
1

COPYRIGHT © 2015 ARM

Real-time Dense Passive Stereo Vision:
A Case Study in Optimizing Computer Vision Applications

Using OpenCL™ on ARM®

Gian Marco Iodice, ARM Ltd
Media Processing Group, Cambridge (UK)

gianmarco.iodice@arm.com

11th May 2015, Santa Clara, CA USA – Embedded Vision Summit - «Enabling Computer Vision on ARM»

CONFIDENTIAL 2

Stereo Vision Overview

Implementation

OpenCL Optimizations

Conclusion and future works

Agenda

CONFIDENTIAL 3

Stereo Vision Overview

CONFIDENTIAL 4

What is Dense Passive Stereo Vision?
Stereo Vision is a visual sensing technique aimed at inferring depth by comparing two

views of the same scene.

CONFIDENTIAL 5

Fields of application

CONFIDENTIAL 6

How does it work? (1)

Assuming…
Cameras optically identical

same image sensor

same focal length

Cameras horizontally aligned

Images rectified
no lens distortion

Images captured at the same instant

Disparity: it is the difference in x coordinates (d = xL - xR) of

the corresponding pixel in the left and right images

we can talk about…. Horizontal Epipolar Line Constraint

CONFIDENTIAL 7

How does it work? (2)
Depth from disparity via triangulation

Z: distance (in meters) between the cameras and

point P

b: baseline

f: focal length

px_size: size of the pixel on the image sensor

d: disparity

𝑍 =
𝑏 ∙ 𝑓

𝑑 ∙ 𝑝𝑥𝑠𝑖𝑧𝑒

CONFIDENTIAL 8

Disparity Map and Point Cloud

Point Cloud rendered with MeshLab

CONFIDENTIAL 9

Correspondence Problem
Template matching

For each pixel in the left image:

Extract NxN block around it (Reference Template).

Compare the reference template with all blocks in the

search space of right image using a similarity measure

(i.e. SAD, SSD, SHD,…).

The disparity of each pixel is simply selected by the

WTA strategy (Winner-Takes-All). Best match wins.

CONFIDENTIAL 10

Implementation

CONFIDENTIAL 11

Recipe
Grayscale images

Multi-Resolution strategy (aka coarse-to-fine strategy)

Modified Census Transform (MCT) 9x9 and 7x7
10 bytes per pixel for MCT 9x9

6 bytes per pixel for MCT 7x7

CONFIDENTIAL 12

Pipeline

CONFIDENTIAL 13

Census Transform – Ramin Zabih Et al., 1994

It is a non-parametric local image transform which result does not depend on camera gain and light

condition.

It replaces each pixel by a N-bit string which summarizes the local spatial structure.

For each neighboring pixel (except the center one) it is associated one bit of that N bit string.
Each bit is set if the corresponding neighboring pixel value is greater than the center pixel value

Ex. Census Transform 3x3

1 0 0 1 0 0 0 1

115 > 78? 1

33 > 78? 0

40 > 78? 0

102 > 78? 1

67 > 78? 0

67 > 78? 0

32 > 78? 0

170 > 78? 1

CONFIDENTIAL 14

Modified Census Transform – Bernhard Froba Et al., 2004

Extension of the work did by Bernhard Froba Et al. in 2004

Instead comparing the neighboring pixels with the center pixel, it compares the values of the

neighboring pixel with the mean intensity value of the local window 3x3 centered on it

Ex. Modified Census Transform 7x7

CONFIDENTIAL 15

OpenCL Optimizations

CONFIDENTIAL 16

GPU compute on Mali™

Full profile OpenCL v1.1 in hardware for Mali-T600 / T700 GPUs
Backward compatibility support for OpenCL v1.0.

Image types supported in HW and driver.

printf implemented as an extension to v1.1 driver.

 Mali-T600 and T700 series GPUs have a SIMD instructions
Mali-T600 / T700 can natively support all CL data types.

Images data support.

Integers and floating point are supported equally quickly.

CONFIDENTIAL 17

General advices (1)
All CL memory buffers are allocated in global memory that is physically

accessible by both CPU and GPU cores
However, only memory that is allocated by clCreateBuffer() is mapped into both the CPU and GPU virtual

memory spaces.

Memory allocated using malloc(), etc, is only mapped onto the CPU.

So calling clCreateBuffer() with CL_MEM_USE_HOST_PTR and passing in a user created buffer requires

the driver to create a new buffer and copy the data (identical to CL_MEM_COPY_HOST_PTR).

   x

Buffers created by malloc() are not mapped into

the GPU memory space

clCreateBuffer(CL_MEM_ALLOC_HOST_PTR)

creates buffer visible by both GPU and CPU

CONFIDENTIAL 18

General advices (2)
Try to use as much as possible vector instructions

Avoid writing kernels that operate on single bytes or scalar values.

It can allow to execute less threads

It can allow to reduce the # of load/store instructions

Use cl built-in functions (in short cl BIF) when possible
Math cl BIFL: cos(), sin(), atan(), log, pow,…

Geometric cl BIFL: dot(), normalize(),…

Use correct data types for your specific problem
e.g. uint16?, ushort16?, uchar16?..

Further details and general advices at malideveloper.arm.com where you can find tutorials,

videos and developer guides:
OpenCL SDK tutorial

RenderScript™ tutorial

CONFIDENTIAL 19

Further optimizations…
Data layout
Modified Census Transform: case study

No serialization of CPU and GPU workloads
Stereo vision pipeline

Parallel tasks with a single kernel
Stereo vision pipeline

Complex arithmetic expressions instead of look-up tables
Popcount: case study

Avoiding branches with Padding Bytes and cl BIF
Fill Occluded Nearest Lower Pixel: case study

CONFIDENTIAL 20

Data layout (1)
Modified Census Transform: case study

How we store data has a significant impact on the performance of single kernel and the

whole pipeline.
Interleaved data generally requires more load/store instructions

Sometimes it makes other stages easily vectorizable…

Interleaved Planar

CONFIDENTIAL 21

Using planar data layout:

Performance of Modified Census Transform are improved by a factor 1.4x due by:
Reduced # of store operations

Reduced # of arithmetic instructions for the swizzling

It makes the stereo matching stage easily vectorizable

Data layout (2)
Modified Census Transform: case study

uchar16 ref0 = vload16(addrLeft);

uchar16 ref1 = vload16(addrLeft + offset2ndImg);

uchar16 ref2 = vload16(addrLeft + 2*offset2ndImg);

uchar16 cost;

...

for(i = 0; i < maxDisparity; i++)

 target0 = vload16(addrRight + i);

 target1 = vload16(addrRight + offset2ndImg + i);

 target2 = vload16(addrRight + 2*offset2ndImg + i);

 cost = shd(ref0, target0);

 cost += shd(ref1, target1);

 cost += shd(ref2, target2);

 ...

endfor

CONFIDENTIAL 22

No serialization of CPU and GPU workloads (1)
Avoid the serialization of CPU and GPU workloads in order to hide the driver

overhead
Keep the GPU busy while you’re enqueuing the kernels

Particular important when there are several CL kernels to enqueue

enqueue Frame 0

wait for Frame 0 to complete…

enqueue Frame 1

wait for Frame 1 to complete…

etc.

enqueue Frame 0

enqueue Frame 1

wait for Frame 0 to complete…

enqueue Frame 2

wait for Frame 1 to complete…

etc.

CONFIDENTIAL 23

Parallel tasks with a single kernel (1)

Some kernels could be executed in parallel

The algorithm has 2 independent flows: each one for computing respectively the left

and right disparity map.

CONFIDENTIAL 24

Parallel tasks with a single kernel (2)
Assuming that both left and right images have same resolutions and same kernels

parameters, we can use a single kernel and the 3rd dimension of gws (global work-

group size) for accessing the right element

const int addr = x + y * stride + z * offset2ndImage; // Address

It allows to reach the maximum GPU utilization at lower resolution where

otherwise few threads would be dispatched per kernel

CONFIDENTIAL 25

The similarity measure used by the Stereo Matching stage is the Sum of Hamming

Distance (SHD).

Complex expressions instead of look-up tables (1)
Popcount: case study

xor + popcount.

CONFIDENTIAL 26

Look-up table
Only scalar memory access

Few arithmetic instructions

input cost;

cost = (cost & (uchar16)0x55) + (cost >> 1 & (uchar16)0x55);

cost = (cost & (uchar16)0x33) + (cost >> 2 & (uchar16)0x33);

cost = (cost >> 4 + cost) & (uchar16)0x0f;

return cost

input cost;

cost = (cost & (uchar)0x55) + (cost >> 1 & (uchar)0x55);

cost = (cost & (uchar)0x33) + (cost >> 2 & (uchar)0x33);

cost = (cost >> 4 + cost) & (uchar)0x0f;

return cost;

Scalar Vector

Look-Up Table

Complex expressions instead of look-up tables (2)
Popcount: case study

Arithmetic parallel algorithm (Divide et Impera)
No memory access

The # of arithmetic instructions are much more but…this approach is ~3x faster than the look-up table using

vector operations

CONFIDENTIAL 27

Avoiding Branches with Padding Bytes and cl BIF (1)
“An algorithm with many conditionals is likely not to be optimal” so try to avoid as much as

possible loops and if/else conditions:

cl BIF: OpenCL provides relational built-in functions that can be used for avoiding branches

select(a, b, condition): condition? b : a

all(x): It returns 1 if MSB in all components of x are set

clamp(x, a, b): Clamp x in the interval defined [a, b]

any(x): It returns 1 if any component of x is set

….

Padding bytes: can be used for avoiding the boundary check.

Pad left
Pad top

Pad bottom

Pad right

CONFIDENTIAL 28

Avoiding Branches with Padding Bytes and cl BIF (2)
Fill occluded pixel nearest lower: case study

In the disparity refinement stage, the invalidated disparity is replaced with the nearest

valid lower disparity on the same scanline.

CONFIDENTIAL 29

while(boundary_condition) {

 if(dispLeft == 0)

 dispLeft = *(ptrDispSrc + k - i);

 if(dispRight == 0)

 dispRight = *(ptrDispSrc + k + i);

 if(dispLeft !=0 && dispRight != 0)

 break;

 i++;

 // Boundary condition

 }

// Select the lower disparity

dstDisp = dispLeft < dispRight? dispLeft : dispRight;

while(!check && boundary_condition) {

 loadLeft = vload16(dispSrc - i);

 loadRight = vload16(dispSrc + i);

 dispLeft = select(dispLeft, loadLeft, dispLeft == 0);

 dispRight = select(dispRight, loadRight, dispRight == 0);

 check = all(dispLeft!=0 && dispRight != 0);

 i++;

 // Boundary condition

}

// Select the lower disparity

dstDisp = select(dispRight, dispLeft, dispLeft < dispReft);

51x faster

Avoiding Branches with Padding Bytes and cl BIF (3)
Fill occluded pixel nearest lower: case study

CONFIDENTIAL 30

Conclusion and future works

CONFIDENTIAL 31

Results (1)
The implemented algorithm:

is easy to parameterize

is configurable in terms of disparity range

computes disparity for occluded pixels

offers good reliability throughout a wide variety of scene and illumination conditions.

The system was speed up on development platform featuring an ARM Mali GPU:
~120 fps with 60 disparity levels at 320x240

~52 fps with 60 disparity levels at 640x480

Moreover good performance are obtained as well without using of coarse-to-fine

strategy.
~49 fps with 60 disparity levels at 320x240

CONFIDENTIAL 32

Results (2)

Coarse-to-fine

NO Coarse-to-fine

Dataset from
vision.middlebury.edu/stereo/

CONFIDENTIAL 33

Future works

Use of Sparse Modified Census Transform 7x7
It allows to reduce the # of load/store and arithmetic instructions

More erroneous disparity

Improve accuracy of Disparity Refinement stage
Median Filter

Weighted Median Filter

Sub-Pixel estimation

CONFIDENTIAL 34

Final considerations…

Results reached by GPU compute on ARM Mali are definitely promising for stereo

vision applications demonstrating the feasibility to achieve real-time performance on

Mobile ARM GPU

Small changes in OpenCL code can lead to reach big performance
e.g. data layout, correct data type,…

Well optimized data layout, types, etc can help reduce the size of kernels (KISS approach)
It may reduce the number of registers each kernel needs allowing more work items to run on the

GPU at the same time (e.g. stereo matching stage)

CONFIDENTIAL 35

This project was developed with a joint cooperation between ARM Ltd - Media Processing Group,

Cambridge – UK and the Dept. of Information Engineering of the the University of Pisa - Italy.

Gian Marco Iodice, ARM Ltd – Media Processing Group, Cambridge (UK)

Anthony Barbier, ARM Ltd – Media Processing Group, Cambridge (UK)

Prof. Roberto Saletti, University of Pisa – Dept. of Information Engineering (Italy)

Before finishing…

CONFIDENTIAL 36

Question time

?

CONFIDENTIAL 37

References
malideveloper.arm.com

vision.middlebury.edu/stereo/

D. Scharstein and R. Szeliski. «A taxonomy and evaluation of dense two-frame stereo correspondence algorithms»,

International Journal of Computer Vision, 47(1/2/3):7-42, April-June 2002. Microsoft Research Technical

Report MSR-TR-2001-81, November 2001.

E. GUDIS, O. VAN DER WAL, S. KUTHIRUMMAL AND S. CHAI, 2012 «Multi-Resolution Real-Time Dense Stereo

Vision Processing in FPGA». In International Symposium on Field-Programmable Custom Computing Machine.

R. ZABIH AND J. WOODFILL, 1994. «Non-parametric Local Transforms for Computing Visual Correspondence». In

Proceedings of European Conference on Computer Vision, vol.2

CONFIDENTIAL 38

Thanks

