
1

Implementing Reflections in Unity Using

Local Cubemaps

Roberto Lopez

Senior Engineer

2

Content

 • Environment Mapping.
• Cubemaps.
• Infinite and Local Cubemaps.
• Reflections with Infinite Cubemaps.
• Local Correction.
• Implementation of Local Correction in the Shader.
• Unity Project ReflLab
• Running ReflLab in Nexus-10
• Filtering cubemaps
• Conclusions

3

Environment Mapping

Spherical Environment mapping

A clever way of doing reflections in

real time.

Limitations:

Distortions when mapping a

picture onto a sphere.

Environment mapping simulates reflections or lighting upon objects without going

through expensive ray-tracing or lighting calculations.

The spherical surface is

mapped into 2D:

V

R

N

E

Object

 vertex

Environment map

 on a sphere

4

Why Cubemaps?

Cubemaps

• Hardware accelerated.

• They solved the

problems of image

distortions, viewpoint

dependency and

computational

inefficiency.

In 1999 was possible to use cubemaps with hardware acceleration.

+Y

-Z

+Y

-Z

+X

+Z

-X

+Y

+Z

+Y

-X

v

u

v

v

v v v
u

u

u

u u
+X

+X

+Z

+Y
Unfolded cube

Source images are sampled

directly. No distortion

introduced by resampling into

an intermediate environment

map.

5

Infinite and Local Cubemaps

 Infinite Cubemaps

• They are used to

represent the lighting

from a distant

environment.

• Cubemap position is not

relevant.

• They are used mainly

for outdoor lighting. For

example skyboxes.

Local Cubemaps

• They are used to represent

the lighting from a finite

local environment.

• Cubemap position is

relevant.

• The lighting from these

cubemaps is right only at

the location where the

cubemap was created.

• Local correction must be

applied to adapt the

intrinsic infinite nature of

cubemaps to local

environment.

6

Reflections with Infinite Cubemaps

N

Reflective surface

R
Normal N and view vector D are

passed to fragment shader from

the vertex shader.

In the fragment shader we fetch

the texture colour from the

cubemap:

float3 R = reflect(D, N);

float4 col = texCube(Cubemap, R);

D

C

R

Cubemap

7

Wrong Reflections

Reflections generated using a cubemap without any local binding.

8

Local Correction

 N

Reflective surface

R

float3 R = reflect(D, N);

Find intersection point P

Find vector R’ = CP

Float4 col = texCube(Cubemap, R’);

D

R

C
P

Bounding volume

R’

Instead of fetching the texel

from the cubemap using the

vector R we find where the

vector intersects the

bounding box and build a

new vector from the centre

of the cubemap to the

intersection point and use

this new vector to fetch the

texture colour from the

cubemap.

Cubemap

• GPU Gems. Chapter 19. Image-Based Lighting. Kevin Bjork, 2004. http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html

• Cubemap Environment Mapping. 2010. http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262

• Image-based Lighting approaches and parallax-corrected cubemap. Sebastien Lagarde. SIGGRAPH 2012. http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-

approaches-and-parallax-corrected-cubemap/

http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/?&p=4637262
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/

9

Right Reflections

Reflections generated after applying the “local correction”.

10

Reflections based on Local Cubemaps

 Advantages

1. Simple to implement.

2. Very realistic.

3. Physically correct.

4. High quality of reflections.

No pixel flickering.

5. Resource saving technique.

Important for mobile

devices.

6. Cubemap - Bake once

reuse many times.

7. Additional filtering effects

can be added which is very

expensive at run time.

Limitations

Valid only to simulate

reflections of static geometry.

Solution: Generate reflections

of dynamic objects at run time

and combine with reflections

based on static local cubemaps.

11

Vertex Shader

 vertexOutput vert(vertexInput input)

 {

 vertexOutput output;

 output.tex = input.texcoord;

 // Transform vertex coordinates from local to world.

 float4 vertexWorld = mul(_Object2World, input.vertex);

 // Transform normal to world coordinates.

 float4 normalWorld = mul(float4(input.normal, 0.0), _World2Object);

 // Final vertex output position.

 output.pos = mul(UNITY_MATRIX_MVP, input.vertex);

 // ----------- Local correction ------------

 output.vertexInWorld = vertexWorld.xyz;

 output.viewDirInWorld = vertexWorld.xyz - _WorldSpaceCameraPos;

 output.normalInWorld = normalWorld.xyz;

 return output;

 }

12

Fragment Shader

 float4 frag(vertexOutput input) : COLOR

 {

 float4 reflColor = float4(1, 1, 0, 0);

 // Find reflected vector in WS.

 float3 viewDirWS = normalize(input.viewDirInWorld);

 float3 normalWS = normalize(input.normalInWorld);

 float3 reflDirWS = reflect(viewDirWS, normalWS);

 // Working in World Coordinate System.

 float3 localPosWS = input.vertexInWorld;

 float3 intersectMaxPointPlanes = (_BBoxMax - localPosWS) / reflDirWS;

 float3 intersectMinPointPlanes = (_BBoxMin - localPosWS) / reflDirWS;

 // Looking only for intersections in the forward direction of the ray.

 float3 largestRayParams = max(intersectMaxPointPlanes, intersectMinPointPlanes);

 // Smallest value of the ray parameters gives us the intersection.

 float distToIntersect = min(min(largestRayParams.x, largestRayParams.y), largestRayParams.z);

 // Find the position of the intersection point.

 float3 intersectPositionWS = localPosWS + reflDirWS * distToIntersect;

 // Get local corrected reflection vector.

 reflDirWS = intersectPositionWS - _EnviCubeMapPos;

 // Lookup the environment reflection texture with the right vector.

 reflColor = texCUBE(_Cube, reflDirWS);

 // Lookup the texture color.

 float4 texColor = tex2D(_MainTex, float2(input.tex));

 return _AmbientColor + texColor * _ReflAmount * reflColor;

 }

13

Loading Project in Unity

 Loading Project

1. Launch Unity.

2. File => Open Project =>

Open Other, navigate to

the desktop, find

…/Desktop/UnityProjects/

ReflectionWorkshop/

folder folder and select it.

3. In Unity project explorer

double click on

Assets/ReflLab to load the

scene.

Loading Solution

1. Launch MonoDevelop

Assets => Sync

MonoDevelop Project.

2. If needed load manually the

…/Desktop/UnityProjects/

ReflectionWorkshop/

/ReflectionWorkshop.sln.

3. Select View => Visual

Design.

4. Explore solution files in the

left panel.

14

Deploying the Application to the Device

 Building and Deploying

1. Connect the device to the

laptop with the USB cable.

2. Wait until the device is

detected.

3. Launch command prompt and

execute “adb devices”

command to check if the

device has been recognized.

4. In Unity press Ctrl + C to

build and deploy the

application to the Android

device.

15

Generating Cubemaps

 Bake Cubemap Editor Tool

• Available from

GameObject menu.

• Create the cubemap.

• Launch Bake Cubemap

Tool.

• Provide camera render

position and the cubemap.

• Optionally check the box

to save individual images if

filtering will be applied to

cubemap.

Screenshot from the Unity Editor tool to bake cubemaps.

16

Filtering Cubemaps

 Unity to AMD CubeMapGen

• Check the box to save

individual images when baking

the cubemap.

• Launch CubeMapGen tool

and load cubemap images

following the relations given

in the table.

• Save cubemap as a single dds

or cube cross image for easy

loading if needed when

experimenting with filters as

undo is not available.

• Apply any filter to cubemap.

• Save cubemap as individual

images.

AMD

CubeMapGen

 Unity

X+ -X

X- +X

Y+ +Y

Y- -Y

Z+ +Z

Z- -Z

Filter Settings Value

Type Gaussian

Base Filter Angle 8

Mip Initial Filter Angle 5

Mip Filter Angle Scale 2.0

Edge Fixup checked

Edge Fixup Width 4

17

Filtering Cubemaps

Screenshots from AMD CubeMapGen tool.

18

Filtering Cubemaps

 AMD CubeMapGen to Unity

• Flip vertically all filtered

images with any image

processing tool.

• Import filtered images in

Unity.

• Create new empty cubemap

in Unity.

• Populate cubemap images

according with the table.

AMD

CubeMapGen

 Unity

.c00 +X

.c01 -X

.c02 +Y

.c03 -Y

.c04 +Z

.c05 -Z

19

Filtering Cubemaps

Screenshots from Unity.

20

Ray-Box Intersection (I)

y = 3

X

y = x - 1

Y

Equation of a line

y = mx + b

Vector form:

r = O + t*D

O – origin point

D – direction vector

t – parameter

An axis aligned bounding box

AABB

can be defined by its min and

max points (A, B)

The AABB defines a set of lines

parallel to coordinate axis. Each

component of line can be defined by

the equation:

x = Ax; y = Ay; z = Az

x = Bx; y = By; z = Bz

A

B

X

Y

Z

To find where a ray intersects one of

those lines we just equal both

equations:

 Ox + tx*Dx = Ax for example.

The solution can be written as:

 tAx = (Ax – Ox) / Dx

In the same way we can obtain the

solution for all components of both

intersection points:

 tAx = (Ax – Ox) / Dx

 tAy = (Ay – Oy) / Dy

 tAz = (Az – Oz) / Dz

 tBx = (Bx – Ox) / Dx

 tBy = (By – Oy) / Dy

 tBz = (Bz – Oz) / Dz

In vector form:

 tA = (A – O) / D

 tB = (B – O) / D

We have found in this way where the

line intersects the planes defined by

the faces of the cube but it doesn’t

means that the intersections lie on

the cube.

x = 5

21

Ray-Box Intersection (II)

We need to find which of the

solutions is really an

intersection with the box.

We need the greater value of

t parameter for the

intersection at the min plane.

tmin = (tAx> tAy) ? tAx: tAy

Detailed explanation of handling all

the cases in 3D can be found

elsewhere .

Nevertheless if we guarantee that our

reflective surface is enclosed by the

BBox (i.e the origin of the reflected

ray is inside the BBox) then we always

have two intersections with the box

and the handling of different cases is

simplified.

2D Representation

A

yB

yA

B

xA xB X

Y

tAx

tAy

tBx

tBy

O

A

yB

yA

B

xA xB X

Y

tAx

tAy

tBx

tBy

O

We also must consider those

cases when we get no

intersections.

We need the smaller value of

t parameter for the

intersection at the max plane.

tmin = (tAx> tAy) ? tAx: tAy

A

yB

yA

B

xA xB X

Y

tAy

R
N

tBx
O

22

The Story So Far

• Learned the concept of local cubemaps.

• Learned about a simple and cheap way of

simulating realistically environment
reflections based on local cubemaps.

• Learned how to implement in the shader

reflections based on local cubemaps.

• Learned how to create, export and import

cubemaps in Unity.

• Learned how to apply filters to cubemaps to

achieve different visual effects.

23

24

Please Fill The Feedback Form

Thanks

