Real-time GPU-driven Ocean
Rendering on Mobile

ARM Hans-Kristian Arntzen

Engineer, ARM

ARM Game Developer Day - London
03/12/2015

Topics

= Tessendorf Fast Fourier Transform method
= Procedural frequency domain
= Choppy waves
= Jacobian factor

= Efficient compute shader FFTs on Mali
= Heightmap rendering with LOD

= Tessellation
= Continous LOD Morphed Geo-MipMap

= Mali SDK samples

©ARM2015

ARM

Tessendorf Fast Fourier Transform Method

= Began as offline rendering, now realtime with GPU compute

= Ocean waves can be seen as a sum of many waves

= Power distribution can be modelled in the frequency domain
= Stochastic process

= Phillips spectrum popular
= Lots of artistic freedom

= Water can be animated by rotating the phase in frequency domain
= Different wavelengths traverse at different speeds

= Inverse FFT for heightmap

(n) = %X(k) exp (j 2;’“”)

4 ©ARM20I5 k=

ARM

Choppy Waves

= Ocean waves do not behave quite like pure sinusoids
= Not visually exciting

= Rather, large peaks tend to sharpen
= Significant visual improvement when applied correctly

5 ©ARM2015 ARM

Without Choppiness

6 ©ARM2015

With Choppiness

©ARM2015

Choppiness Implementation

= Adding choppiness directly toY displacement is impractical

= Warping the heightmap mesh instead is a simple alternative
= Extend pureY displacement to XZ displacement
= XZ displacement follows the gradient of the heightmap

= The mesh will compact at peaks and stretch elsewhere

D(x,t) = F! (— j%H (k, t))

©ARM2015

ARM

Adding a High-Frequency Normalmap

= Most of the fine details are caused by high frequency waves
= These waves contribute very little to overall displacement
= Higher frequency content should be built in a separate normalmap

9 ©ARM2015 ARM

Without High-Frequency Normals

©ARM2015

With High-Frequency Normals

I ©ARM2015 ARM

Final Touches With the Jacobian Factor

= The Jacobian factor lets the fragment shader detect "compaction”

= Cost-effective method of adding highlights

= Modulate the low frequency Jacobian with normalmap for a more
turbulent look

= Compute shader particle system ideas:
= Spawn new particles conditionally at crests when computing Jacobian
= Spawn new particles where intersecting with other terrain

J () = Joudyy — Juyye

©ARM2015

ARM

Without Jacobian Factor

©ARM2015

With Jacobian, No Normalmap Modulation

14 ©ARM20I5

With Jacobian Factor

©ARM2015

ARM

The FFT Pipeline

Heightmap .
distribution Heightmap Compute heightmap

(256 x 256) gradient and jacobian

Heightmap Rotate

distribution phase + XZ disp|acement
(128 x 128) directivity

Normalmap
distribution Rotate

(256 x 256) phase

Normalmap Mipmap generation

Vertex Fragment
shading shading

16 ©ARM20I5 ARM

Efficient FFTs on Mali GPUs

= Large FFTs are highly parallel transforms
= Butterfly stages independent within a pass
= Efficiently implemented with compute shaders
= Number of passes order log2(N / radix)
= More passes, more bandwidth
= Want to use high FFT radices
= ... But on-chip resources are finite
= Bandwidth is a real concern for GPU FFTs

= On-chip and external resources must be carefully balanced

©ARM2015

ARM

FFT Bandwidth Saving Techniques

= Larger radix factors
= Does more work per pass
= ...but register pressure kicks in quickly

= FP16
= Mali has native FP16 support, an easy way to halve required bandwidth
= Sufficient precision for ocean water
= unpackHalf2x16() / packHalf2x16() to pack a complex in 32-bit uint

= Shared memory

= Let one or more FFT passes go via shared memory
= [f sufficient space in LI caches, even greater bandwidth reductions can be made

©ARM2015

ARM

GLFFT Library

= OpenGL ES 3.1 and OpenGL 4.3 library for GPU FFT
= Shameless plug ©

= Permissive MIT license
= On Github

= Core features
= |D and 2D transforms

Complex-to-complex, complex-to-real and real-to-complex

Can benchmark itself to find optimal FFTs for particular GPUs
Full FP16 support
Large test and bench suite

Dual-complex (vec4) support for working with RGBA data

19 ©ARM20I5 ARM

GLFFT Performance

= Collected on Samsung Galaxy S6 (Mali T-760 MP8)

Stage Time

iFFT 0.8 ms

Generate mipmaps 0.5 ms

20 ©ARM20I5 ARM

GLFFT Performance onVery Large FFTs

= 2048x2048 C2C FP16
= Collected on Samsung Galaxy S6 (Mali T-760 MP8)

Measurement Result

Arithmetic throughput 16.5 Gflop/s (estimated)

21 ©ARM2015 ARM

Heightmap Rendering With LOD

= Rendering a large terrain without LOD is not feasible

= Extreme geometry load
= Micro-triangles and aliasing

= Good mesh-based LOD is challenging

= Decades of graphics research

22 ©ARM20I5 ARM

Baseline For Good LOD System

= Continuous LOD is a must-have
= Naively removing vertices leads to discontinuous LOD (popping)
= LOD is less noticable when transition is smooth

= Modern implementation is preferable
= Simple and fast algorithms on CPU

= Utilize modern GPU features
= No run-time generation of vertices and indices on CPU

23 ©ARM20I5 ARM

Popping Problem

l

Remove vertices
on LOD transition

24 ©ARM20I5 ARM

Extending the Geo-MipMap Framework

?‘H‘
=<}

26

Geo-MipMap

Leyel3 Level3 Leyel 4
(2%2 (2X (1x
Le wel 2 Level3
(8 X°8) (4 x°4) (2

Ve Level] L 3
€ (8.x'8) (2 X2

©ARM2015

ARM

27

Geo-MipMap

= Well known and understood framework for LOD

= Basic implementation is simple

= Split the world into large patches

= Adaptively subdivide this patch depending on a metric
= Assign an LOD to every patch independently

= However, this is not the year 2000 ...

= The technique is showing its age
= Does not solve popping artifacts

©ARM2015

ARM

2

in OpenGL ES 3

3
O
Z
c
O
=
o
O
n
0
T

©ARM2015

28

29

Tessellation

= Built-in concept of a patch which is adaptively subdivided.

©ARM2015

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

Patch

ARM

OpenGL ES 3.2 Graphics Pipeline

Tessellation Tessellator Tessellation Evaluation
Control

Geometry shaders

30 ©ARM20I5 ARM

31

Control Shader

= Frustum cull patch
= Compute LOD in four corners

= Select outer tessellation levels based on two corners which touch the

edge
= Critical, otherwise cracks will appear
= Inner level is somewhat arbitrary

= Vertices are not shared with other patches
= Maximum or average of corners is acceptable

©ARM2015

Patch

Patch

Patch

Patch

ARM

32

Evaluation Shader

= Interpolate corner data based on gl_TessCoord

= LOD factor for sampling heightmap
= Patch-local position

= Fractional even spacing subdivision mode

= Better match with texture sampling

= Sample heightmap texture with interpolated LOD

©ARM2015

ARM

Continuous LOD Morphing Geo-MipMap

= Takes inspiration from many different approaches to LOD
= Vertex Shader Geomorphing

= Tessellation
- CDLOD

= Provides OpenGL ES 3.0 alternative to quad patch tessellation

= Special case of tessellation
= Simplifies sufficiently for use in pure vertex shaders

33 ©ARM20I5 ARM

Core Approach

= Pre-tessellate quad meshes at 2,4, 8, 16, 32, 64, ... tessellation factors

= At fractional LODs, odd vertices slide towards even vertices
= At full morph, mesh is exactly the same as a lower quality LOD
= Same principle as CDLOD method

= No stitching meshes

= Minimal number of unique meshes

35 ©ARM20I5 ARM

Edge-Cases

= Mesh LOD factor is not necessarily equal to outer levels on edges
= Like Tessellation, patches sharing an edge must agree on LOD

= Necessary to use maximum LOD
= One of 5 possibilities (4 edges or inner) selected with branchless logic

// Branch-less selection

// alLODWeights either all © or single element set to 1.
in vecd4 alLODWeights;

bool innerVertex = all(equal(alLODWeights, vec4(0.0)));
float lod = dot(aLODWeights, EdgelODs);

lod = mix(lod, InnerLOD, innerVertex);

ARM

36 ©ARM20I5

Adapt Mesh Grid to Any LOD

= Patches can have an arbitrary LOD
= In turn, edges can have an arbitrary LOD
= Not restricted by quad-tree structure, unlike CDLOD

= Snap to LOD and lerp
= Adapts popping-free to any LOD greater than mesh LOD

// Snap to grid corresponding to floor(lod) and ceil(lod).

uvec2 mask = (uvec2(lu) << uvec2(ufloor_lod, ufloor lod + 1u)) - 1lu;

// Round towards center of patch.

uvec4 rounding = aPosition.zwzw * mask.xxyy;

vec4 lower_upper_snapped = vec4((aPosition.xyxy + rounding) & ~mask.xxyy);

// Then lerp between them to create a smoothly morphing mesh.
return mix(lower_upper_snapped.xy, lower upper _snapped.zw, fract lod);

37 ©ARM20I5 ARM

Mall OpenGL ES
SDK for Android

ARMMALI

= New code samples and tutorials
= Ocean
= OVR_multiview
= Tessellation
= Geometry shaders
= Multisampled framebuffers

39 ©ARM20I5 ARM

\\‘

"\
h "

For more information visit the

Mali Developer Centre:

http://malideveloperarm.com

* Revisit this talk in PDF and audio
format post event

* Download tools and resources

http://malideveloper.arm.com/

Thank you!

ARM Questions?

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners.

Copyright © 2015 ARM Limited

42

References

= Mali OpenGL ES SDK for Android

= http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/

= GLFFT
= https://github.com/Themaister/GLFFT

= Simulating Ocean Water
= http://graphics.ucsd.edu/courses/rendering/2005 /idewall/tessendorf.pdf

= CDLOD

= http://www.vertexasylum.com/downloads/cdlod/cdlod latest.pdf

= Geo-MipMapping

= http://lwww.flibcode.com/archives/article geomipmaps.pdf

©ARM2015

ARM

http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
http://malideveloper.arm.com/resources/sdks/mali-opengl-es-sdk-for-android/
https://github.com/Themaister/GLFFT
http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf
http://www.vertexasylum.com/downloads/cdlod/cdlod_latest.pdf
http://www.flipcode.com/archives/article_geomipmaps.pdf

