
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

Achieving Console

Quality Games on Mobile

GDC 2017

Peter Harris, Senior Principal Engineer, ARM

Unai Landa, CTO, Digital Legends

Jon Kirkham, Staff Engineer, ARM

© ARM 2017 2

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Agenda

 Premium smartphone in 2017

 ARM Cortex CPU efficiency

 ARM Mali GPU efficiency

 Best practises

 Six principles of high performance rendering

 Digital Legends Afterpulse case study

 Mali Tools overview

© ARM 2017 3

Text 54pt sentence case Premium smartphone in 2017

© ARM 2017 4

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The premium smartphone

24x
Higher screen

resolution

5x
Increase in

environmental

sensors

100x
Higher compute

performance

20x
Increase in

connectivity

300x
Higher GPU

performance

Today’s high-end phone compared to 2009

© ARM 2017 5

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The premium content challenge

Thermal dissipation

More

processing More

bandwidth

© ARM 2017

Nexus One

11.5mm

45%
thinner

2010 2012 2014 2016

Galaxy S7

7.9mm

Galaxy S3

8.6mm
Lumia 1520

8.4mm

2-3 Watt SoC budget

© ARM 2017 6

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

More performance, less power
R

e
la

ti
ve

 v
s.
 C

o
rt

e
x
-A

7

Power consumption measured in mW/unit performance

Performance measured as single thread at-speed

Cortex-A15 Cortex-A57 Cortex-A72 Cortex-A73

Continuous growth in

delivered performance

Continuous reduction

in power consumption

and

Power efficiency

contributing to

longer battery life

Power efficiency

allowing available

power budget to

be reallocated

or

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

big.LITTLE: A technology that keeps improving

 Reduces driver draw overhead

 Adds multi-threaded rendering support

 Reduces average per-core CPU load

 Allows more tasks to use LITTLE cores

 Improves overall task energy efficiency

2017

High Performance

“big”

High Efficiency

“LITTLE”

Intelligent Power

Allocation* (IPA)

Energy Aware

Scheduling** (EAS)
(includes IPA)

Software

Improvement
Thermal

management

Mainline Linux,

Generic energy models

for task scheduling

* Available on Linux today

** Ready for upstream

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Introducing the Bifrost architecture

 3rd generation programmable Mali GPU

 Energy efficiency: more FPS per Watt

 Performance density: more FPS per mm2

 Bandwidth efficiency: fewer bytes per frame

 New scalar ISA with quad-based arithmetic units

 Maximize efficiency of the arithmetic hardware in the design

 New geometry data flow

 Minimize vertex bandwidth related to culled triangles

Separate

Cores

SIMD ISA

Unified

Cores

SIMD ISA

Unified

Cores

Scalar ISA

Utgard

Midgard

Bifrost

© ARM 2017 9

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Tile-based rendering pipeline

 All Mali GPUs are tile-based renderers

 All geometry processed before fragment shading is started

 Fragment shading processed as a stream of 16x16 pixel tiles

 Pros: Fragment shading intermediate state local to the GPU

 Cons: Geometry intermediate state sent via system memory

DDR

GPU
Vertex

Shader

Vertex

Attributes

Tiler

Geometry Working Set

(Tile List and Varyings)
Framebuffer Textures

Local

Tile Memory

Fragment

Shader

© ARM 2017 10

Text 54pt sentence case Mali best practices

© ARM 2017 11

Text 54pt sentence case

“Efficiency is doing things right

 Effectiveness is doing the right things”
- Peter Drucker

© ARM 2017 12

Text 54pt sentence case

The Key Principle

Spend cycles where they make a

visible difference to the final render

© ARM 2017 13

Text 54pt sentence case

Principle one

Remove major redundancy

in the application

© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Applications know more than the driver

 Graphics drivers are deliberately ignorant of overall scene state

 Draw calls and triangles within them are processed in isolation

 Ignorance is pursued by design because it keeps thing fast

 ... but means that drivers cannot apply high-level optimizations

 Only the application has any high-level knowledge of the scene

 Exploit knowledge of the scene structure ruthlessly in your game engines

 The fastest mesh you’ll ever draw is the one that you don’t draw at all

© ARM 2017 15

Text 54pt sentence case

Principle two

Help the hardware remove

in-frustum redundancy

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Hardware tools

 Do: Remember to enable the facing test to kill back-facing triangles

 Do: Maximize use of early depth and stencil “ZS” testing

 Render order: opaque front-to-back then transparent back-to-front

 Do: Maximize potential use of Mali Forward Pixel Kill hidden surface removal*

 Opaque fragments can cull occluded fragments even if not in front-to-back order

 Opaque: no blending, no shader discard, no alpha-to-coverage

 Occluded: any fragment without side-effects

* Present in Mali-T620 onwards

Draw Opaque

Draw Transparent

© ARM 2017 17

Text 54pt sentence case

Principle three

Amortize software overheads

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Draw call batching

 Committing draw operations to the command stream is not free

 CPU setup cost setting up the state and emitting the commands

 Do: Batch draws for multiple objects into a single larger draw

 Use texture atlases to merge distinct render states into a single batch

 Use static batching for stationary objects

 Use runtime batching for objects which move

 Do: Batching is still worth while on Vulkan

 Beware: Trade-off between optimal batching and optimal culling/depth sorting

© ARM 2017 19

Text 54pt sentence case

Principle four

Optimize your data streams

© ARM 2017 20

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Geometry streams

 Effective geometry encoding aims to minimize the geometry bandwidth

 Vertex shader bandwidth: Attribute reads, Varying writes

 Fragment shader bandwidth: Varying reads

 Do: Use appropriate geometry level of detail and triangle density

 Dynamic mesh LoD based on view-distance if large range of depth values used for a mesh

 Do: Ensure good spatial locality and data density in attribute encoding

 Aim for contiguous index ranges for each draw without holes (for all LoD levels)

 Use fp16 “mediump” inputs as much as possible

 Minimize padding and unused fields in any input structures

 Do: Interleave non-position attributes in one buffer and position in another

 Reduces data bandwidth for culled triangles in Bifrost; only need position data before culling

© ARM 2017 21

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Texture streams

 Do: Use texture compression

 OpenGL ES 3.0 and 3.1 mandates ETC2 + EAC

 Standard support for alpha channel compression

 OpenGL ES 3.2 mandates ASTC 2D LDR profile

 Extremely flexible texture compression in terms of both formats and bitrates

 Mali supports all ASTC extensions: 2D LDR, 2D HDR, and 3D volumetric textures

 Do: Use mipmapping:

 Looks better and goes faster; no reason not to use it for 3D content

 Beware Trilinear (GL_*_MIPMAP_LINEAR) filtering is half throughput

 If texture unit limited just use bilinear (GL_*_MIPMAP_NEAREST) filtering

© ARM 2017 22

Text 54pt sentence case

Principle five

Play to the strengths of

the underlying GPU

© ARM 2017 23

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Play to architecture strengths

 Tile memory in a tile-based renderer provides some useful features

 Low cost 4x and 8x multi-sample anti-aliasing

 Do: Use EXT_multisampled_render_to_texture to get free resolve for off-screen renders

 Direct access to the tile-buffer for in-tile deferred rendering schemes

 Structure-like access: EXT_shader_pixel_local_storage

 Framebuffer-like access: EXT_shader_framebuffer_fetch

 Also: ARM_shader_framebuffer_fetch_depth_stencil

 Vulkan support via subpass functionality exposed in the API

 Do: aim for maximum of 128-bits per pixel of storage

© ARM 2017 24

Text 54pt sentence case

Principle six

Optimize your shader code

© ARM 2017 25

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shaders

 Do: Optimize the most significant shaders

 It’s time consuming so you don’t want to do it for all shaders

 Do: Optimize what you can by hand in the shader source

 Developers often over-estimate what a compiler is able to optimize

 If you get it right in the source then its guaranteed to be right in the binary

 Do: Use fp16 “mediump” where possible for both data feeds and computation

 Do: Write vector code as it’s a more natural fit for existing Mali devices

 Don’t: Reinvent the ESSL built-in function library in hand-written code

 It’s very well optimized and often backed by dedicated hardware

© ARM 2017 26

Text 54pt sentence case

Afterpulse

A Digital Legends case study

© ARM 2017 27

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Our motivations

 Heat

 Heat

 Heat

 Heat

© ARM 2017 28

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle One: Engine redundancy removal

 Shadow proxy meshes

 Frustum culling

 Occlusion culling

 Level of detail

 Contribution culling

© ARM 2017 29

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle One: Occlusion culling example

P
la

y
e
r

V
ie

w

© ARM 2017 30

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle One: Occlusion culling example

Culling off

Culling on

© ARM 2017 31

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Two: Assist overdraw removal

 Draw Opaque, then alpha-test, then… no don’t draw alpha.

 Unless you really need it

 Avoid discard in shaders

 Use layout(early_fragment_tests) in fragment shaders

 Forces early-zs testing in situations where engine knows it is safe, but the driver might not

 Do “loose” front to back sort of object batches

 Efficiency of batching tested on a per-game level basis

© ARM 2017 32

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Two: Assist overdraw removal

© ARM 2017 33

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Three: Amortize driver overheads

 Engine aims to minimize the number of driver calls

 Avoid frame buffer changes and reuse them if possible, build some kind of draw graph and

optimize it

 Group by geometry, textures and parameters

 Use instances

 OpenGL API calls are offloaded to dedicated CPU dispatch thread

 Main game logic thread is not limited by the driver times

© ARM 2017 34

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Three: Amortize driver overheads

© ARM 2017 35

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Four: Optimize data streams

 Geometry streams

 Use “compact” formats like GL_INT_2_10_10_10_REV for tangents and normals

 Use half float for object texture coordinates

 RGBA8 GL_BYTE vectors for colors

 Vertex Interpolators:

 In our experience they are expensive if they are big

 Texture

 Use ASTC formats as much as you can

 Use uniform blocks

 Avoid redundant parameter updates to GPU, hash and track draw call parameters

 Split shader data at least into local and global buffers

 Promote “static” data from dynamic buǟers to static ones if not changed in several frames

© ARM 2017 36

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Five: Play to strengths of the GPU

 Use of the PLS and/or frame_buffer_fetch is key to the pipeline

 Reducing bandwidth and heat, and saving battery

 Also use GL_ARM_shader_framebuffer_fetch_depth_stencil

 Avoid the z-write on the deferred pass and optimise the deferred lighting pass.

 Deferred lighting G-Buffer in pixel local storage looks like this:

 __pixel_localEXT FragLocalData {

 layout(r11f_g11f_b10f) krmFloat3 buff_0;

 layout(rgba8) krmFloat4 normals_gloss;

 layout(rgba8) krmFloat4 albedo_mtl;

 } Storage;

© ARM 2017 37

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

© ARM 2017 38

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

 PLS avoids needs to read and write the G-Buffer via system RAM

 Total savings average 60MB of bandwidth a frame

 Rough rule of thumb is an energy cost of 100pJ per byte of DDR memory access

 60MB * 30FPS * 100pJ = 180mW of power saving at the system level

Mali Pixel Local Storage bandwidth savings

M
a
li
-T

8
8
0

Pixel Local Storage G-Buffer Traditional MRT G-Buffer

105MB Read

62MB Write

119MB Read

105MB Write

x108

© ARM 2017 39

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Principle Six: Optimize your shaders

 Engine builds all the shader variations offline to avoid logic inside the shader

 All shaders moved to mediump precision by default

 Be aggressive, spend time to fix visible precision issues later

 Tweaking required to find and fix the issues, but it pays

© ARM 2017 40

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

© ARM 2017 41

Text 54pt sentence case Mali analysis tools

© ARM 2017 42

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Tools workflow
 Analyze

DS-5 Streamline

 Profile CPUs and Mali GPUs

 Timeline

 HW counters

 OpenCL visualizer
Debug

Mali Graphics Debugger

 API trace & debug

 OpenGL ES, OpenCL

 Debug and improve
performance at frame level

Optimize

Mali Offline Compiler

 Analyze shader performance

 Command line tool

 Number of cycles

 Registers utilization

© ARM 2017 43

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Mali GPU support Customize it for your system

Speed up your code
OpenCL™

visualizer

Drill down to the

source code

ARM DS-5 Streamline

© ARM 2017 44

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Mali Graphics Debugger (MGD)

Graphics state visibility Analyze shaders and kernels Flexible and cross platform

Advanced drawing modes

Frame analyzer

Android application
Advanced API debugger

© ARM 2017 45

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

New for GDC 2017

 Root access is no longer

required for ARM DS-5

Streamline

 MGD can be used easily from:

 Android™ Studio

 Unity®

 Unreal® Engine

© ARM 2017 46

Text 54pt sentence case

Want to know more?

ARM Stand:

South Hall #1924

ARM Mali Developer Guides & Tools:
https://developer.arm.com/graphics

© ARM 2017 47

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Don’t miss these other sessions and

three ways to win cool prizes

Thur. March 2, 10:00-11:00 AM

Moscone West – Rm. 3022

Get the most from Vulkan in Unity with practical examples from Infinite dreams

Joint with Unity and Infinite Dreams

Daily prize draw at 5 PM Thursday at ARM booth #1942

See the postcard for more details.

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be

trademarks of their respective owners.

Copyright © 2017 ARM Limited

© ARM 2017

