Implementing Reflections in Unity Using
Local Cubemaps

Roberto Lopez
Senior Engineer

The Architecture for the Digital World® ARM

Content

Environment Mapping.

Cubemaps.

Infinite and Local Cubemaps.

Reflections with Infinite Cubemaps.

Local Correction.

Implementation of Local Correction in the Shader.
Unity Project ReflLab

Running ReflLab in Nexus-10

Filtering cubemaps

Conclusions

The Architecture for the Digital World® ARM

Environment Mapping

Environment mapping simulates reflections or lighting upon objects without going

through expensive ray-tracing or lighting calculations.

Spherical Environment mapping Environment map The spherical surface is
on a sphere mapped into 2D:

.

u=—+
R

v=-"+

m=2. [R5+ R+ (R,-

The Architecture for the Digital World® ARM

Why Cubemaps!?

In 1999 was possible to use cubemaps with hardware acceleration.

Unfolded cube

Cubemaps r
A
> -X
>t Source images are sampled
v v v directly. No distortion
Y Y Y introduced by resampling into
7 +X +7 an intermediate environment
o R g map.
v
A
L, x
3

The Architecture for the Digital World® ARM

Infinite and Local Cubemaps

Infinite Cubemaps Local Cubemaps

The Architecture for the Digital World® ARM

Reflections with Infinite Cubemaps

Cubemap

©

Reflective surface

Normal N and view vector D are
passed to fragment shader from
the vertex shader.

In the fragment shader we fetch
the texture colour from the
cubemap:

float3 R = reflect(D, N);
float4 col = texCube(Cubemap, R);

The Architecture for the Digital World®

ARM

Wrong Reflections

Reflections generated using a cubemap without any local binding.

The Architecture for the Digital World® ARM

Instead of fetching the texel
from the cubemap using the
vector R we find where the
vector intersects the
bounding box and build a
new vector from the centre
of the cubemap to the
intersection point and use
this new vector to fetch the
texture colour from the
cubemap.

Local Correction

Bounding volume

R .

Reflective surface

N
A

Cubemap

’ float3 R = reflect(D, N);

Find intersection point P

Find vector R’ = CP

Float4 col = texCube(Cubemap, R’);

GPU Gems. Chapter 19.Image-Based Lighting. Kevin Bjork, 2004. http://http.developer.nvidia.com/GPUGems/gpugems_ch|9.html

Cubemap Environment Mapping. 2010. http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262

Image-based Lighting approaches and parallax-corrected cubemap. Sebastien Lagarde. SIGGRAPH 2012. http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-

approaches-and-parallax-corrected-cubemap/

The Architecture for the Digital World® ARM

http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/

Right Reflections

Reflections generated after applying the “local correction”.

The Architecture for the Digital World® ARM

Reflections based on Local Cubemaps

Advantages Limitations

The Architecture for the Digital World® ARM

Vertex Shader

vertexOutput vert(vertexInput input)

{

vertexOutput output;

output.tex = input.texcoord;
// Transform vertex coordinates from local to world.
float4 vertexWorld = mul(_Object2World, input.vertex);

/[Transform normal to world coordinates.
float4 normalWorld = mul(float4(input.normal, 0.0), _World2Object);

Il Final vertex output position.
output.pos = mul(UNITY_MATRIX_MVP, input.vertex);

[=mmmmmmmeee Local correction ------------
output.vertexInWorld = vertexWorld.xyz;
output.viewDirInWorld = vertexWorld.xyz - _WorldSpaceCameraPos;

output.normallnWorld = normalWorld.xyz;

return output;

The Architecture for the Digital World®

ARM

Fragment Shader

float4 frag(vertexOutput input) : COLOR

{

float4 reflColor = float4(l, I, 0, 0);

/1 Find reflected vector in WS.

float3 viewDirWS = normalize(input.viewDirlnWorld);
float3 normalWS = normalize(input.normallnWorld);
float3 reflDirWS = reflect(viewDirWS, normalWys);

I Working in World Coordinate System.

float3 localPosWS = input.vertexInWorld;

float3 intersectMaxPointPlanes = (_BBoxMax - localPosWS) / reflDirWS;

float3 intersectMinPointPlanes = (_BBoxMin - localPosWS) / reflDirWS;

Il Looking only for intersections in the forward direction of the ray.

float3 largestRayParams = max(intersectMaxPointPlanes, intersectMinPointPlanes);
I/ Smallest value of the ray parameters gives us the intersection.

float distTolntersect = min(min(largestRayParams.x, largestRayParams.y), largestRayParams.z);
// Find the position of the intersection point.

float3 intersectPositionWS = localPosWS + reflDirWS * distTolntersect;

Il Get local corrected reflection vector.

refIDirWS = intersectPositionVVS - _EnviCubeMapPos;

/I Lookup the environment reflection texture with the right vector.

reflColor = texCUBE(_Cube, reflDirWY);

Il Lookup the texture color.

float4 texColor = tex2D(_MainTex, float2(input.tex));

return _AmbientColor + texColor * _ReflAmount * reflColor;

The Architecture for the Digital World® ARM

Loading Project in Unity

Loading Project Loading Solution

The Architecture for the Digital World® ARM

Deploying the Application to the Device

Building and Deploying

The Architecture for the Digital World® ARM

Generating Cubemaps

Bake Cubemap Editor Tool

* Available from
GameObject menu.

* Create the cubemap.

* Launch Bake Cubemap
Tool.

* Provide camera render
position and the cubemap.

* Optionally check the box
to save individual images if
filtering will be applied to
cubemap.

Bake CubeMap

Script

Render Position
Cubemap
Camera Depth

Camera Layer Mask

Camera Background Colo

Camera Mear Plane

Camera Far Plane

Camera Use Occlusion W

Cubemap Filter Mode Trilinear

Anti Aliasing

Create Individual Images

B BakeStaticCubemap
Mone (Transform)
Mone (Cubemap)

24

Everything

0.1

2500

4

Screenshot from the Unity Editor tool to bake cubemaps.

The Architecture for the Digital World® ARM

Filtering Cubemaps
Unity to AMD CubeMapGen

Ty G
o ype aussian
Base Filter Angle 8
X- +X
Mip Initial Filter Angle 5
Y+ +Y
Mip Filter Angle Scale 2.0
Y- -Y
Edge Fixup checked
Z+ +Z
Edge Fixup Width 4
Z- -Z

The Architecture for the Digital World® ARM

Filtering Cubemaps

Eil] CubeMapGen: CubeMap Filtering and MipChain Generator IEI @ ¥il CubeMapGen: CubeMap Filtering and MipChain Generator

Input CubeMap (128x128): Format ASR8GEBE) - Output CubeMap (128x128): Format ABREGSBE
Thread 0: Ready i . Thread 0: Ready

Screenshots from AMD CubeMapGen tool.
The Architecture for the Digital World® ARI I I

Filtering Cubemaps

.c00 +X
.cOl -X
.c02 +Y
.c03 Y
.c04 +7Z
.c05 Z

The Architecture for the Digital World® ARM

bemaps

Inspect

Screenshots from Unity.

The Architecture for the Digital World® ARM

20

Equation of a line
y=mx+b

Ya

Vector form:
r=0 + ¢ttD

O — origin point
D — direction vector
t — parameter

An axis aligned bounding box
AABB

can be defined by its min and
max points (A, B)

A

A

Y

The AABB defines a set of lines
parallel to coordinate axis. Each
component of line can be defined by
the equation:

To find where a ray intersects one of
those lines we just equal both
equations:

O, +t*D, =A, for example.
The solution can be written as:
tAx = (Ax - Ox) / Dx

Ray-Box Intersection ()

In the same way we can obtain the
solution for all components of both
intersection points:

tax = (Ax - Ox) / Dx

tay = (A, = 0O,) D,

tA, = (Az - Oz) / Dz

Gy = (Bx - Ox) / Dx
ts, = (8,-0,) /D,
G, = (Bz - Oz) / Dz

In vector form:
ta,=(A-0O)/D
tg=(B-0O)/D

We have found in this way where the
line intersects the planes defined by
the faces of the cube but it doesn’t
means that the intersections lie on
the cube.

The Architecture for the Digital World® ARM

21

YA T

2D Representation

a

Ray-Box Intersection (ll)

We need the smaller value of

Xp X

We need to find which of the

solutions is really an

intersection with the box.

We need the greater value of

t parameter for the

intersection at the min plane.

toin = (tax™ tay) 7 taxi tay

t parameter for the

intersection at the max plane.

tmin = (tAx> tAy) ! tAx: tAy

We also must consider those
cases when we get no

intersections.

Y 4

Y T |

Detailed explanation of handling all
the cases in 3D can be found
elsewhere .

Nevertheless if we guarantee that our
reflective surface is enclosed by the
BBox (i.e the origin of the reflected
ray is inside the BBox) then we always
have two intersections with the box
and the handling of different cases is

simplified.
Y A R
N, g
B
Y8 T i
i J
tBX
AT —=
,/
1 | o
1 L] -

The Architecture for the Digital World® ARM

22

The Story So Far

Learned the concept of local cubemaps.
Learned about a simple and cheap way of
simulating realistically environment
reflections based on local cubemaps.

Learned how to implement in the shader
reflections based on local cubemaps.

Learned how to create, export and import
cubemaps in Unity.

Learned how to apply filters to cubemaps to
achieve different visual effects.

The Architecture for the Digital World® ARM

23

&

The Architecture for the Digital World® ARM

24

Please Fill The Feedback Form
Thanks

a8

The Architecture for the Digital World® ARM

