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ARM Introduction 

 World leading semiconductor IP 

 Founded in 1990 

 1060 processor licenses sold to more than 

350 companies 

 > 10bn ARM-based chips in 2013 

 > 50bn ARM-based chips to date 

 

 Business model 

 Designing and licensing of IP 

 Not manufacturing or selling on chips 

 

 

 Products 

 CPUs 

 Multimedia processors 

 Interconnect 

 Physical IP 
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The Evolution of Mobile GPU Compute 

2007        2009          2010               2012                2013 

OpenGL® ES 1.1 
Fixed pipeline 

OpenGL ES 2.0 
Programmable pipeline 

OpenCL™ Full Profile / RenderScript 
Portable Heterogeneous Parallel Computation 

OpenGL ES 3.1 Compute Shaders 
GPU Compute within OpenGL ES API 

 Mali-200 

 Mali-300 

 ARM® Mali™-55 GPU 

 Mali-400 MP  

 Mali-450 MP 

 Mali-T600  

 Series 

 Mali-T700  

 Series 
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Mobile Performance: New Challenges need New Solutions 

 Processing power outpacing 

improvements in battery 

performance 

 

 Processor frequency bound by 

thermal limitations 

 

 Adding duplicate cores has 

diminishing returns 

 

Vital to focus on processing 

efficiency through 

heterogeneous architectures 

x 2 

x 12 

x 13.5 
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Face Detection Case Study 

 Internal demo to explore possibilities of computer 

vision on mobile 
 

 CPU version from OpenCV library. 
 Single threaded 

 No NEON 

 

 OpenCL version written and optimised for Mali 

 

Final array of coordinates of faces 

Consolidate candidate coordinates of faces 

Detection 

Generate SAT Table 

Resize 

Equalize 

Greyscale 

Frame data (BGR) 

CPU 
 

GPU 

vectorised 
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 Significant performance benefits using 

Mali-T600 GPU Compute 

 In terms of speed 

 …and energy 

 

 CPU version could have been 

optimised more 

 Multithreaded 

 NEON 

 We would expect much better speed… 

but also even more power usage 

 And with the GPU implementation the 

CPU is free to do something else 

 

 

Face Detection Case Study 

On average, 8.7x performance improvement 

On average, 83% energy reduction 
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Face Detection Using OpenCL 
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Face Detection Relative Energy Usage 

CPU frequency 

GPU frequency 

 CPU + GPU always 

more efficient than 

CPU only 

 CPU + GPU on 

average ~5x more 

efficient 

 

 
CPU + GPU 

CPU version 
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Mali Ecosystem 
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GPU Compute on Mali 

 Full profile OpenCL conformance since late 2012 
 

 OpenCL devices: Arndale platforms, Samsung Chromebook 

 http://malideveloper.arm.com/develop-for-mali/development-platforms/insignal-arndale-octa-board/ 

 http://malideveloper.arm.com/develop-for-mali/development-platforms/samsung-arndale-board/ 

 http://malideveloper.arm.com/develop-for-mali/development-platforms/samsung-chromebook/ 

 Including full guide for running OpenCL 1.1 
 

 Other devices: 

 Google Nexus 10: first GPU-accelerated 

RenderScript device 

 Samsung Galaxy S5 
 

 All based on Mali-T6xx 
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Barriers, Local Atomics, Cached 

local memory 

Registers, PC, SP, Private stack 

Global Atomics, Cached global 

memory 

Work item 

Work Group 

ND Range 

CL Execution model on Mali-T600 (1) 
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CL Execution model on Mali-T600 (2) 

 Each work-item runs as one of the threads within a core 
 Every Mali-T600 thread has its own independent program counter 

 …which supports divergent threads from the same kernel 

 caused by conditional execution, variable length loops etc. 

 Some other GPGPU’s use “WARP” architectures 

 These share a common program counter with a group of work-items 

 This can be highly scalable… but can be slow handling divergent threads 

 T600 effectively has a Warp size of 1 

 Up to 256 threads per core 

 

 Every thread has its own registers 

 

 Every thread has its own stack pointer and private stack 

 

 Shared read-only registers are used for kernel arguments 

 
 



21 

 

CL Execution model on Mali-T600 (3) 

 A whole work-group executes on a single core  
 Mali-T600 supports up to 256 work-items per work-group 

 OpenCL barrier operations (which synchronise threads) are handled by 

the hardware 

 

 For full efficiency you need more work-groups than cores 
 To keep all of the cores fed with work 

 Most GPUs require this, so most CL applications will do this 

 

 Local and global atomic operations are available in hardware 

 

 All memory is cached 
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Inside a Core 

),,,max( 10 TexLSAAT 
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 Each ALU has a number of hardware compute blocks: 

 

 

 

 

 

 

 

 

 Theoretical peak vs Realistic peak performance 
 

 Capable of 5 FP64 flops 

Inside each ALU 

Dot product (4 x muls, 3 x adds) 7 flops 

Vector add 4 flops 

Vector mul 4 flops 

Scalar add 1 flop 

Scalar mul 1 flop 

= 17 flops / cycle / ALU / core (FP32) 
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ARM’s OpenCL Driver 
 

 Full profile OpenCL v1.1 in hardware and Mali-T600 / T700 driver 
 Backward compatibility support for OpenCL v1.0 

 Embedded profile is a subset of full profile 

 Image types supported in HW and driver 

 Atomic extensions (32 and 64-bit) 

 Hardware is OpenCL v1.2 ready (driver to follow) 

 printf implemented as an extension to v1.1 driver 
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A Note about RenderScript 

 The GPU-Compute API on Android™ 
 

 Similar architecture to OpenCL 

 Based on C99 
 

 Transparent device selection 

 The driver manages and selects devices 
 

 Transparent memory management 

 Copying managed by the driver, based on allocation flags 
 

 Higher level than OpenCL 

 Less explicit control over details 
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RenderScript Driver 

 RenderScript programs run on the GPU if they can 
 - with automatic fallback to the CPU if not 

 

 Four circumstances cause a RenderScript program to run on the CPU… 
 If a Renderscript accesses a global pointer, the script cannot run on the GPU 

 
float *array;                                              rs_allocation array; 
  
void root(const float *in, float *out, uint32_t x)         void root(const float *in, float *in, uint32_t x) 
{                                                          { 
    *out = *in + array[x % 5];                                  *out = *in + *(float *)rsGetElementAt(array, x % 5); 
}                                                          } 

 
 

 Memory allocation flags - allocations need to be flagged with USAGE_SCRIPT 
Allocation.createTyped(mRS, typeBuilder.create(),          Allocation.createTyped(mRS, typeBuilder.create(),  

         typeBuilder.create(),                                      typeBuilder.create(),  
         MipmapControl.MIPMAP_NONE,                                 MipmapControl.MIPMAP_NONE,  
         Allocation.USAGE_GRAPHICS_TEXTURE);                        Allocation.USAGE_GRAPHICS_TEXTURE | 
                                                                    Allocation.USAGE_SCRIPT);  
 

 Recursive Functions 

 Any use of direct or indirect recursion within functions is incompatible with the GPU 
 

 Debug Functions 
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Porting OpenCL code from other GPUs 

 Desktop GPUs require data to be copied to local or private memory buffers 
 Otherwise their performance suffers 

 These copy operations are expensive 

 These are sometimes done in the first part of a kernel, followed by a synchronisation barrier 

instruction, before the actual processing begins in the second half 

 The barrier instruction is also expensive 

 

 When running on Mali just use global memory instead 
 Thus the copy operations can be removed 

 And also any barrier instructions that wait for the copy to finish 

 Query the device flag CL_DEVICE_HOST_UNIFIED_MEMORY if you want to write performance portable 

code for Mali and desktop PC’s 

 The application can then switch whether or not it performs copying 

to local memory 
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Use Vectors 

 Mali-T600 and T700 series GPUs have a vector capable GPU 

 

 Mali prefers explicit vector functions 

 

 clGetDeviceInfo 
 CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_INT 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE 

 CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF 
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Hello OpenCL 

for (int i = 0; i < arraySize; i++) 
{ 
    output[i] = 
              inputA[i] + inputB[i]; 
} 

 

__kernel void kernel_name(__global int* inputA, 
                          __global int* inputB, 
                          __global int* output) 
{ 
    int  i = get_global_id(0); 
    output[i] = inputA[i] + inputB[i]; 
} 
 
clEnqueueNDRangeKernel(..., kernel, ..., arraySize, ...) 
 

i, inputA, inputB 

i++ 

inputA, inputB 

...... 0 1 2 3 
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Hello OpenCL Vectors 

inputA, inputB 

0 4 8 12 

4 5 6 7 

i, inputA, inputB 

i++ 

for (int i = 0; i < arraySize; i++) 
{ 
    output[i] = 
              inputA[i] + inputB[i]; 
} 

 

__kernel void kernel_name(__global int* inputA, 
                          __global int* inputB, 
                          __global int* output) 
{ 
    int  i = get_global_id(0); 
    int4 a = vload4(i, inputA); 
    int4 b = vload4(i, inputB); 
    vstore4(a + b, i, output); 
} 
 
clEnqueueNDRangeKernel(..., kernel, ..., arraySize / 4, ...) 
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Creating buffers 

 The application creates buffer objects that pass data to and from the kernels by calling the OpenCL API  

clCreateBuffer() 

 

 All CL memory buffers are allocated in global memory that is physically accessible by both CPU and GPU cores 

 However, only memory that is allocated by clCreateBuffer is mapped into both the CPU and GPU 

virtual memory spaces 

 Memory allocated using malloc(), etc, is only mapped onto the CPU  

 

 So calling clCreateBuffer() with CL_MEM_USE_HOST_PTR and passing in a user created buffer requires 

the driver to create a new buffer and copy the data (identical to CL_MEM_COPY_HOST_PTR) 

 This copy reduces performance 

 

 So where possible always use CL_MEM_ALLOC_HOST_PTR 

 This allocates memory that both CPU and GPU can use without a copy 
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Host data pointers 

Global 

Memory
Buffer created 

by malloc()

CPU

(Host)

GPU

(Compute 

Device)

Buffers created by user (malloc) are not 

mapped into the GPU memory space 

Global 

Memory
Buffer created 

by malloc()

CPU

(Host)

Buffer created by 

clCreateBuffer()

GPU

(Compute 

Device)

COPY

clCreateBuffer(CL_MEM_USE_HOST_PTR) 
creates a new buffer and copies the data over 

(but the copy operations are expensive) 
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Host data pointers 

Global 

Memory

CPU

(Host)

Buffer created by 

clCreateBuffer()

GPU

(Compute 

Device)

clCreateBuffer(CL_MEM_ALLOC_HOST_PTR) 
creates a buffer visible by both GPU and CPU 

 Where possible don’t use CL_MEM_USE_HOST_PTR 
 Create buffers at the start of your application 

 Use CL_MEM_ALLOC_HOST_PTR instead of malloc()  

 Then you can use the buffer on both CPU host and GPU 
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Run Time 

 Where your kernel has no preference for work-group size, for 

maximum performance... 
 

 either use the compiler recommended work-group size... 

 
clGetKernelWorkgroupInfo(kernel, dev, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t)... ); 

 

 or use a large multiple of 4 

 

 You can pass NULL, but performance might not be optimal 

 

 If you want your kernel to access host memory 
 use mapping operations in place of read and write operations 

 mapping operations do not require copies so are faster and use less memory  

 

 



37 

 

Compiler 

 Run-time compilation isn’t free! 
 

 Compile each kernel only once if possible 
 If your kernel source is fixed, then compile the kernel during your 

application’s initialisation 

 If your application has an installation phase then cache the binary on a storage device for the 

application’s next invocation 

 Keep the resultant binary ready for when you want to run the kernel 

 

  clBuildProgram only partially builds the source code 
 If the kernels in use are known at initialization time, then also call 

clCreateKernel for each kernel to initiate the finalizing compile 

 Creating the same kernels in the future will then be faster because the finalized binary is used 
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BIFLs 

 Where possible use the built-in functions as the commonly occurring ones 

compile to fast hardware instructions 
 Many will target vector versions of the instructions where available 

 

 Using “half” or “native” versions of built-in functions 
 e.g. half_sin(x) 

     Specification mandates a minimum of 10-bits of accuracy 

 e.g. native_sin(x) 

      Accuracy and input range implementation defined 
 

 Not always an advantage on Mali-T600 / T700… for some functions the 

precise versions are just as fast 
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Arithmetic 

 Mali-T600 / T700 has a register and ALU width of 128-bits 

 Avoid writing kernels that operate on single bytes or scalar values 

 Write kernels that work on vectors of at least 128-bits. 

 Smaller data types are quicker 

  you can fit eight shorts into 128-bits compared to four integers 
 

 Integers and floating point are supported equally quickly 

 Don’t be afraid to use the data type best suited to your algorithm 
 

 Mali-T600 / T700 can natively 

support all CL data types 
 

 VLIW: Several operations 

per instruction word 

 Some operations are free 

 

 

 

 

 

 

128 bit 

INT64

INT32 INT32

INT64

INT32 INT32

INT16

I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8 I8

FP64

FP32

FP16 FP16

FP32

FP16 FP16

FP64

FP32

FP16 FP16

FP32

FP16 FP16

INT16 INT16 INT16 INT16 INT16 INT16 INT16

  16 x 8-bit chars (char16) 
  2 x 64-bit integers (long2) 
  4 x 32-bit floats (float4) 
  2 x 64-bit floats (double2) 
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Register operations 

FP32 FP32 FP32 FP32 

FP32 FP32 FP32 FP32 

v1 

v2 

FP32 FP32 FP32 FP32 

FP32 FP32 FP32 FP32 

v1 

v1 

FP32 FP32 FP32 FP32 v2 

+ 

 All operations can read or write any element or elements 
within a register 

• e.g.        float4 v1, v2; 
       ...  
       v2.y = v1.x 

 All operations can swizzle the elements in their 
input registers 
 

• e.g.        float4 v1, v2; 
       ... 
       v2 = v1 + v1.wxzy 

 These operations are mostly free, 
as are various data type expansion 
and shrinking operations 

• e.g.    char -> short 
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Images 

 Image data types are supported in hardware so 

use them! 
 Supports coordinate clipping, border colours, format conversion, etc 

 Bi-linear pixel read only takes a cycle 

 Happens in the texture pipeline – leaving ALU and L/S pipes free 

 If you don’t use it the texture unit turns off to save power 

 Image stores won’t use the texture unit 

 go through the L/S pipe instead 

 

 However buffers of integer arrays can be even faster still: 
 If you don’t read off the edge of the image, and you use integer coordinates, and you don’t need format 

conversion then… 

 You can read and operate on 16 x 8-bit greyscale pixels at once 

 Or 4 x RGBA8888 pixels at once 
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Load/Store Pipeline 

 The L1 and L2 caches are not as large as on desktop systems… 
 and there are a great many threads 

 If you do a load in one instruction, by the next instruction (in the same thread) 

the datacould possibly have been evicted 

 So pull as much data into registers in a single instruction as you can 

 One instruction is always better than using several instructions! 

 And a 16-byte load or store will typically take a single cycle (assuming no 

cache misses) 
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Miscellaneous 

 Process large data sets! 
 OpenCL setup overhead can limit the GPU over CPU benefit with 

smaller data sets 
 

 Feed the beast! 
 The ALU’s work at their most efficient when running lots of compute 

 Don’t be afraid to use a high density of vector calculations in your kernels 

 

 Avoid writing kernels that use a large numbers of variables 
 Reduces the available registers 

 and therefore the maximum  workgroup size reduces 

 Sometimes better to re-compute a value than store in a variable 

 

 Avoid prime number work size dimensions 
 Cannot select an efficient workgroup size with a prime number of work items 

 Ideally workgroup size should be a multiple of 4 
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Hardware Counters 

 Counters per core 

 Active Cycles 

 Pipe activity 

 L1 cache 
 

 Counters per Core Group 

 L2 caches 
 

 Counters for the GPU 

 Active cycles  
 

 Accessed through Streamline™ 

 Timeline of all hardware counters, and more 

 Explore the execution of the full application 

 Zoom in on details 
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Streamline 
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Memories 

 Only one programmer controlled memory 

 Many transparent caches 
 

 Memory copying takes time 

 It can easily dominate over kernel execution time 
 

 Use appropriate memory allocation schemes 
 

 Avoid synchronization points 

 Cache maintenance has a cost as well 
 

 Streamline to the rescue 

 Visualize when kernels are executed 

 Many features not covered here 
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Hiding Pipeline Latency 

 Needs enough threads 

 Limited by register usage 
 

 When there are issues 

 Few instructions issued per cycle 

 Spilling of values to memory 
 

 Symptoms 

 Low Max Local Workgroup Size in OpenCL 

 Few instructions issued per cycle in limiting pipe 
 

 Remedy 

 Smaller types  More values per register 

 Splitting kernels 
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Pipeline Utilization 

 Prefer vector operations 

 More components per operation 

 

 Prefer small types 

 More components in 128 bits 

 

 Balance work between the pipes 

 Do less – with the pipe that limits performance 

),,,max( 10 TexLSAAT 
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Finding the Bottlenecks 

 Host application or Kernel execution 

 Avoid memory copying 

 Avoid cache flushes 

 

 Which pipe is important? 

 Operations in other pipes incur little or no runtime cost 

 

 Saving operations or saving registers 

 How much register pressure can we handle, and still hide the latencies? 

 

 How well are we using the caches 

 Are instructions spinning around the LS pipe waiting for data? 
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OpenCL Tools and Support 

 ARM OpenCL SDK available for download at malideveloper.com 
 Several OpenCL samples and benchmarks 

 

 Debugging 

 Notoriously difficult to do with parallel programming 

 Serial programming paradigms don’t apply 

 DS-5 Streamline compatible with OpenCL 

 Raw instrumentation output also available 

 Mali Graphics Debugger 

 Logs OpenGL ES and OpenCL API calls 

 Download from malideveloper.com 

 OpenCL  v1.2 printf  function implemented as an extension in v1.1 
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The Limiting Pipe 

 Three hardware counters 

 Cycles active (#C) 

 Number of A instructions (#A) 

 Number of LS instructions (#LS) 
 

 The goal 

 Similar values for #A and #LS  Both pipes used 

 Max(#A, #LS) similar to #C  Limiting pipe used every cycle 
 

 Example: 

 #LS / #A = 5 

 #LS / #A = 1, #C up by < 10% 

 

 

yxay 

yxaxaxay  05.0...05.005.0
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Cache Utilization 

 The Load/Store pipe hides latency 

 Many threads active 
 

 Not always successful 

 Insufficient parallelism 

 Bad cache utilization 

 Failing threads will be reissued 
 

 Reissue is a sign of cache-misses 

 Instruction words issued 

 Instruction words completed 
 

 Example 

 Inter-thread stride for memory accesses 
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Execution Order 

 Kernel saxpy 

 Load from x 

 Load from y 

 Compute 

 Store to y 
 

 Execution order 

 Threads 1 through N load from x 

 Threads 1 through N load from y 

 Threads 1 through N compute 

 Threads 1 through N store to y 
 

 How many bytes should we load per thread? 

yxay 
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A Single Instruction Word 

 We should have one load instruction word 

 The next bytes will be picked up by the next thread 
 

 Loading less is bad 

 Does not utilize the SIMD operations 
 

 Loading more is bad 

 The next bytes will be loaded after all other threads have loaded their first 
 

 Saxpy with different strides 

 128 bits: 4.5 issues per instruction 

 256 bits: 5.5 issues per instruction 

 64 bytes: 9.3 issues per instruction 
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 Mali-T600 / T700 Compute Overview 

 Optimal OpenCL for Mali-T600 / T700 

 Programming Suggestions 

 Optimising with DS-5 Streamline and HW Counters 

 Optimising: Two Examples 

 General Advice 

 OpenCL Optimization Case Studies 
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Know your bottleneck 

 Use vector operations 
 

 If you are bandwidth-limited, merge kernels 

 Avoid reloading data 
 

 If you are register-limited, split kernels 

 Easier for the compiler to do a good job 
 

 If you are Load-Store-limited, do less load-store 

 Compute complex expressions instead of using lookup-tables 
 

 If you are Arithmetic-limited, do less arithmetic 

 Tabulate functions 

 Use polynomial approximations instead of special functions 



60 

 

Synchronization between threads 

 Two options in OpenCL 

 Barriers inside a work-group 

 Atomics between work-groups 
 

 We like atomics to ensure data consistency 

 But preferably on the same core 
 

 Barriers can be useful to improve cache utilization 

 Limit divergence between threads 

 Keeping jobs small serves the same purpose 
 

 We see examples of large jobs with many barriers 

 We often prefer small jobs with dependencies 
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Vectorize your operations 

 More components per operation 

 For basic arithmetic and memory operations 

 Square roots, trigonometry and atomics are scalar 
 

 Fewer registers used 

 The compiler will only do part of the job 
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Agenda 

 Introduction to Mali GPUs 

 Mali-T600 / T700 Compute Overview 

 Optimal OpenCL for Mali-T600 / T700 

 OpenCL Optimization Case Studies 

 Laplace 

 SGEMM 
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OpenCL Laplace Case Study 

 Laplace filters are typically used in image processing 
 … often used for edge detection or image sharpening 

 and can be part of a computer vision filter chain 
 

 This case study will go through a number of stages… 
 demonstrating a variety of optimization techniques 

 and showing the change in performance at each stage 
 

 Our example will process and output 24-bit images 
 and we’ll measure performance across a range of image sizes 

 

 But first, a couple of images samples showing the effect 

of the filter we are using… 
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OpenCL Laplace Case Study 

Original 
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OpenCL Laplace Case Study 

Filtered 
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OpenCL Laplace Case Study 

Original 
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OpenCL Laplace Case Study 

Filtered 
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OpenCL Laplace Case Study 
 

 

-1 -1 -1 
 

-1  9 -1 
 

-1 -1 -1 
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OpenCL Laplace Case Study 

… … 

width 

h
e
ig

h
t 

image “stride” = width x 3 
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OpenCL Laplace Case Study 
 

 
#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 
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OpenCL Laplace Case Study 
 

 
#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

Destination buffer    Source buffer    Image width    Image height 
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#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

OpenCL Laplace Case Study 
 

 

Boundary checking… ideally we don’t want 

to calculate for values at the right and 

bottom edges. 

(But this might not be the best place to 

handle this.) 
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#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

OpenCL Laplace Case Study 
 

 

The main calculation… we need to perform 

this for the red, green and blue color 

components… 
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#define MAX(a,b) ((a)>(b)?(a):(b)) 
#define MIN(a,b) ((a)<(b)?(a):(b)) 
     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = 0; 
    int xBoundary = w - 2; 
    int yBoundary = h - 2; 
 
    if (x >= xBoundary || y >= yBoundary) 
    { 
        ind           = 3 * (x + w * y); 
        pdst[ind]     = psrc[ind]; 
        pdst[ind + 1] = psrc[ind + 1]; 
        pdst[ind + 2] = psrc[ind + 2]; 
        return; 
    } 
 
    int bColor = 0, gColor = 0, rColor = 0; 
    ind        = 3 * (x + w * y); 
 
    bColor = bColor - psrc[ind] - psrc[ind+3] - psrc[ind+6] - psrc[ind+3*w] + psrc[ind+3*(1+w)] * 9 – 
             psrc[ind+3*(2+w)]- psrc[ind+3*2*w]- psrc[ind+3*(1+2*w)]- psrc[ind+3*(2+2*w)]; 
    gColor = gColor - psrc[ind+1] - psrc[ind+4] - psrc[ind+7] - psrc[ind+3*w+1] + psrc[ind+3*(1+w)+1] * 9 – 
             psrc[ind+3*(2+w)+1]- psrc[ind+3*2*w+1]- psrc[ind+3*(1+2*w)+1]- psrc[ind+3*(2+2*w)+1]; 
    rColor = rColor - psrc[ind+2] - psrc[ind+5] - psrc[ind+8] - psrc[ind+3*w+2] + psrc[ind+3*(1+w)+2] * 9 –  
             psrc[ind+3*(2+w)+2]- psrc[ind+3*2*w+2]- psrc[ind+3*(1+2*w)+2]- psrc[ind+3*(2+2*w)+2]; 
 
    unsigned char blue  = (unsigned char)MAX(MIN(bColor, 255), 0); 
    unsigned char green = (unsigned char)MAX(MIN(gColor, 255), 0); 
    unsigned char red   = (unsigned char)MAX(MIN(rColor, 255), 0); 
    ind           = 3 * (x + 1 + w * (y + 1)); 
    pdst[ind]     = blue; 
    pdst[ind + 1] = green; 
    pdst[ind + 2] = red; 
} 

 

 

OpenCL Laplace Case Study 
 

 

Finally we clamp the results to make 

sure they lie between 0 and 255… and 

then write out to the destination… 
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OpenCL Laplace Case Study 

Image Pixels Time (s) 

768 x 432 331,776 0.0107 

2560 x 1600 4,096,000 0.0850 

2048 x 2048 4,194,304 0.0865 

5760 x 3240 18,662,400 0.382 

7680 x 4320 33,177,600 0.680 

CPU 

0.0229 
x0.5 

0.125 
x0.7 

0.128 
x0.7 

0.572 
x0.7 

1.02 
x0.7 

Mali T604 @ 533MHz Single A15 @ 1.7GHz 

 Results 
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OpenCL Laplace Case Study 

 
psg@psg-mali:~/laplace# mali_clcc –v laplace.cl 

 

Entry point: __llvm2lir_entry_math 

8 work registers used, 8 uniform registers used 

 

Pipelines:                                A / L / T / Overall 

Number of instruction words emitted:     54 +31 + 0 = 85 

Number of cycles for shortest code path:  3 / 4 / 0 =  4 (L bound) 

Number of cycles for longest code path:  25.5 /28 / 0 = 28 (L bound) 

Note: The cycle counts do not include possible stalls due to cache misses. 

 

Use the offline compiler mali_clcc to analyse the kernel 
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OpenCL Laplace Case Study: Optimisation 1 

 Replace the data fetch (= psrc[index]) with vloadN 
 Each vload16 can load 5 pixels at a time (at 3 bytes-per-pixel) 

 This load should complete in a single cycle 
 

 Perform the Laplace calculation as a vector calculation 
 Then Mali works on all 5 pixels at once 

 

 Replace the data store (pdst[index] = ) with vstoreN 
 Allows us to write out multiple values at a time 

 Need to be careful to only output 15 bytes (3 pixels) 
 

 As we’ll be running 5 times fewer work items, we’ll need to update the 

globalWorkSize values… 
 

globalWorkSize[0] = image_height; 
globalWorkSize[1] = (image_width / 5); 
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From processing 1 pixel… 

9 bytes 

9 bytes 

9 bytes 

…to processing 5 pixels... 

21 bytes 

21 bytes 

21 bytes 

27 bytes total 

63 bytes total 

But we would like to load this data in a 

way that allows us to efficiently calculate 

the results in a single vector calculation… 

OpenCL Laplace Case Study 
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p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

3 x overlapping, 16-byte reads from row1 (vload16)… 

row 1 

And the same for rows 2 and 3… 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 2 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 3 

OpenCL Laplace Case Study 
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p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 2 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 3 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

row 1 

The five pixels can then be computed as follows… 

OpenCL Laplace Case Study 
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OpenCL Laplace Case Study 
 

     
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = x * 5 * 3 + w * y * 3; 
 
    uchar16 row1a_    = vload16(0, psrc + ind); 
    uchar16 row1b_    = vload16(0, psrc + ind + 3); 
    uchar16 row1c_    = vload16(0, psrc + ind + 6); 
    uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
    uchar16 row2b_    = vload16(0, psrc + ind + (w * 3) + 3); 
    uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
    uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
    uchar16 row3b_    = vload16(0, psrc + ind + (w * 6) + 3); 
    uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
 
    int16 row1a       = convert_int16(row1a_); 
    int16 row1b       = convert_int16(row1b_); 
    int16 row1c       = convert_int16(row1c_); 
    int16 row2a       = convert_int16(row2a_); 
    int16 row2b       = convert_int16(row2b_); 
    int16 row2c       = convert_int16(row2c_); 
    int16 row3a       = convert_int16(row3a_); 
    int16 row3b       = convert_int16(row3b_); 
    int16 row3c       = convert_int16(row3c_); 
 
    int16 res         = (int)0 – row1a – row1b – row1c – row2a – row2b * (int)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (int16)0, (int16)255); 
    uchar16 res_row   = convert_uchar16(res); 
 
    vstore8(res_row.s01234567, 0, pdst + ind); 
    vstore4(res_row.s89ab,     0, pdst + ind + 8); 
    vstore2(res_row.scd,       0, pdst + ind + 12); 
    pdst[ind + 14]    = res_row.se; 
} 

 

 

Parameter 3 now refers to 

the width of the image / 5. 

3 overlapping 16-byte reads 

for each of the 3 rows 

(5 pixels-worth in each read)  

Convert each 16-byte uchar 

vector to int16 vectors 



82 

 

    
__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
{ 
    int y         = get_global_id(0); 
    int x         = get_global_id(1); 
    int w         = width; 
    int h         = height; 
    int ind       = x * 5 * 3 + w * y * 3; 
 
    uchar16 row1a_    = vload16(0, psrc + ind); 
    uchar16 row1b_    = vload16(0, psrc + ind + 3); 
    uchar16 row1c_    = vload16(0, psrc + ind + 6); 
    uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
    uchar16 row2b_    = vload16(0, psrc + ind + (w * 3) + 3); 
    uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
    uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
    uchar16 row3b_    = vload16(0, psrc + ind + (w * 6) + 3); 
    uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
 
    int16 row1a       = convert_int16(row1a_); 
    int16 row1b       = convert_int16(row1b_); 
    int16 row1c       = convert_int16(row1c_); 
    int16 row2a       = convert_int16(row2a_); 
    int16 row2b       = convert_int16(row2b_); 
    int16 row2c       = convert_int16(row2c_); 
    int16 row3a       = convert_int16(row3a_); 
    int16 row3b       = convert_int16(row3b_); 
    int16 row3c       = convert_int16(row3c_); 
 
    int16 res         = (int)0 – row1a – row1b – row1c – row2a – row2b * (int)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (int16)0, (int16)255); 
    uchar16 res_row   = convert_uchar16(res); 
 
    vstore8(res_row.s01234567, 0, pdst + ind); 
    vstore4(res_row.s89ab,     0, pdst + ind + 8); 
    vstore2(res_row.scd,       0, pdst + ind + 12); 
    pdst[ind + 14]    = res_row.se; 
} 

 

 

OpenCL Laplace Case Study 
 

 

Perform the Laplace calculation 

on all five pixels at once 

Then clamp the values between 

0 and 255 (using the BIFL!) 

Convert back to uchar16… 

and then write 5 pixels to 

destination buffer 
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OpenCL Laplace Case Study 

Image Pixels Original 

768 x 432 331,776 0.0107 

2560 x 1600 4,096,000 0.0850 

2048 x 2048 4,194,304 0.0865 

5760 x 3240 18,662,400 0.382 

7680 x 4320 33,177,600 0.680 

Work registers: 8 

ALU cycles: 25.5 

L/S cycles: 28 

Opt 1 

x1.4 

x4.5 

x1.7 

x6.0 

x6.2 

8+ 

22.5 

13 

 Vectorization Results 
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OpenCL Laplace Case Study: Optimisation 2 

 We can reduce the number of loads 

 by synthesizing the middle vector row from the left and right rows… 

row 1b            row1(p2, p3, p4, p5) + row2(p6) 

becomes… 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 
row  1a 

row  1b 

row  1c 

p1 p2 p3 p4 p5 

p1 p2 p3 p4 p5 
row  1a 

row  1c 
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OpenCL Laplace Case Study: Optimisation 2 

 We can reduce the number of loads 

 by synthesizing the middle vector row from the left and right rows… 

 
uchar16 row1a_    = vload16(0, psrc + ind); 
uchar16 row1b_    = vload16(0, psrc + ind + 3); 
uchar16 row1c_    = vload16(0, psrc + ind + 6); 
uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
uchar16 row2b_    = vload16(0, psrc + ind + (w * 3) + 3); 
uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
uchar16 row3b_    = vload16(0, psrc + ind + (w * 6) + 3); 
uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
 
becomes… 
 
uchar16 row1a_    = vload16(0, psrc + ind); 
uchar16 row1c_    = vload16(0, psrc + ind + 6); 
uchar16 row1b_    = (uchar16)(row1a_.s3456789a, row1c_.s56789abc); 
uchar16 row2a_    = vload16(0, psrc + ind + (w * 3)); 
uchar16 row2c_    = vload16(0, psrc + ind + (w * 3) + 6); 
uchar16 row2b_    = (uchar16)(row2a_.s3456789a, row2c_.s56789abc); 
uchar16 row3a_    = vload16(0, psrc + ind + (w * 6)); 
uchar16 row3c_    = vload16(0, psrc + ind + (w * 6) + 6); 
uchar16 row3b_    = (uchar16)(row3a_.s3456789a, row3c_.s56789abc); 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 

768 x 432 331,776 0.0107 x1.4 

2560 x 1600 4,096,000 0.0850 x4.5 

2048 x 2048 4,194,304 0.0865 x1.7 

5760 x 3240 18,662,400 0.382 x6.0 

7680 x 4320 33,177,600 0.680 x6.2 

Work registers: 8 8+ 

ALU cycles: 25.5 22.5 

L/S cycles: 28 13 

Opt 2 

x1.4 

x4.5 

x2.0 

x6.0 

x6.3 

8 

24.5 

8 

 Synthesize Loads Results 
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 Use short16 instead of int16 

 smaller register use allows for a larger CL_KERNEL_WORK_GROUP_SIZE 

available for kernel execution 
  
    int16 row1a       = convert_int16(row1a_); 
    int16 row1b       = convert_int16(row1b_); 
    int16 row1c       = convert_int16(row1c_); 
    int16 row2a       = convert_int16(row2a_); 
    int16 row2b       = convert_int16(row2b_); 
    int16 row2c       = convert_int16(row2c_); 
    int16 row3a       = convert_int16(row3a_); 
    int16 row3b       = convert_int16(row3b_); 
    int16 row3c       = convert_int16(row3c_); 
 
    int16 res         = (int)0 – row1a – row1b – row1c – row2a – row2b * (int)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (int16)0, (int16)255); 
    uchar16 res_row   = convert_uchar16(res); 
 

   becomes… 
 

    short16 row1a     = convert_short16(row1a_); 
    short16 row1b     = convert_short16(row1b_); 
    short16 row1c     = convert_short16(row1c_); 
    short16 row2a     = convert_short16(row2a_); 
    short16 row2b     = convert_short16(row2b_); 
    short16 row2c     = convert_short16(row2c_); 
    short16 row3a     = convert_short16(row3a_); 
    short16 row3b     = convert_short16(row3b_); 
    short16 row3c     = convert_short16(row3c_); 
 
    short16 res       = (short)0 – row1a – row1b – row1c – row2a – row2b * (short)9 – row2c – row3a – row3b – row3c; 
    res               = clamp(res, (short16)0, (short16)255); 
    uchar16 res_row   = convert_uchar16(res); 

OpenCL Laplace Case Study: Optimisation 3 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 Opt 2 

768 x 432 331,776 0.0107 x1.4 x1.4 

2560 x 1600 4,096,000 0.0850 x4.5 x4.5 

2048 x 2048 4,194,304 0.0865 x1.7 x2.0 

5760 x 3240 18,662,400 0.382 x6.0 x6.0 

7680 x 4320 33,177,600 0.680 x6.2 x6.3 

Work registers: 8 8+ 8 

ALU cycles: 25.5 22.5 24.5 

L/S cycles: 28 13 8 

Opt 3 

x1.5 

x6.2 

x1.9 

x8.5 

x9.0 

7 

13.5 

9 

 Using Short Ints Results 
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OpenCL Laplace Case Study: Optimisation 4 

 Try 4-pixels per work-item rather than 5 

 With some image sizes perhaps the driver can optimize more efficiently 

when 4 pixels are being calculated 

 
  
    __kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
    { 
        int y         = get_global_id(0); 
        int x         = get_global_id(1); 
        int w         = width; 
        int h         = height; 
        int ind       = x * 5 * 3 + w * y * 3; 

 
    ... 

 

   becomes… 
 

    __kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int width, int height) 
    { 
        int y         = get_global_id(0); 
        int x         = get_global_id(1); 
        int w         = width; 
        int h         = height; 
        int ind       = x * 4 * 3 + w * y * 3; 

 
    ... 
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OpenCL Laplace Case Study 

 And our date write out becomes simpler… 
  
    
    ... 
 
        vstore8(res_row.s01234567, 0, pdst + ind); 
        vstore4(res_row.s89ab,     0, pdst + ind + 8); 
        vstore2(res_row.scd,       0, pdst + ind + 12); 
        pdst[ind + 14]    = res_row.se; 
 
 
 

   becomes… 
 
 

    ... 
 

        vstore8(res_row.s01234567, 0, pdst + ind); 
        vstore4(res_row.s89ab,     0, pdst + ind + 8); 
 
 
 
 
 

  …and we need to adjust the setup code to adjust the work-item count. 
 



91 

 

OpenCL Laplace Case Study 

Image Pixels Original Opt 1 Opt 2 Opt 3 

768 x 432 331,776 0.0107 x1.4 x1.4 x1.5 

2560 x 1600 4,096,000 0.0850 x4.5 x4.5 x6.2 

2048 x 2048 4,194,304 0.0865 x1.7 x2.0 x1.9 

5760 x 3240 18,662,400 0.382 x6.0 x6.0 x8.5 

7680 x 4320 33,177,600 0.680 x6.2 x6.3 x9.0 

Work registers: 8 8+ 8 7 

ALU cycles: 25.5 22.5 24.5 13.5 

L/S cycles: 28 13 8 9 

Opt 4 

x1.6 

x5.2 

x5.3 

x7.2 

x7.5 

6 

14 

6 

 Computing 4 Pixels Results 
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OpenCL Laplace Case Study: Optimisation 5 

 How about 8 pixels per work-item? 
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OpenCL Laplace Case Study 
 

 

__kernel void math(__global unsigned char *pdst, __global unsigned char *psrc, int w, int h) 
{ 
    const int y       = get_global_id(0); 
    const int x       = get_global_id(1) * 8; 
    int       ind     = (x + w * y) * 3; 
    short16   acc_xy; 
    short8    acc_z; 
   
    uchar16 l_0    = vload16(0, psrc + ind); 
    uchar16 r_0    = vload16(0, psrc + ind + 14); 
    short16 a_xy_0 = convert_short16((uchar16)(l_0.s0123456789abcdef)); 
    short8  a_z_0  = convert_short8((uchar8)(r_0.s23456789)); 
    short16 b_xy_0 = convert_short16((uchar16)(l_0.s3456789a, l_0.sbcde, r_0.s1234)); 
    short8  b_z_0  = convert_short8((uchar8)(r_0.s56789abc)); 
    short16 c_xy_0 = convert_short16((uchar16)(l_0.s6789abcd, r_0.s01234567)); 
    short8  c_z_0  = convert_short8((uchar8)(r_0.s89abcdef)); 
    acc_xy         = -a_xy_0 - b_xy_0 - c_xy_0; 
    acc_z          = -a_z_0  - b_z_0  - c_z_0; 
   
    uchar16 l_1    = vload16(0, psrc + ind + (w * 3)); 
    uchar16 r_1    = vload16(0, psrc + ind + (w * 3) + 14); 
    short16 a_xy_1 = convert_short16((uchar16)(l_1.s0123456789abcdef)); 
    short8  a_z_1  = convert_short8((uchar8)(r_1.s23456789)); 
    short16 b_xy_1 = convert_short16((uchar16)(l_1.s3456789a, l_0.sbcde, r_0.s1234)); 
    short8  b_z_1  = convert_short8((uchar8)(r_1.s56789abc)); 
    short16 c_xy_1 = convert_short16((uchar16)(l_1.s6789abcd, r_0.s01234567)); 
    short8  c_z_1  = convert_short8((uchar8)(r_1.s89abcdef)); 
    acc_xy         = -a_xy_1 + b_xy_1 * (short)9 - c_xy_1; 
    acc_z         += -a_z_1  + b_z_1  * (short)9 - c_z_1; 
   
    uchar16 l_2    = vload16(0, psrc + ind + (w * 6)); 
    uchar16 r_2    = vload16(0, psrc + ind + (w * 6) + 14); 
    short16 a_xy_2 = convert_short16((uchar16)(l_2.s0123456789abcdef)); 
    short8  a_z_2  = convert_short8((uchar8)(r_2.s23456789)); 
    short16 b_xy_2 = convert_short16((uchar16)(l_2.s3456789a, l_0.sbcde, r_0.s1234)); 
    short8  b_z_2  = convert_short8((uchar8)(r_2.s56789abc)); 
    short16 c_xy_2 = convert_short16((uchar16)(l_2.s6789abcd, r_0.s01234567)); 
    short8  c_z_2  = convert_short8((uchar8)(r_2.s89abcdef)); 
    acc_xy         += -a_xy_2 - b_xy_2 - c_xy_2; 
    acc_z          += -a_z_2  - b_z_2  - c_z_2; 
     
    short16 res_xy = clamp(acc_xy, (short16)0, (short16)255); 
    short8 res_z   = clamp(acc_z,  (short8)0,  (short8)255); 
   
    vstore16(convert_uchar16(res_xy), 0, pdst + ind); 
    vstore8(convert_uchar8(res_z), 0, pdst + ind + 16); 
} 
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OpenCL Laplace Case Study 

Image Pixels Original Opt 1 Opt 2 Opt 3 Opt 4 

768 x 432 331,776 0.0107 x1.4 x1.4 x1.5 x1.6 

2560 x 1600 4,096,000 0.0850 x4.5 x4.5 x6.2 x5.2 

2048 x 2048 4,194,304 0.0865 x1.7 x2.0 x1.9 x5.3 

5760 x 3240 18,662,400 0.382 x6.0 x6.0 x8.5 x7.2 

7680 x 4320 33,177,600 0.680 x6.2 x6.3 x9.0 x7.5 

Work registers: 8 8+ 8 7 6 

ALU cycles: 25.5 22.5 24.5 13.5 14 

L/S cycles: 28 13 8 9 6 

Opt 5 

x1.2 

x5.6 

x5.8 

x8.4 

x9.1 

8+ 

24 

11 

 Computing 8 Pixels:  Results 
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OpenCL Laplace Case Study: Summary 
 Original version: Scalar code 

 Optimisation 1: Vectorize 

 Process 5 pixels per work-item 

 Vector loads (vloadn) and vector stores (vstoren) 

 Much better use of the GPU ALU: Up to x6.2 performance increase 

 Optimisation 2: Synthesised loads 

 Reduce the number of loads by synthesising values 

 Performance increase: up to x6.3 over original 

 Optimisation 3: Replace int16 with short16 

 Reduces the kernel register count 

 Performance increase: up to x9.0 over original 

 Optimisation 4: Try 4 pixels per work-item rather than 5 

 Performance increase: up to x7.5 over original 

 but it depends on the image size 

 Optimisation 5: Try 8 pixels per work-item 

 Performance increase: up to x9.1 over original… but a mixed bag. 
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Agenda 

 Introduction to Mali GPUs 

 Mali-T600 / T700 Compute Overview 

 Optimal OpenCL for Mali-T600 / T700 

 OpenCL Optimization Case Studies 

 Laplace 

 SGEMM 
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 Question from a developer sent to malidevelopers@arm.com... 

 Running SGEMM on 1024x1024 matrices on a Chromebook (Dual A15, Mali-T604) 

 Takes ~3s on the CPU 

 Takes ~84s using OpenCL on the GPU 

 

 Initial analysis from ARM Developer Relations engineers… 

 Error found in the DVFS implementation of the device used 

 Working around this reduced the time to ~12s 

 Further analysis showed how susceptible SGEMM is to workgroup size 

 And some analysis showed benefits in pre-transposing matrix on the CPU 

 With some experimentation in LWS, time reduced to ~2.5s on GPU 

SGEMM: Preface 

mailto:malidevelopers@arm.com
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SGEMM: The task 

 Input:  Matrices A, B, C (assumed to be nxn square matrices) and constants alpha, beta 

 Task:   

 In terms of matrix elements:  

 Naive implementation: 
 

__kernel void sgemm(__global float *A, __global float *B, __global float *C,  

                    float alpha, float beta, int n) 

{ 

 float sum = 0.0; 

 for (int k=0; k<n; k++) { sum += A[i*n+k]*B[k*n+j]; } 

 C[i*n+j] = alpha*sum + beta*C[i*n+j];  

} 
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Transposition 

 We could transpose B before the computation,  and implement the kernel 

 

 

 

 We now have two kernels 

 One kernel for the transposition 

 One kernel for the matrix multiplication 

 Runtime is dominated by the multiplication 

 On the Midgard architecture, there generally an advantage to adding a transposition. 

 [List advantages of transposition] 
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Execution order, without transposition 

 In program order, we have a very simple access pattern 

 

 

 

 

 

 Taking the threads in a workgroup into account, it becomes slightly less simple 
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With transposition 

 In program order, we always have sequential loads from memory. 

 

 

 

 

 

 Taking the threads in a workgroup into account, we switch between different cache lines 
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Register Blocking 

 New view:  A, B and C are block matrices with block-sizes 

  ∆ I x ∆ K, ∆ K x ∆ J and ∆ I x ∆ J 

 Same equation, different multiplication operation 

 

 

 

 The number of elements that need to be loaded into registers shows that we do not 

care about deltaK, and we want deltaI similar to deltaJ 
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Vectorisation 

 The “inner” matrix multiplication multiplies two small matrices. We want to implement 

this matrix multiplication using vector operations. 

 We prefer operations on 4-component vectors. 

 Without transposition, this requires ∆K and ∆ J to be multiples of 4, but with 

transposition this only requires ∆ K to be a multiple of 4. 

 Due to the finite number of registers, we choose (∆ I, ∆ J, ∆ K) equal to (1, 4, 4) and (2, 

2, 4) without and with transposition, respectively.  

 We saw that similar ∆ I and ∆ J are better, and here find an advantage for the 

transposition. 

 Other schemes with more complex rearrangements than transposition are also 

possible. 
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Blocked implementation 

 for (k=0; k<n; k++) sum += b[i, k] * b[k,j]; 

 Scalar multiplication 

 2 elements loaded per multiplication 

 
 for (k=0; k<n/4 k++) { 

       sum += a[i, k].x * b[k, j] +  

             a[i, k].y * b[k+1, j] + 

             a[i, k].z * b[k+2, j] + 

             a[i, k].w * b[k+3, j]; } 

 Using 4 vector multiplication 

 20 elements read per 16 multiplications 
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Cache utilization 

 We can compute the number of cache-lines that a workgroup has to load while 

executing.. 

 We reuse cache-lines during every sequence of 4 iterations,  and we therefore compute 

the number of L1 cache lines needed by one workgroup for 4 iterations. 

 

 

 

 If all threads execute in the order they were started, there is no problem as long as we 

are below 100%. 

 In reality, threads diverge 

Workgroup size (dim 2) 1 2 4 8 16 32 64 128 

L1 fraction 2.0 1.0 0.52 0.28 0.19 0.19 0.28 0.52 

Li fraction (transposed) 1.0 0.52 0.28 0.19 0.19 0.28 0.52 1.0 
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Inside a Core 

),,,max( 10 TexLSAAT 
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Thread divergence 

 Threads execute independently and have independent PC values 

 Divergence in PC values due to cache misses and behaviour at various queues 

 One workgroup will work on several iterations at once 

 Several workgroups will be simultaneously active (for large enough matrices) 

 This increases cache usage 

 Lower estimated cache usage without thread divergence is a buffer against performance 

degradation due to thread divergence 
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Cache blocking 

 We need to handle thread divergence for large matrices 

 We introduce another level of blocking, considering the matrices to consist of larger 

blocks 

 We pause the loop at the end of every block, waiting for the remaining threads to finish. 

 This delays all threads at workgroup switch, and therefore has a cost. 

 It ensures that all threads active on the GPU work on a small dataset, allowing better 

cache utilization. 

 A trade-off that is needed for larger matrices. 
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Implementation 

 We wait every dk iterations of the inner loop 

  for (uint k = 0; k < nv4; k += dk) 

        { 

   for (uint kk = k; kk < k + dk; kk += 1) 

   { 

                        // Inner loop body 

   } 

  // Wait for all work-items to finish the current tile. 

  barrier(CLK_GLOBAL_MEM_FENCE); 

  } 
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Barriers 

 At a barrier, all threads in the workgroup enter the texture pipe and wait until all 

threads have arrived. 

 Then they exit from the pipe, one thread at a time. 

 In many cases relating to correctness, barriers can be avoided and replaced by implicit 

barriers at job-switch or by explicit synchronization using atomics. 

 For performance, we have seen that barriers can be useful to counter thread 

divergence. 
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Transposition revisited 

 In sequential execution, transposition minimizes cache misses. 

 On a parallel architecture, this is less clear,  however 

 It allows us to use better register blocking, for a good trade-off between less loads and 

more vector operations. 

 It decreases the L1 cache usage (for our preferred workgroup sizes), allowing us to 

cope better with thread divergence. 

  Transposition allows us to keep looking at the same page of memory for a longer time, 

which is beneficial for the MMU. 
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