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Agenda 

 The benefits of the Vulkan graphics API (Roberto) 
 

 Sky Force Reloaded with Vulkan and Unity (Marek) 
 

 Vulkan in Unity - under the hood (Mikko) 
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    The benefits of the Vulkan graphics API 
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Multi-threading / multicore efficiency 

 Multi-threading responsibility moved to application level 
 The application has better visibility 

 
 Efficient utilization of multiprocessor architecture 
 Spread work out faster to multiple cores. Lower CPU load and energy consumption 
 Able to schedule and migrate tasks between ARM ® big.LITTLETM cores according to the load 
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Multi-pass rendering 

 Very performant in tiled GPUs such as ARM Mali GPUs 
 Each pixel in a sub-pass can access the result of the previous sub-pass  
 All data can be contained on the fast on-chip memory, saving bandwidth 

 
 Example of use-cases: 
 Deferred rendering 
 Soft-particles 
 Tone-mapping 
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Vulkan benefits in Lofoten demo 

SCENE INFO 
 

• ~ 100 lights with shadow 
maps 

• 3M primitives (reduced to  
500K with very efficient 
occlusion culling) 

• 500 draw calls 
• Sun light with cascade 

shadow map 
• ~ 10 reflection probes 
• FFT compute in ocean 

rendering 
• Deferred shading using  

multi-pass 
• 10x less load on CPU 

with multithreading 
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Mali Graphics Debugger 

adb install -r MGD.apk 
adb forward tcp:5002 tcp:5002 
 
adb shell 
setprop debug.vulkan.layers 
VK_LAYER_ARM_MGD 

 

 Vulkan 

adb install -r MGD.apk 
adb forward tcp:5002 tcp:5002 
 

 

OpenGL ES 
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Wrap Up 

APPLICATION 
Single threaded/context 

ARM Mali GPU 

 
DRIVER 

 
Context management 
Memory management 

Error management 
GLSL compiler 

 
 
 

CPU overhead 
 

APPLICATION 
 

Memory management 
Thread management 

Multi-threaded command 
buffers 

SPIR-V shader pre-
compilation 

 

ARM Mali GPU 

DRIVER 
Very Light Driver 

 
 

Lower overall power 
consumption 

 

VULKAN BENEFITS 
• Portability across multiple platforms 
• Native thread friendly 
• Efficient utilization of multiprocessor 

architecture 
• Lower CPU load  
• Reduced energy consumption 
• Extra benefits for mobile platform and tiling 

architectures such as ARM Mali GPUs 
• Pixel access to result of previous sub-pass 
• Data contained on fast on-chip memory 
• Memory bandwidth saving 
• Loadable validation and debug layers 

Mali Graphics Debugger 



Sky Force Reloaded with 
Vulkan and Unity 

Marek WYSZYŃSKI 
INFINITE DREAMS 



WHAT IS SKY FORCE RELOADED? 

• modern shoot’em up experience 

• intense action, very rich graphics 

• pushing GPU & CPU to their limits 



BIGGEST PERFORMANCE ISSUES 
IN SKY FORCE RELOADED 

• fill rate is not a bottleneck 

• up to 1000 draw calls per frame 

• CPU is spending a lot of time preparing 

data for GPU 



PERFORMANCE BENCHMARK 

• draw calls are expensive 

• OpenGL ES driver is not optimal 

• perhaps Vulkan can help? 

• Vulkan is supported by Unity! 



Best case 21% 
faster using 
Vulkan. 
 
On average 15% 
faster using 
Vulkan. 



Best case 82% 
faster using 
Vulkan. 
 
On average 32% 
faster using 
Vulkan. 



MORE CONTENT 

• add more particles, objects or animations 

• keep the same FPS with richer graphics 

 



POWER CONSUMPTION TEST 

• power consumption is a problem 

• players are not happy 

• console-like quality games consume a lot 

of power 

• can Vulkan help? 

 



POWER CONSUMPTION TEST 

• Vulkan consumed 10 to 12% less power 

in our game, 

• majority of savings come from the CPU 

• extra minutes of playtime with Vulkan! 

 



CONCLUSIONS 

• great to use “out of the box” 

• improves your FPS 

• adds some extra minutes of playtime 

• you can add some more graphics and 

make your game look better 



THANK YOU! 

INFINITE DREAMS Inc. 
www.idreams.pl 
office@idreams.pl 
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     A quick intro on how Unity renders things in general, and in Vulkan 
 Optimizations and tricks we do to extract maximum performance 
 Going multicore 
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 Abstraction API is mostly from DX9 / OpenGL ES 2.0 era  
 Mostly because we still have to support those APIs for a good while 
 Improvements incoming! 

 Worst-case simplified rendering sequence (no instancing, no batching): 
 “Hey, set a new shader program (here), with all the parameters it’s going to need (here) and a 

serialized buffer containing the values for all those parameters (here)” 
 Update the world matrix 
 “Draw me N vertices using these vertex buffers and this index buffer with offsets X, Y and Z etc.” 
 “Hey, use the shader program you already have bound, but here’s a bunch of new parameters and 

their values, override the old ones with these, leave the rest of them intact” 
 Update the world matrix 
 Draw again 
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     Extra smarts needed 
 Problems: 
 What is the expected lifetime / possible reuse of constant buffers? 
 Partial updates effectively mean creating a copy of the constant buffer 
 Because of the matrix updates being separate, we’ll only know the real final parameters at draw 

time. 
 Pro tip #1: GPUs really really hate switching between buffer bindings. Changing offsets is almost 

free. 

 A naïve implementation would be very slow. 
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     VulkanResource base class 
 MarkUsedInCurrentFrame() 
 IsBusy() 

 GPU fence at each Present, get last frame number completed by the GPU 
 Delayed delete facility 
 Delay delete until IsBusy() == false 

 Reuse all the things 
 Even if you’re rolled your own allocators and memory managers. 
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     Vulkan validation layers are awesome. Use them. 
 Caveat: Object IDs generated by the layers are monotonically increasing, may hide your bugs. 

 RenderDoc is da real MVP 
 Android remote support coming! 

 Keep your main development cycle on the desktop 
 Build-deploy-test cycle is a lot shorter 
 Wider range of debugging and profiling tools available 

 Don’t forget to periodically test on target device as well! 
 The Vulkan implementations are different and have different characteristics 

 Most of our optimizations we did help both desktop and mobile GPUs! 
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     Our SPIR-V compilation pipeline: 
 [ShaderLab + HLSL] -> CgBatch -> [HLSL] -> D3DCompiler.dll -> [DX bytecode] -> HLSLcc -> 

[GLSL] -> glslang -> [SPIR-V] -> SMOL-V 

 Glslang doesn’t do automatic descriptor set / binding slot allocations -> we do it in 
HLSLcc 

 Descriptor set / binding namespace is the whole shader program, not separate 
shader stages. 

 Reflection data comes from glslang 
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     In OpenGL and DX11 each shader resource is bound separately 
 layout(location=X) decoration in GLSL 

 In Vulkan they are grouped into descriptor sets 
 layout(set = X, binding = Y) decoration in GLSL 
 A first-class citizen in Vulkan 
 Allocated from VkDescriptorPool 

 Our approach: 
 In HLSLcc, put all constant buffers into descriptor set 1, everything else into descriptor set 0 
 Separate VkDescriptorPool for each shader program, no individual release of descriptor sets 
 Own reuse pool (VulkanResources!) 

 Pro Tip #2: Descriptor set objects may get consumed at bind time. 
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     Pro tip #3: Mobile GPUs don’t do any magic on constant buffers! They’re just 
pointers to main RAM. 

 Pro tip #4: GPUs have caches for memory access, typically 64- or 32-byte cache lines 
 A larger constant buffer for “rarely accessed” parameters is a bad idea. 
 Thrashes cache. 
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     Get rid of constant buffers completely! 
 Just the bare minimum of one tightly packed cbuffer per shader stage. 
 Tightly packed, contains no unused data. 
 Cache friendly: fragment shader only has the data it needs, no vertex uniforms polluting the cache. 

 Write constant buffer data into HOST_VISIBLE scratch buffer 
 Rotate buffers when previous one fills up 

 No memcmp’s for checking reuse, always feed the data to the scratch buffer 
 Render using the scratch buffer area directly (no GPU-mem copy on desktops) 
 Use VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC so can reuse 

descriptor set object 
 Remember: all constant buffers are in descriptor set #1 
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     Realization: There is only ever a handful of different descriptor set objects! 
 Cache all descriptor set objects! 
 Using VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC means very little combinations 

per shader 
 Eliminates most vkUpdateDescriptorSet calls mid-frame 

 Use dense_hash_map for caching 
 Map key is pretty large: contains everything you’d need to build the VkDescriptorSet 

from scratch 
 Tricks to speed up hashing: 
 Add data member in key struct that tells how many bytes to hash 
 Also speeds up key comparison! 

 Cache the hash value in the key struct 
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     Scratch buffer is persistently mapped 
 Manual Flush/Invalidate when needed 
 Flush is a syscall, so only do it once right before job submission 

 Use buddy allocator 
 Manages offsets into VkMemory 
 Used for allocating small textures and buffers 
 Shared between threads 
 Mainly used to avoid hitting maxMemoryAllocationCount (4096 on Adreno) 
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     ARM Mali GPU engineers figured out that we were Load/Store bound on the 
ARM Mali GPUs 

 On OpenGL ES, the driver can pin shader uniforms into GPU registers 
 Vulkan only has constant buffers so the driver cannot do that automatically 

 Push constants to the rescue! 
 On ARM Mali GPUs push constants are automatically pinned to GPU registers 

 Load-time decision: 
 Identify sufficiently small cbuffer (that’s used in fragment shader) in SPIR-V bytecode 
 Transform bitcode on-the-fly to declare a push constant block instead of a cbuffer. 

 Massive perf improvement on ARM Mali GPUs 
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     DX11 aggressively recompiles shaders on the fly to get rid of static branching 
 Faster on GPU-bound work loads 

 Good thing we control the shader compiler (HLSLcc), so: 
 Identify all conditional branches whose dependency tree only contains uniforms. 
 Transform them into specialization constants, encode condition expression into spec. constant 

name. 
 At runtime, evaluate the expression, pass values to vkCreateGraphicsPipelines() (or fetch from 

cache) 

 Up to 30% perf improvement in GPU-bound cases 
 Real-world benefits smaller 
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     Multicore rendering in Unity 
  Generate batches of ~100 draw calls each 
 Call GfxDevice::ExecuteAsync() with an array of batches 
 GfxDevice spawns a job for each batch 
 Job itself calls back to the actual renderer to perform the rendering 
 Each job has its own GfxDevice object 
 After jobs are done, submit the results 
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     The Vulkan API sets some limitations on how we can approach the problem. Options: 
 Primary command buffer per job: 
 Pros: No limitations on what the render job is allowed to do (barriers, copy operations, RT 

switches) 
 Cons: Renderpass has to begin and end within the same command buffer 

 Secondary command buffer per job: 
 Pros: Can continue a renderpass from the parent command buffer 
 Cons: Cannot do anything else. 

 Pro tip #5: Don’t reuse secondary command buffers. Bad idea on many GPUs. 
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     Each render job builds 1-n secondary command buffers plus a list of tasks 
 Tasks include things like “Submit this secondary command buffer”, “Add a render barrier” 

 Separate Task Executor thread 
 Waits for job completion 
 Builds the primary command buffer 
 Barriers, copies, resource uploads 
 Begin/End Renderpass 
 Executes the tasks 
 Can reorder things for efficiency 
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     Scratch buffer is shared between threads 
 Lockless allocation unless need to switch VkBuffers 
 Fast path is a single atomic add 

 Descriptor set cache is also shared between threads 
 User-mode RWLock way too slow 
 Having descriptor set cache per shader program helps 
 Ended up making dense_hash_map re-entrant for reading (mutex-protected for writing) 
 Detect if insertion would cause the table to be resized 
 Create completely new dense_hash_map, copy contents over 
 Delay deletion until end of frame 
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     Vulkan is pretty fast. Use it! 
 Vulkan support is shipping in Unity 5.6 
 Android 
 Linux 
 Windows 

 Enable it from the Player Settings inspector 
 Uncheck “Automatic Graphics API” checkbox 
 Add Vulkan to the API list, and drag it to top 

 Feedback and bug reports are welcome! 
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Don’t miss the chance to win cool prizes 

 
 

Prize draw at 5 PM Thursday at ARM booth #1942 
See the postcard we handed out for more detail.  

 
 

Thur. March 2nd, 2:45 PM 
Unity Booth #1402 

Improving mobile gaming experience with Vulkan 
Unity and Samsung 



The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its 
subsidiaries) in the EU and/or elsewhere.  All rights reserved.  All other marks featured may be trademarks of their 
respective owners. 

Copyright © 2016 ARM Limited 

Thank you! 
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