
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

Achieving Console

Quality Games on Mobile

GDC 2017

Peter Harris, Senior Principal Engineer, ARM

Unai Landa, CTO, Digital Legends

Jon Kirkham, Staff Engineer, ARM

© ARM 2017 2

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Agenda

 Premium smartphone in 2017

 ARM Cortex CPU efficiency

 ARM Mali GPU efficiency

 Best practises

 Six principles of high performance rendering

 Digital Legends Afterpulse case study

 Mali Tools overview

© ARM 2017 3

Text 54pt sentence case Premium smartphone in 2017

© ARM 2017 4

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The premium smartphone

24x
Higher screen

resolution

5x
Increase in

environmental

sensors

100x
Higher compute

performance

20x
Increase in

connectivity

300x
Higher GPU

performance

Today’s high-end phone compared to 2009

© ARM 2017 5

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The premium content challenge

Thermal dissipation

More

processing More

bandwidth

© ARM 2017

Nexus One

11.5mm

45%
thinner

2010 2012 2014 2016

Galaxy S7

7.9mm

Galaxy S3

8.6mm
Lumia 1520

8.4mm

2-3 Watt SoC budget

© ARM 2017 6

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

More performance, less power
R

e
la

ti
ve

 v
s.
 C

o
rt

e
x
-A

7

Power consumption measured in mW/unit performance

Performance measured as single thread at-speed

Cortex-A15 Cortex-A57 Cortex-A72 Cortex-A73

Continuous growth in

delivered performance

Continuous reduction

in power consumption

and

Power efficiency

contributing to

longer battery life

Power efficiency

allowing available

power budget to

be reallocated

or

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

big.LITTLE: A technology that keeps improving

 Reduces driver draw overhead

 Adds multi-threaded rendering support

 Reduces average per-core CPU load

 Allows more tasks to use LITTLE cores

 Improves overall task energy efficiency

2017

High Performance

“big”

High Efficiency

“LITTLE”

Intelligent Power

Allocation* (IPA)

Energy Aware

Scheduling** (EAS)
(includes IPA)

Software

Improvement
Thermal

management

Mainline Linux,

Generic energy models

for task scheduling

* Available on Linux today

** Ready for upstream

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Introducing the Bifrost architecture

 3rd generation programmable Mali GPU

 Energy efficiency: more FPS per Watt

 Performance density: more FPS per mm2

 Bandwidth efficiency: fewer bytes per frame

 New scalar ISA with quad-based arithmetic units

 Maximize efficiency of the arithmetic hardware in the design

 New geometry data flow

 Minimize vertex bandwidth related to culled triangles

Separate

Cores

SIMD ISA

Unified

Cores

SIMD ISA

Unified

Cores

Scalar ISA

Utgard

Midgard

Bifrost

© ARM 2017 9

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Tile-based rendering pipeline

 All Mali GPUs are tile-based renderers

 All geometry processed before fragment shading is started

 Fragment shading processed as a stream of 16x16 pixel tiles

 Pros: Fragment shading intermediate state local to the GPU

 Cons: Geometry intermediate state sent via system memory

DDR

GPU
Vertex

Shader

Vertex

Attributes

Tiler

Geometry Working Set

(Tile List and Varyings)
Framebuffer Textures

Local

Tile Memory

Fragment

Shader

© ARM 2017 10

Text 54pt sentence case Mali best practices

© ARM 2017 11

Text 54pt sentence case

“Efficiency is doing things right

 Effectiveness is doing the right things”
- Peter Drucker

© ARM 2017 12

Text 54pt sentence case

The Key Principle

Spend cycles where they make a

visible difference to the final render

© ARM 2017 13

Text 54pt sentence case

Principle one

Remove major redundancy

in the application

© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Applications know more than the driver

 Graphics drivers are deliberately ignorant of overall scene state

 Draw calls and triangles within them are processed in isolation

 Ignorance is pursued by design because it keeps thing fast

 ... but means that drivers cannot apply high-level optimizations

 Only the application has any high-level knowledge of the scene

 Exploit knowledge of the scene structure ruthlessly in your game engines

 The fastest mesh you’ll ever draw is the one that you don’t draw at all

© ARM 2017 15

Text 54pt sentence case

Principle two

Help the hardware remove

in-frustum redundancy

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Hardware tools

 Do: Remember to enable the facing test to kill back-facing triangles

 Do: Maximize use of early depth and stencil “ZS” testing

 Render order: opaque front-to-back then transparent back-to-front

 Do: Maximize potential use of Mali Forward Pixel Kill hidden surface removal*

 Opaque fragments can cull occluded fragments even if not in front-to-back order

 Opaque: no blending, no shader discard, no alpha-to-coverage

 Occluded: any fragment without side-effects

* Present in Mali-T620 onwards

Draw Opaque

Draw Transparent

© ARM 2017 17

Text 54pt sentence case

Principle three

Amortize software overheads

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Draw call batching

 Committing draw operations to the command stream is not free

 CPU setup cost setting up the state and emitting the commands

 Do: Batch draws for multiple objects into a single larger draw

 Use texture atlases to merge distinct render states into a single batch

 Use static batching for stationary objects

 Use runtime batching for objects which move

 Do: Batching is still worth while on Vulkan

 Beware: Trade-off between optimal batching and optimal culling/depth sorting

© ARM 2017 19

Text 54pt sentence case

Principle four

Optimize your data streams

© ARM 2017 20

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Geometry streams

 Effective geometry encoding aims to minimize the geometry bandwidth

 Vertex shader bandwidth: Attribute reads, Varying writes

 Fragment shader bandwidth: Varying reads

 Do: Use appropriate geometry level of detail and triangle density

 Dynamic mesh LoD based on view-distance if large range of depth values used for a mesh

 Do: Ensure good spatial locality and data density in attribute encoding

 Aim for contiguous index ranges for each draw without holes (for all LoD levels)

 Use fp16 “mediump” inputs as much as possible

 Minimize padding and unused fields in any input structures

 Do: Interleave non-position attributes in one buffer and position in another

 Reduces data bandwidth for culled triangles in Bifrost; only need position data before culling

© ARM 2017 21

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Texture streams

 Do: Use texture compression

 OpenGL ES 3.0 and 3.1 mandates ETC2 + EAC

 Standard support for alpha channel compression

 OpenGL ES 3.2 mandates ASTC 2D LDR profile

 Extremely flexible texture compression in terms of both formats and bitrates

 Mali supports all ASTC extensions: 2D LDR, 2D HDR, and 3D volumetric textures

 Do: Use mipmapping:

 Looks better and goes faster; no reason not to use it for 3D content

 Beware Trilinear (GL_*_MIPMAP_LINEAR) filtering is half throughput

 If texture unit limited just use bilinear (GL_*_MIPMAP_NEAREST) filtering

© ARM 2017 22

Text 54pt sentence case

Principle five

Play to the strengths of

the underlying GPU

© ARM 2017 23

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Play to architecture strengths

 Tile memory in a tile-based renderer provides some useful features

 Low cost 4x and 8x multi-sample anti-aliasing

 Do: Use EXT_multisampled_render_to_texture to get free resolve for off-screen renders

 Direct access to the tile-buffer for in-tile deferred rendering schemes

 Structure-like access: EXT_shader_pixel_local_storage

 Framebuffer-like access: EXT_shader_framebuffer_fetch

 Also: ARM_shader_framebuffer_fetch_depth_stencil

 Vulkan support via subpass functionality exposed in the API

 Do: aim for maximum of 128-bits per pixel of storage

© ARM 2017 24

Text 54pt sentence case

Principle six

Optimize your shader code

© ARM 2017 25

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shaders

 Do: Optimize the most significant shaders

 It’s time consuming so you don’t want to do it for all shaders

 Do: Optimize what you can by hand in the shader source

 Developers often over-estimate what a compiler is able to optimize

 If you get it right in the source then its guaranteed to be right in the binary

 Do: Use fp16 “mediump” where possible for both data feeds and computation

 Do: Write vector code as it’s a more natural fit for existing Mali devices

 Don’t: Reinvent the ESSL built-in function library in hand-written code

 It’s very well optimized and often backed by dedicated hardware

© ARM 2017 26

Text 54pt sentence case

Afterpulse

A Digital Legends case study

© ARM 2017 27

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Our motivations

 Heat

 Heat

 Heat

 Heat

© ARM 2017 28

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle One: Engine redundancy removal

 Shadow proxy meshes

 Frustum culling

 Occlusion culling

 Level of detail

 Contribution culling

© ARM 2017 29

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle One: Occlusion culling example

P
la

y
e
r

V
ie

w

© ARM 2017 30

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle One: Occlusion culling example

Culling off

Culling on

© ARM 2017 31

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Two: Assist overdraw removal

 Draw Opaque, then alpha-test, then… no don’t draw alpha.

 Unless you really need it

 Avoid discard in shaders

 Use layout(early_fragment_tests) in fragment shaders

 Forces early-zs testing in situations where engine knows it is safe, but the driver might not

 Do “loose” front to back sort of object batches

 Efficiency of batching tested on a per-game level basis

© ARM 2017 32

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Two: Assist overdraw removal

© ARM 2017 33

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Three: Amortize driver overheads

 Engine aims to minimize the number of driver calls

 Avoid frame buffer changes and reuse them if possible, build some kind of draw graph and

optimize it

 Group by geometry, textures and parameters

 Use instances

 OpenGL API calls are offloaded to dedicated CPU dispatch thread

 Main game logic thread is not limited by the driver times

© ARM 2017 34

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Three: Amortize driver overheads

© ARM 2017 35

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Four: Optimize data streams

 Geometry streams

 Use “compact” formats like GL_INT_2_10_10_10_REV for tangents and normals

 Use half float for object texture coordinates

 RGBA8 GL_BYTE vectors for colors

 Vertex Interpolators:

 In our experience they are expensive if they are big

 Texture

 Use ASTC formats as much as you can

 Use uniform blocks

 Avoid redundant parameter updates to GPU, hash and track draw call parameters

 Split shader data at least into local and global buffers

 Promote “static” data from dynamic buǟers to static ones if not changed in several frames

© ARM 2017 36

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Five: Play to strengths of the GPU

 Use of the PLS and/or frame_buffer_fetch is key to the pipeline

 Reducing bandwidth and heat, and saving battery

 Also use GL_ARM_shader_framebuffer_fetch_depth_stencil

 Avoid the z-write on the deferred pass and optimise the deferred lighting pass.

 Deferred lighting G-Buffer in pixel local storage looks like this:

 __pixel_localEXT FragLocalData {

 layout(r11f_g11f_b10f) krmFloat3 buff_0;

 layout(rgba8) krmFloat4 normals_gloss;

 layout(rgba8) krmFloat4 albedo_mtl;

 } Storage;

© ARM 2017 37

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

© ARM 2017 38

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

 PLS avoids needs to read and write the G-Buffer via system RAM

 Total savings average 60MB of bandwidth a frame

 Rough rule of thumb is an energy cost of 100pJ per byte of DDR memory access

 60MB * 30FPS * 100pJ = 180mW of power saving at the system level

Mali Pixel Local Storage bandwidth savings

M
a
li
-T

8
8
0

Pixel Local Storage G-Buffer Traditional MRT G-Buffer

105MB Read

62MB Write

119MB Read

105MB Write

x108

© ARM 2017 39

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Six: Optimize your shaders

 Engine builds all the shader variations offline to avoid logic inside the shader

 All shaders moved to mediump precision by default

 Be aggressive, spend time to fix visible precision issues later

 Tweaking required to find and fix the issues, but it pays

© ARM 2017 40

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

© ARM 2017 41

Text 54pt sentence case Mali analysis tools

© ARM 2017 42

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Tools workflow
 Analyze

DS-5 Streamline

 Profile CPUs and Mali GPUs

 Timeline

 HW counters

 OpenCL visualizer
Debug

Mali Graphics Debugger

 API trace & debug

 OpenGL ES, OpenCL

 Debug and improve
performance at frame level

Optimize

Mali Offline Compiler

 Analyze shader performance

 Command line tool

 Number of cycles

 Registers utilization

© ARM 2017 43

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Mali GPU support Customize it for your system

Speed up your code
OpenCL™

visualizer

Drill down to the

source code

ARM DS-5 Streamline

© ARM 2017 44

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Mali Graphics Debugger (MGD)

Graphics state visibility Analyze shaders and kernels Flexible and cross platform

Advanced drawing modes

Frame analyzer

Android application
Advanced API debugger

© ARM 2017 45

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

New for GDC 2017

 Root access is no longer

required for ARM DS-5

Streamline

 MGD can be used easily from:

 Android™ Studio

 Unity®

 Unreal® Engine

© ARM 2017 46

Text 54pt sentence case

Want to know more?

ARM Stand:

South Hall #1924

ARM Mali Developer Guides & Tools:
https://developer.arm.com/graphics

© ARM 2017 47

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Don’t miss these other sessions and

three ways to win cool prizes

Thur. March 2, 10:00-11:00 AM

Moscone West – Rm. 3022

Get the most from Vulkan in Unity with practical examples from Infinite dreams

Joint with Unity and Infinite Dreams

Daily prize draw at 5 PM Thursday at ARM booth #1942

See the postcard for more details.

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be

trademarks of their respective owners.

Copyright © 2017 ARM Limited

© ARM 2017

