other terrain

Final Touches With the Jacobian Factor

© ARM 2015 13

Without Jacobian Factor

© ARM 2015 14

With Jacobian, No Normalmap Modulation

© ARM 2015 15

With Jacobian Factor

© ARM 2015 16

The FFT Pipeline

Heightmap
distribution
(256 x 256)

Heightmap
distribution
(128 x 128)

Normalmap
distribution
(256 x 256)

Rotate

phase

Rotate
phase +

directivity

Rotate

phase

Vertex

shading

Heightmap

XZ displacement

Normalmap

Fragment

shading

Compute heightmap

gradient and jacobian

Mipmap generation

C2R

iFFT

C2C

iFFT

C2C

iFFT

© ARM 2015 17

 Large FFTs are highly parallel transforms

 Butterfly stages independent within a pass

 Efficiently implemented with compute shaders

 Number of passes order log2(N / radix)

 More passes, more bandwidth

 Want to use high FFT radices

 ... But on-chip resources are finite

 Bandwidth is a real concern for GPU FFTs

 On-chip and external resources must be carefully balanced

Efficient FFTs on Mali GPUs

© ARM 2015 18

 Larger radix factors

 Does more work per pass

 ... but register pressure kicks in quickly

 FP16

 Mali has native FP16 support, an easy way to halve required bandwidth

 Sufficient precision for ocean water

 unpackHalf2x16() / packHalf2x16() to pack a complex in 32-bit uint

 Shared memory

 Let one or more FFT passes go via shared memory

 If sufficient space in L1 caches, even greater bandwidth reductions can be made

FFT Bandwidth Saving Techniques

© ARM 2015 19

 OpenGL ES 3.1 and OpenGL 4.3 library for GPU FFT

 Shameless plug 

 Permissive MIT license

 On Github

 Core features

 1D and 2D transforms

 Complex-to-complex, complex-to-real and real-to-complex

 Can benchmark itself to find optimal FFTs for particular GPUs

 Full FP16 support

 Large test and bench suite

 Dual-complex (vec4) support for working with RGBA data

GLFFT Library

© ARM 2015 20

 Collected on Samsung Galaxy S6 (Mali T-760 MP8)

GLFFT Performance

Stage Time

Update phases 0.5 ms

iFFT 0.8 ms

Generate gradient and jacobian 0.4 ms

Generate mipmaps 0.5 ms

Total 2.2 ms

© ARM 2015 21

 2048x2048 C2C FP16

 Collected on Samsung Galaxy S6 (Mali T-760 MP8)

GLFFT Performance on Very Large FFTs

Measurement Result

Time 27.9 ms

Arithmetic throughput 16.5 Gflop/s (estimated)

Bandwidth 7.2 GB/s (estimated)

© ARM 2015 22

 Rendering a large terrain without LOD is not feasible

 Extreme geometry load

 Micro-triangles and aliasing

 Good mesh-based LOD is challenging

 Decades of graphics research

Heightmap Rendering With LOD

© ARM 2015 23

 Continuous LOD is a must-have

 Naively removing vertices leads to discontinuous LOD (popping)

 LOD is less noticable when transition is smooth

 Modern implementation is preferable

 Simple and fast algorithms on CPU

 Utilize modern GPU features

 No run-time generation of vertices and indices on CPU

Baseline For Good LOD System

© ARM 2015 24

Popping Problem

Remove vertices

on LOD transition

© ARM 2015 25

Extending the Geo-MipMap Framework

© ARM 2015 26

Geo-MipMap

© ARM 2015 27

 Well known and understood framework for LOD

 Basic implementation is simple

 Split the world into large patches

 Adaptively subdivide this patch depending on a metric

 Assign an LOD to every patch independently

 However, this is not the year 2000 ...

 The technique is showing its age

 Does not solve popping artifacts

Geo-MipMap

© ARM 2015 28

Tessellation, Now in OpenGL ES 3.2

© ARM 2015 29

 Built-in concept of a patch which is adaptively subdivided.

Tessellation

Patch

Patch Patch Patch Patch

Patch Patch Patch

Patch Patch Patch Patch

Patch Patch Patch Patch

© ARM 2015 30

OpenGL ES 3.2 Graphics Pipeline

Vertex Tessellation
Control

Tessellator Tessellation Evaluation

Fragment

Geometry shaders

© ARM 2015 31

 Frustum cull patch

 Compute LOD in four corners

 Select outer tessellation levels based on two corners which touch the

edge

 Critical, otherwise cracks will appear

 Inner level is somewhat arbitrary

 Vertices are not shared with other patches

 Maximum or average of corners is acceptable

Control Shader

Patch Patch

Patch Patch

© ARM 2015 32

 Interpolate corner data based on gl_TessCoord

 LOD factor for sampling heightmap

 Patch-local position

 Fractional even spacing subdivision mode

 Better match with texture sampling

 Sample heightmap texture with interpolated LOD

Evaluation Shader

© ARM 2015 33

 Takes inspiration from many different approaches to LOD

 Vertex Shader Geomorphing

 Tessellation

 CDLOD

 Provides OpenGL ES 3.0 alternative to quad patch tessellation

 Special case of tessellation

 Simplifies sufficiently for use in pure vertex shaders

Continuous LOD Morphing Geo-MipMap

© ARM 2015 35

 Pre-tessellate quad meshes at 2, 4, 8, 16, 32, 64, ... tessellation factors

 At fractional LODs, odd vertices slide towards even vertices

 At full morph, mesh is exactly the same as a lower quality LOD

 Same principle as CDLOD method

 No stitching meshes

 Minimal number of unique meshes

Core Approach

© ARM 2015 36

 Mesh LOD factor is not necessarily equal to outer levels on edges

 Like Tessellation, patches sharing an edge must agree on LOD

 Necessary to use maximum LOD

 One of 5 possibilities (4 edges or inner) selected with branchless logic

Edge-Cases

// Branch-less selection
// aLODWeights either all 0 or single element set to 1.
in vec4 aLODWeights;
bool innerVertex = all(equal(aLODWeights, vec4(0.0)));
float lod = dot(aLODWeights, EdgeLODs);
lod = mix(lod, InnerLOD, innerVertex);

© ARM 2015 37

 Patches can have an arbitrary LOD

 In turn, edges can have an arbitrary LOD

 Not restricted by quad-tree structure, unlike CDLOD

 Snap to LOD and lerp

 Adapts popping-free to any LOD greater than mesh LOD

Adapt Mesh Grid to Any LOD

// Snap to grid corresponding to floor(lod) and ceil(lod).
uvec2 mask = (uvec2(1u) << uvec2(ufloor_lod, ufloor_lod + 1u)) - 1u;
// Round towards center of patch.
uvec4 rounding = aPosition.zwzw * mask.xxyy;
vec4 lower_upper_snapped = vec4((aPosition.xyxy + rounding) & ~mask.xxyy);

// Then lerp between them to create a smoothly morphing mesh.
return mix(lower_upper_snapped.xy, lower_upper_snapped.zw, fract_lod);

© ARM 2015 39

 New code samples and tutorials

 Ocean

 OVR_multiview

 Tessellation

 Geometry shaders

 Multisampled framebuffers

© ARM 2015 40

For more information visit the

Mali Developer Centre:

http://malideveloper.arm.com

• Revisit this talk in PDF and audio

format post event

• Download tools and resources

http://malideveloper.arm.com/

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their

respective owners.

Copyright © 2015 ARM Limited

Thank you!

Questions?

© ARM 2015 42

 Mali OpenGL ES SDK for Android

 http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/

 GLFFT

 https://github.com/Themaister/GLFFT

 Simulating Ocean Water

 http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf

 CDLOD

 http://www.vertexasylum.com/downloads/cdlod/cdlod_latest.pdf

 Geo-MipMapping

 http://www.flipcode.com/archives/article_geomipmaps.pdf

References

http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
https://github.com/Themaister/GLFFT
http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf
http://www.vertexasylum.com/downloads/cdlod/cdlod_latest.pdf
http://www.flipcode.com/archives/article_geomipmaps.pdf

