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Topics

= Tessendorf Fast Fourier Transform method
= Procedural frequency domain
= Choppy waves
= Jacobian factor

= Efficient compute shader FFTs on Mali
= Heightmap rendering with LOD

= Tessellation
= Continous LOD Morphed Geo-MipMap

= Mali SDK samples
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Tessendorf Fast Fourier Transform Method

= Began as offline rendering, now realtime with GPU compute

= Ocean waves can be seen as a sum of many waves

= Power distribution can be modelled in the frequency domain
= Stochastic process

= Phillips spectrum popular
= Lots of artistic freedom

= Water can be animated by rotating the phase in frequency domain
= Different wavelengths traverse at different speeds

= Inverse FFT for heightmap

(n) = %X(k) exp (j 2;’“”)
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Choppy Waves

= Ocean waves do not behave quite like pure sinusoids
= Not visually exciting

= Rather, large peaks tend to sharpen
= Significant visual improvement when applied correctly
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Without Choppiness
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With Choppiness
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Choppiness Implementation

= Adding choppiness directly toY displacement is impractical

= Warping the heightmap mesh instead is a simple alternative
= Extend pureY displacement to XZ displacement
= XZ displacement follows the gradient of the heightmap

= The mesh will compact at peaks and stretch elsewhere

D(x,t) = F! (— j%H (k, t))
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Adding a High-Frequency Normalmap

= Most of the fine details are caused by high frequency waves
= These waves contribute very little to overall displacement
= Higher frequency content should be built in a separate normalmap
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Without High-Frequency Normals
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With High-Frequency Normals
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Final Touches With the Jacobian Factor

= The Jacobian factor lets the fragment shader detect "compaction”

= Cost-effective method of adding highlights

= Modulate the low frequency Jacobian with normalmap for a more
turbulent look

= Compute shader particle system ideas:
= Spawn new particles conditionally at crests when computing Jacobian
= Spawn new particles where intersecting with other terrain

J () = Joudyy — Juyye
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Without Jacobian Factor
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With Jacobian, No Normalmap Modulation
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With Jacobian Factor
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The FFT Pipeline
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Efficient FFTs on Mali GPUs

= Large FFTs are highly parallel transforms
= Butterfly stages independent within a pass
= Efficiently implemented with compute shaders
= Number of passes order log2(N / radix)
= More passes, more bandwidth
= Want to use high FFT radices
= ... But on-chip resources are finite
= Bandwidth is a real concern for GPU FFTs

= On-chip and external resources must be carefully balanced
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FFT Bandwidth Saving Techniques

= Larger radix factors
= Does more work per pass
= ...but register pressure kicks in quickly

= FP16
= Mali has native FP16 support, an easy way to halve required bandwidth
= Sufficient precision for ocean water
= unpackHalf2x16() / packHalf2x16() to pack a complex in 32-bit uint

= Shared memory

= Let one or more FFT passes go via shared memory
= [f sufficient space in LI caches, even greater bandwidth reductions can be made

©ARM2015

ARM



GLFFT Library

= OpenGL ES 3.1 and OpenGL 4.3 library for GPU FFT
= Shameless plug ©

= Permissive MIT license
= On Github

= Core features
= |D and 2D transforms

Complex-to-complex, complex-to-real and real-to-complex

Can benchmark itself to find optimal FFTs for particular GPUs
Full FP16 support
Large test and bench suite

Dual-complex (vec4) support for working with RGBA data
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GLFFT Performance

= Collected on Samsung Galaxy S6 (Mali T-760 MP8)

Stage Time

iFFT 0.8 ms

Generate mipmaps 0.5 ms
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GLFFT Performance onVery Large FFTs

= 2048x2048 C2C FP16
= Collected on Samsung Galaxy S6 (Mali T-760 MP8)

Measurement Result

Arithmetic throughput 16.5 Gflop/s (estimated)
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Heightmap Rendering With LOD

= Rendering a large terrain without LOD is not feasible

= Extreme geometry load
= Micro-triangles and aliasing

= Good mesh-based LOD is challenging

= Decades of graphics research

22  ©ARM20I5 ARM



Baseline For Good LOD System

= Continuous LOD is a must-have
= Naively removing vertices leads to discontinuous LOD (popping)
= LOD is less noticable when transition is smooth

= Modern implementation is preferable
= Simple and fast algorithms on CPU

= Utilize modern GPU features
= No run-time generation of vertices and indices on CPU
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Popping Problem

l

Remove vertices
on LOD transition
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Extending the Geo-MipMap Framework
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Geo-MipMap
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Geo-MipMap

= Well known and understood framework for LOD

= Basic implementation is simple

= Split the world into large patches

= Adaptively subdivide this patch depending on a metric
= Assign an LOD to every patch independently

= However, this is not the year 2000 ...

= The technique is showing its age
= Does not solve popping artifacts
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Tessellation

= Built-in concept of a patch which is adaptively subdivided.
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OpenGL ES 3.2 Graphics Pipeline

Tessellation Tessellator Tessellation Evaluation
Control

Geometry shaders
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Control Shader

= Frustum cull patch
= Compute LOD in four corners

= Select outer tessellation levels based on two corners which touch the

edge
= Critical, otherwise cracks will appear
= Inner level is somewhat arbitrary

= Vertices are not shared with other patches
= Maximum or average of corners is acceptable

©ARM2015
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Evaluation Shader

= Interpolate corner data based on gl_TessCoord

= LOD factor for sampling heightmap
= Patch-local position

= Fractional even spacing subdivision mode

= Better match with texture sampling

= Sample heightmap texture with interpolated LOD
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Continuous LOD Morphing Geo-MipMap

= Takes inspiration from many different approaches to LOD
= Vertex Shader Geomorphing

= Tessellation
- CDLOD

= Provides OpenGL ES 3.0 alternative to quad patch tessellation

= Special case of tessellation
= Simplifies sufficiently for use in pure vertex shaders
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Core Approach

= Pre-tessellate quad meshes at 2,4, 8, 16, 32, 64, ... tessellation factors

= At fractional LODs, odd vertices slide towards even vertices
= At full morph, mesh is exactly the same as a lower quality LOD
= Same principle as CDLOD method

= No stitching meshes

= Minimal number of unique meshes
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Edge-Cases

= Mesh LOD factor is not necessarily equal to outer levels on edges
= Like Tessellation, patches sharing an edge must agree on LOD

= Necessary to use maximum LOD
= One of 5 possibilities (4 edges or inner) selected with branchless logic

// Branch-less selection

// alLODWeights either all © or single element set to 1.
in vecd4 alLODWeights;

bool innerVertex = all(equal(alLODWeights, vec4(0.0)));
float lod = dot(aLODWeights, EdgelODs);

lod = mix(lod, InnerLOD, innerVertex);

ARM
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Adapt Mesh Grid to Any LOD

= Patches can have an arbitrary LOD
= In turn, edges can have an arbitrary LOD
= Not restricted by quad-tree structure, unlike CDLOD

= Snap to LOD and lerp
= Adapts popping-free to any LOD greater than mesh LOD

// Snap to grid corresponding to floor(lod) and ceil(lod).

uvec2 mask = (uvec2(lu) << uvec2(ufloor_lod, ufloor lod + 1u)) - 1lu;

// Round towards center of patch.

uvec4 rounding = aPosition.zwzw * mask.xxyy;

vec4 lower_upper_snapped = vec4((aPosition.xyxy + rounding) & ~mask.xxyy);

// Then lerp between them to create a smoothly morphing mesh.
return mix(lower_upper_snapped.xy, lower upper _snapped.zw, fract lod);
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Mall OpenGL ES
SDK for Android

ARMMALI

= New code samples and tutorials
= Ocean
= OVR_multiview
= Tessellation
= Geometry shaders
= Multisampled framebuffers
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For more information visit the

Mali Developer Centre:

http://malideveloperarm.com

* Revisit this talk in PDF and audio
format post event

* Download tools and resources



http://malideveloper.arm.com/

Thank you!

ARM Questions?

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners.

Copyright © 2015 ARM Limited
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References

= Mali OpenGL ES SDK for Android

= http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/

= GLFFT
= https://github.com/Themaister/GLFFT

= Simulating Ocean Water
= http://graphics.ucsd.edu/courses/rendering/2005 /idewall/tessendorf.pdf

= CDLOD

= http://www.vertexasylum.com/downloads/cdlod/cdlod latest.pdf

= Geo-MipMapping

= http://lwww.flibcode.com/archives/article geomipmaps.pdf
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