
Title 44pt Title Case

Affiliations 24pt sentence case

20pt sentence case

Optimize Your Mobile Games
With Practical Case Studies

Stephen Barton, Senior Software Engineer, ARM

Stacy Smith, Senior Software Engineer, ARM

GDC

March 2016

© ARM2016 2

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Agenda

 Part I

 Discuss the importance of analysis and tools

 Overview of Mali Tools software suite

 Brief look at Mali Graphics Debugger and Streamline

 Look at Ice Cave through the debugging microscope

 Part II

 Optimization techniques “The Sensible Six”

 Optimizations in Ice Cave

© ARM2016 3

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Importance of Analysis & Debug

Mobile Platforms

 Expectation of amazing, console-like graphics and playing experience

 Screen resolution beyond HD

 Limited power budget

Solution

 ARM Cortex CPUs and Mali GPUs are designed for low power

whilst providing innovative features to keep up performance

 Software developers can be “smart” when developing apps

 Good tools help you identify performance bottlenecks in your code

© ARM2016 4

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Mali GPU Software Tools

Performance Analysis, Debug and Software Development

• API Trace & Debug

• OpenGL ES,
OpenCL

• Debug and improve
performance at
frame level

Mali Graphics Debugger

Mali GPU

 - Timeline

 - HW Counters

 - OpenCL visualizer

ARM DS-5 Streamline

• Analyze shader
performance

• Generates binary
shaders

• Command line tool

Mali Offline Compiler

• Emulate OpenGL ES
2.0, 3.0 and 3.1

• Windows and Linux

• Khronos
Conformant

OpenGL ES Emulator

• Command line and
GUI

• ETC, ETC2, ASTC

• 3D textures

Texture Compression Tool

Integration with
partners’ tools

Third Party Tools

© ARM2016 5

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Performance Analysis and Debug With Mali GPUs

Optimize

Mali
Offline

Compiler

Analyze

DS-5
Streamline

Debug

Mali
Graphics
Debugger

© ARM2016 6

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Investigation With the ARM Mali Graphics Debugger

Frame

Outline

Frame

Capture:

Framebuffers

Frame

Statistics

States

Uniforms

Vertex

Attributes

Buffers

Dynamic

Help

API Trace

Textures

Shaders

Assets

View

© ARM2016 7

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

 Quick access to key graphics events

 Frames

 Render targets

 Draw calls

 Investigate at frame level

 Find which draw calls have higher

geometry impact

 Jump between the outline view and

the trace view seamlessly

Mali Graphics Debugger

Outline view

© ARM2016 8

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case
All the shaders being used by the application
are reported

Shader statistics

Each shader is compiled with the Mali Offline
Compiler and is statically analyzed to display:

 number of instructions for each GPU pipeline

 number of work registers and uniform registers

Additionally, for each draw call MGD knows
how many times that shader has been
executed (i.e. the number of vertices) and
overall statistics are calculated

Mali Graphics Debugger

Shaders reports and statistics

© ARM2016 9

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case
Frames can be fully captured to

analyze the effect of each draw call

 A native resolution snapshot of each

framebuffer is captured after every

draw call

 The capture happens on target, so

target dependent bugs or precision

issues can be investigated

All the images can be exported

and analyzed separately.

Mali Graphics Debugger

Frame capture and analysis

© ARM2016 10

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Different drawing modes can be forced
and used for both live rendering and frame
captures

Native mode
 Frames are rendered with the original shaders

Overdraw mode
 Highlights where overdraw happens (ie. objects

are drawn on top of each other)

Shader map mode
 Native shaders are replaced with different

solid colors

Fragment count mode
 All the fragments that are processed by each

frame are counted

Mali Graphics Debugger

Alternative drawing modes

© ARM2016 11

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case
TCP/IP

Ethernet

USB

Host

Windows

Linux

Mac

32-bit and 64-bit

Analyzing and Debugging on Device

Target

Android

Linux

32-bit and 64-bit

CPU

OpenGL® ES

MGD Interceptor Library

Mali GPU Drivers

GPU

EGL OpenCL™ EGL

OS

Application

Under the hood of the

Mali Graphics Debugger

© ARM2016 12

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

How to get MGD to Work
 On a rooted system  On a non-rooted system

Host

Stand alone

Daemon

Stand alone

Interceptor

Unmodified

Application

MGD

Daemon

App

Interceptor

Bundled

with App

Host

Sends data

Original application doesn’t need

modifying in any way

In-fact all OpenGL ES applications

pass through the interceptor so you

may need to select the one you are

interested in

Daemon is installed as a standalone

binary and sends trace data to the

host

In return the host sends commands

back to the daemon

Application links against the

interceptor which provides all the

Open GL ES entry points

Must have access to source code to

rebuild with the interceptor in

Daemon binary can’t be placed in

/system/bin as the system partition

is mounted as read only

Instead use the MGD Daemon App

which you can install and functions

just like the binary

We will show both scenarios live at our lecture theatre at 1.30pm @ ARM booth #1624

© ARM2016 13

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

New Features in the Mali Graphics Debugger

 Vulkan Support

 Trace all the function calls in the spec

 Allows you to see exactly what calls

compose your application

 Contact the ARM Mali forums and we

would love to get you setup

 https://community.arm.com/groups/arm-

mali-graphics

 VR Support

 Frames are now registered through

glFlush commands

 All standard MGD features work

 Frame Capture will now complete all

render passes active when capture

started

https://community.arm.com/groups/arm-mali-graphics
https://community.arm.com/groups/arm-mali-graphics
https://community.arm.com/groups/arm-mali-graphics
https://community.arm.com/groups/arm-mali-graphics
https://community.arm.com/groups/arm-mali-graphics
https://community.arm.com/groups/arm-mali-graphics

© ARM2016 14

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

New Features in the Mali Graphics Debugger

 Geometry Viewer

 Visualize all of your geometry per draw

call

 Zero overhead to the application so you

get this feature for free

 Open all your old traces and they will

now have this support

 Render pass Dependencies

 MGD can now show you the

dependencies on your scene

 Can do this for textures, render buffers

and blits of the Framebuffer

Texture 1

Render

pass 1

Render

pass 0

Render pass 1 has a dependency on

render pass 0 due to texture 1

Draws to Texture 1 Reads from Texture 1

© ARM2016 15

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Streamline

Timeline

Visualization of system

performance metrics,

software profile and

system events over

time

Call Paths

Hierarchical profile

table, aggregating

samples per process,

thread, and function

call chain

Functions

Flat software profile

table, listing shared

libraries and function

hotspots

Code

Source and instruction

level profile. Color

coded source code

lines for easy

identification

Log

Chronologic list of text

and graphic user

annotations sent to

Streamline, offering

flexible filtering

© ARM2016 16

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Timeline: Heat Map
Identify hotspots and system bottlenecks at a glance

Select from CPU/GPU counters

OS level and custom data sources

Accumulate counters, measure time

 and find instant hotspots

Select one or more tasks to

isolate their contribution

Combined task switching trace and

 sample-based profile

© ARM2016 17

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Timeline: Heat Map

Identify hotspots and system bottlenecks at a glance

Select from CPU/GPU counters

OS level and custom data sources

Select from CPU/GPU counters

OS level and custom data sources

Accumulate counters, measure

time and find instant hotspots

Select one or more tasks to

isolate their contribution

© ARM2016 18

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Profiling Reports

Analysis of call paths, source code and generated assembly

© ARM2016 19

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Looking for the Bottleneck

As expected, CPU is maxed out

by the benchmark

Simple profiling shows

memcpy as hotspot

© ARM2016 20

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Optimizing

FPS

Optimization work led to reduced time in memcpy

Real world optimization of 6FPS from memcpy alone

52%
faster

© ARM2016 21

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Main Bottlenecks

 CPU

 Too many draw calls

 Complex physics

 Vertex processing
 Too many vertices

 Too much computation per vertex

 Fragment processing
 Too many fragments, overdraw

 Too much computation per fragment

 Bandwidth

 Big and uncompressed textures

 High resolution framebuffer

CPU

Vertex

Shader

Fragment

Shader

Memory

Vertices

Textures

Uniforms

Vertices

Uniforms

Triangles

Varyings
Pixels

Textures

Uniforms

Varyings

© ARM2016 22

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

CPU Activity ➞ User 25%

GPU Fragment ➞ Activity 99%

GPU Vertex➞ Activity 7%

© ARM2016 23

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vertex Count and Shader Optimizations

Identify the top heavyweight vertex shaders

37%

18%
12%

10%

23%

Vertex Cycles

Per Program

Shader 164

Shader 158

Shader 173

Shader 176

Others

© ARM2016 24

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Inspect the Tripipe Counters

Reduce the load on the Arithmetic pipeline

Load & Store 214m

Texture 228m

Arithmetic 361m

Tripipe Cycles 576m

GPU Cycles 593m

© ARM2016 25

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case
 It’s easy to calculate a couple of CPI (cycles per instruction) metrics:

 For the load/store pipeline we have:

 228m (Mali Load/Store Pipe ➞ LS instruction issues)

 / 190m (Mali Load/Store Pipe ➞ LS instructions)

 = 1.2 cycles/instruction

 For the texture pipeline we have:

 215m (Mali Texture Pipe ➞ T instruction issues)

 / 187m (Mali Texture Pipe ➞ T instructions)

 = 1.15 cycles/instruction

Tripipe Counters

Cycles per instruction metrics

75%

80%

85%

90%

95%

100%

Load & Store Pipeline Texture Pipeline

Stalls

Instructions

© ARM2016 26

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Frame Analysis

Check the overdraw factor

5x
8x 3-5x

3x

5x

© ARM2016 27

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shader Map and Fragment Count

Identify the top heavyweight fragment shaders

75%

14%

4%
7%

Fragment Count Per Program

Program 175

Program 280

Program 181

Others

~10m instances

/ (2560×1600) pixel

= 2.44

© ARM2016 28

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Bandwidth

 When creating embedded graphics

applications, bandwidth is a scarce

resource

 A typical embedded device can handle

5.0 Gigabytes a second of bandwidth

 A typical desktop GPU can do in excess

of 100 Gigabytes a second

 The application is not bandwidth bound as

it performs, over a period of one second:

 Since bandwidth usage is related to energy

consumption it’s always worth optimizing

it

(96m (Mali L2 Cache ➞ External read beats) +

90.7m (Mali L2 Cache ➞ External write beats)) x 16

~= 2.9 GB/s

Title 44pt Title Case

Affiliations 24pt sentence case

20pt sentence case

Practical Optimizations

Stacy Smith

GDC

ARM Senior Software Engineer

March 2016

© ARM2016 30

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

What MGD Can Tell Us

Capturing a full frame render tells us:

 What order things are drawn in

 Whether things are drawn needlessly

 How much state we’re shifting each time

© ARM2016 31

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

What Streamline Can Tell Us

Capturing a trace tells us:

 What our process bottlenecks are

 How much bandwidth we consume

 Calculations such as average triangle size

© ARM2016 32

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

But why??

© ARM2016 33

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The Sensible Six Best Practices

 Batching

 Overdraw

 Culling

 LoD

 Compression

 Antialiasing

© ARM2016 34

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Draw Calls

 CPU load affected by glDrawElements & glDrawArrays

 Immediate performance win: put multiple static meshes in the same model,

possibly connected by degenerate triangles

© ARM2016 35

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Batched Draw Calls

 Can be as simple as putting whole static scenes in a single mesh

 Combined static meshes can be generated at build time for better level design

flexibility

 But what about non static objects?

© ARM2016 36

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Dynamically Batched

Different mesh ids can use:

 Different transforms

 Different colours

 Different textures

 Different shader branch

Know your limits!

Using vertex attributes to tag & parameterize meshes

© ARM2016 37

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overdraw

 Wasted calculations for any overdrawn pixels

 Bad for fragment load

 Complicated ways to do this with batches, instancing and sorted indexed

transformations

 But also easy design choices

© ARM2016 38

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Eliminating Overdraw

 Some things are always in front:

 The contents of convex spaces

 HUDs

 Some things are always behind:

 Skyboxes

 The ground

Draw order sequencing in your scene

© ARM2016 39

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Minimising Overdraw Impact

 Two things may have equal possibility of foregroundness, but one is

more expensive to get wrong

 Cheap depth pre-pass if both are expensive to draw

Statistically some thing are USUALLY in front

© ARM2016 40

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Culling

If you can quickly decide if something isn’t visible, don’t draw it.

Culling can help with vertex and sometimes CPU load

© ARM2016 41

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Frustum Culling

 CPU side bounding box culling

 Even easier for grid layouts

Off screen triangles are culled anyway, but they all have to be transformed

© ARM2016 42

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Occlusion Culling

Ultimate overdraw reduction:

If an object is wholly obfuscated, why draw it?

 Complex task for individual objects

 Surprisingly easy for linked interior spaces

(portal culling)

© ARM2016 43

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Distance Culling

 False horizon

 Fogging

Or just make it easier to draw…

Why draw stuff too far away to see?

© ARM2016 44

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Level of Detail

 Not just vertex waste

 Triangle load

 Avoid triangles with pixel coverage in single digits

 If something on screen gets tiny, replace it with something simpler

LoD

© ARM2016 45

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Level of Detail

Can be done in simple or complex ways

 Pick a good base detail level

 Often just having a high and low detail model is enough

 Parameterising LoD with draw call batching

 (A crazy cool technique not enough people are using)

© ARM2016 46

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Impostor!

At the greatest distances, a sprite may suffice

Separate batch of billboards

Helps with perspective:

 A few objects fit in the foreground

 Many, many more fit in the background

© ARM2016 47

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Texture Compression

There’s something about textures that not a lot of people know

 Textures get blocked automatically

 Good for the cache!

 Compression replicates this

© ARM2016 48

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Compression Formats

What works?

 Block based

 Deterministic

 Immediate

 Random lookup

What doesn’t work?

 Linear encodings

 Progressive encodings

 Dictionary based encoding

 Variable output size

Formats?

 ASTC

 ETC 1 & 2

© ARM2016 49

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Mip Mapping

Mip Mapping is an all round best buddy:

 Less interference noise

 Better for the cache

 Reduces bandwidth

 Will help you hide a body

But you’ll need to compress mipmaps too

© ARM2016 50

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Antialiasing

Get the most from every pixel

 The cost of full screen 4x MSAA is negligible on Mali GPUs

Antialiasing sample code can be found in the Mali SDKs

http://malideveloper.arm.com/resources/sdks/

http://malideveloper.arm.com/resources/sdks/
http://malideveloper.arm.com/resources/sdks/

© ARM2016 51

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Drilling Down

 Ice Cave

 7 render passes (shown as 9)

 206 drawcalls

© ARM2016 52

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Passes

 2 ‘passes’ are nothing

 Pass 2, 4 and 7 are buffer blits

 Pass 8 is composition

 Pass 1 is shadows

 Pass 3 is reflections

 Pass 5 is the main event

© ARM2016 53

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Layers (Overdraw)

© ARM2016 54

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Layers (Batching)

© ARM2016 55

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Layers (Skybox)

© ARM2016 56

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Layers (Culling)

+22 draw calls

© ARM2016 57

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Layers (Further Overdraw)

© ARM2016 58

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Ice Cave’s Layers (Further Overdraw)

+16 draw calls

© ARM2016 59

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

In conclusion

Best Practices:

 Batching

 Overdraw

 Culling

 LoD

 Compression

 Antialiasing

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their

respective owners.

Copyright © 2016 ARM Limited

Thank you!

More slides:
http://malideveloper.arm.com/gdc2016

© ARM 2016 61

Text 54pt Sentence Case

ARM Booth #1624 on Expo Floor:
 Live demos of the techniques shown in this session

 In-depth Q&A with ARM engineers

 More tech talks at the ARM Lecture Theatre

http://malideveloper.arm.com/gdc2016:
 Revisit this talk in PDF and video format post GDC

 Download the tools and resources

To Find Out More….

© ARM2016 62

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan on Mobile with Unreal Engine 4 Case Study
Weds. 9:30am, West Hall 3022

Making Light Work of Dynamic Large Worlds
Weds. 2pm, West Hall 2000

Achieving High Quality Mobile VR Games
Thurs. 10am, West Hall 3022

Optimize Your Mobile Games With Practical Case Studies
Thurs. 11:30am, West Hall 2404

An End-to-End Approach to Physically Based Rendering
Fri. 10am, West Hall 2020

More Talks From ARM at GDC 2016
Available post-show at the Mali Developer Center: malideveloper.arm.com/

