

Get the most from Vulkan in
Unity with practical examples
from Infinite Dreams

 Roberto Lopez Mendez, Senior Software Engineer

GDC 2017

Mikko Strandborg, Vulkan Lead

Marek Wyszyński, VP & Co-Founder

© ARM2017 2

Agenda

 The benefits of the Vulkan graphics API (Roberto)

 Sky Force Reloaded with Vulkan and Unity (Marek)

 Vulkan in Unity - under the hood (Mikko)

© ARM 2017 3

 The benefits of the Vulkan graphics API

© ARM2017 4

Multi-threading / multicore efficiency

 Multi-threading responsibility moved to application level
 The application has better visibility

 Efficient utilization of multiprocessor architecture
 Spread work out faster to multiple cores. Lower CPU load and energy consumption
 Able to schedule and migrate tasks between ARM ® big.LITTLETM cores according to the load

© ARM2017 5

Multi-pass rendering

 Very performant in tiled GPUs such as ARM Mali GPUs
 Each pixel in a sub-pass can access the result of the previous sub-pass
 All data can be contained on the fast on-chip memory, saving bandwidth

 Example of use-cases:
 Deferred rendering
 Soft-particles
 Tone-mapping

© ARM2017 6

Vulkan benefits in Lofoten demo

SCENE INFO

• ~ 100 lights with shadow
maps

• 3M primitives (reduced to
500K with very efficient
occlusion culling)

• 500 draw calls
• Sun light with cascade

shadow map
• ~ 10 reflection probes
• FFT compute in ocean

rendering
• Deferred shading using

multi-pass
• 10x less load on CPU

with multithreading

© ARM2017 7

Mali Graphics Debugger

adb install -r MGD.apk
adb forward tcp:5002 tcp:5002

adb shell
setprop debug.vulkan.layers
VK_LAYER_ARM_MGD

 Vulkan

adb install -r MGD.apk
adb forward tcp:5002 tcp:5002

OpenGL ES

© ARM2017 8

Wrap Up

APPLICATION
Single threaded/context

ARM Mali GPU

DRIVER

Context management
Memory management

Error management
GLSL compiler

CPU overhead

APPLICATION

Memory management
Thread management

Multi-threaded command
buffers

SPIR-V shader pre-
compilation

ARM Mali GPU

DRIVER
Very Light Driver

Lower overall power
consumption

VULKAN BENEFITS
• Portability across multiple platforms
• Native thread friendly
• Efficient utilization of multiprocessor

architecture
• Lower CPU load
• Reduced energy consumption
• Extra benefits for mobile platform and tiling

architectures such as ARM Mali GPUs
• Pixel access to result of previous sub-pass
• Data contained on fast on-chip memory
• Memory bandwidth saving
• Loadable validation and debug layers

Mali Graphics Debugger

Sky Force Reloaded with
Vulkan and Unity

Marek WYSZYŃSKI
INFINITE DREAMS

WHAT IS SKY FORCE RELOADED?

• modern shoot’em up experience

• intense action, very rich graphics

• pushing GPU & CPU to their limits

BIGGEST PERFORMANCE ISSUES
IN SKY FORCE RELOADED

• fill rate is not a bottleneck

• up to 1000 draw calls per frame

• CPU is spending a lot of time preparing

data for GPU

PERFORMANCE BENCHMARK

• draw calls are expensive

• OpenGL ES driver is not optimal

• perhaps Vulkan can help?

• Vulkan is supported by Unity!

Best case 21%
faster using
Vulkan.

On average 15%
faster using
Vulkan.

Best case 82%
faster using
Vulkan.

On average 32%
faster using
Vulkan.

MORE CONTENT

• add more particles, objects or animations

• keep the same FPS with richer graphics

POWER CONSUMPTION TEST

• power consumption is a problem

• players are not happy

• console-like quality games consume a lot

of power

• can Vulkan help?

POWER CONSUMPTION TEST

• Vulkan consumed 10 to 12% less power

in our game,

• majority of savings come from the CPU

• extra minutes of playtime with Vulkan!

CONCLUSIONS

• great to use “out of the box”

• improves your FPS

• adds some extra minutes of playtime

• you can add some more graphics and

make your game look better

THANK YOU!

INFINITE DREAMS Inc.
www.idreams.pl
office@idreams.pl

© ARM2017 20

© ARM2017 21

  A quick intro on how Unity renders things in general, and in Vulkan
 Optimizations and tricks we do to extract maximum performance
 Going multicore

© ARM2017 22

 Abstraction API is mostly from DX9 / OpenGL ES 2.0 era 
 Mostly because we still have to support those APIs for a good while
 Improvements incoming!

 Worst-case simplified rendering sequence (no instancing, no batching):
 “Hey, set a new shader program (here), with all the parameters it’s going to need (here) and a

serialized buffer containing the values for all those parameters (here)”
 Update the world matrix
 “Draw me N vertices using these vertex buffers and this index buffer with offsets X, Y and Z etc.”
 “Hey, use the shader program you already have bound, but here’s a bunch of new parameters and

their values, override the old ones with these, leave the rest of them intact”
 Update the world matrix
 Draw again

© ARM2017 23

  Extra smarts needed
 Problems:
 What is the expected lifetime / possible reuse of constant buffers?
 Partial updates effectively mean creating a copy of the constant buffer
 Because of the matrix updates being separate, we’ll only know the real final parameters at draw

time.
 Pro tip #1: GPUs really really hate switching between buffer bindings. Changing offsets is almost

free.

 A naïve implementation would be very slow.

© ARM2017 24

  VulkanResource base class
 MarkUsedInCurrentFrame()
 IsBusy()

 GPU fence at each Present, get last frame number completed by the GPU
 Delayed delete facility
 Delay delete until IsBusy() == false

 Reuse all the things
 Even if you’re rolled your own allocators and memory managers.

© ARM2017 25

  Vulkan validation layers are awesome. Use them.
 Caveat: Object IDs generated by the layers are monotonically increasing, may hide your bugs.

 RenderDoc is da real MVP
 Android remote support coming!

 Keep your main development cycle on the desktop
 Build-deploy-test cycle is a lot shorter
 Wider range of debugging and profiling tools available

 Don’t forget to periodically test on target device as well!
 The Vulkan implementations are different and have different characteristics

 Most of our optimizations we did help both desktop and mobile GPUs!

© ARM2017 26

  Our SPIR-V compilation pipeline:
 [ShaderLab + HLSL] -> CgBatch -> [HLSL] -> D3DCompiler.dll -> [DX bytecode] -> HLSLcc ->

[GLSL] -> glslang -> [SPIR-V] -> SMOL-V

 Glslang doesn’t do automatic descriptor set / binding slot allocations -> we do it in
HLSLcc

 Descriptor set / binding namespace is the whole shader program, not separate
shader stages.

 Reflection data comes from glslang

© ARM2017 27

  In OpenGL and DX11 each shader resource is bound separately
 layout(location=X) decoration in GLSL

 In Vulkan they are grouped into descriptor sets
 layout(set = X, binding = Y) decoration in GLSL
 A first-class citizen in Vulkan
 Allocated from VkDescriptorPool

 Our approach:
 In HLSLcc, put all constant buffers into descriptor set 1, everything else into descriptor set 0
 Separate VkDescriptorPool for each shader program, no individual release of descriptor sets
 Own reuse pool (VulkanResources!)

 Pro Tip #2: Descriptor set objects may get consumed at bind time.

© ARM2017 28

  Pro tip #3: Mobile GPUs don’t do any magic on constant buffers! They’re just
pointers to main RAM.

 Pro tip #4: GPUs have caches for memory access, typically 64- or 32-byte cache lines
 A larger constant buffer for “rarely accessed” parameters is a bad idea.
 Thrashes cache.

© ARM2017 29

  Get rid of constant buffers completely!
 Just the bare minimum of one tightly packed cbuffer per shader stage.
 Tightly packed, contains no unused data.
 Cache friendly: fragment shader only has the data it needs, no vertex uniforms polluting the cache.

 Write constant buffer data into HOST_VISIBLE scratch buffer
 Rotate buffers when previous one fills up

 No memcmp’s for checking reuse, always feed the data to the scratch buffer
 Render using the scratch buffer area directly (no GPU-mem copy on desktops)
 Use VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC so can reuse

descriptor set object
 Remember: all constant buffers are in descriptor set #1

© ARM2017 30

  Realization: There is only ever a handful of different descriptor set objects!
 Cache all descriptor set objects!
 Using VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC means very little combinations

per shader
 Eliminates most vkUpdateDescriptorSet calls mid-frame

 Use dense_hash_map for caching
 Map key is pretty large: contains everything you’d need to build the VkDescriptorSet

from scratch
 Tricks to speed up hashing:
 Add data member in key struct that tells how many bytes to hash
 Also speeds up key comparison!

 Cache the hash value in the key struct

© ARM2017 31

  Scratch buffer is persistently mapped
 Manual Flush/Invalidate when needed
 Flush is a syscall, so only do it once right before job submission

 Use buddy allocator
 Manages offsets into VkMemory
 Used for allocating small textures and buffers
 Shared between threads
 Mainly used to avoid hitting maxMemoryAllocationCount (4096 on Adreno)

© ARM2017 32

  ARM Mali GPU engineers figured out that we were Load/Store bound on the
ARM Mali GPUs

 On OpenGL ES, the driver can pin shader uniforms into GPU registers
 Vulkan only has constant buffers so the driver cannot do that automatically

 Push constants to the rescue!
 On ARM Mali GPUs push constants are automatically pinned to GPU registers

 Load-time decision:
 Identify sufficiently small cbuffer (that’s used in fragment shader) in SPIR-V bytecode
 Transform bitcode on-the-fly to declare a push constant block instead of a cbuffer.

 Massive perf improvement on ARM Mali GPUs

© ARM2017 33

  DX11 aggressively recompiles shaders on the fly to get rid of static branching
 Faster on GPU-bound work loads

 Good thing we control the shader compiler (HLSLcc), so:
 Identify all conditional branches whose dependency tree only contains uniforms.
 Transform them into specialization constants, encode condition expression into spec. constant

name.
 At runtime, evaluate the expression, pass values to vkCreateGraphicsPipelines() (or fetch from

cache)

 Up to 30% perf improvement in GPU-bound cases
 Real-world benefits smaller

© ARM2017 34

  Multicore rendering in Unity
 Generate batches of ~100 draw calls each
 Call GfxDevice::ExecuteAsync() with an array of batches
 GfxDevice spawns a job for each batch
 Job itself calls back to the actual renderer to perform the rendering
 Each job has its own GfxDevice object
 After jobs are done, submit the results

© ARM2017 35

  The Vulkan API sets some limitations on how we can approach the problem. Options:
 Primary command buffer per job:
 Pros: No limitations on what the render job is allowed to do (barriers, copy operations, RT

switches)
 Cons: Renderpass has to begin and end within the same command buffer

 Secondary command buffer per job:
 Pros: Can continue a renderpass from the parent command buffer
 Cons: Cannot do anything else.

 Pro tip #5: Don’t reuse secondary command buffers. Bad idea on many GPUs.

© ARM2017 36

  Each render job builds 1-n secondary command buffers plus a list of tasks
 Tasks include things like “Submit this secondary command buffer”, “Add a render barrier”

 Separate Task Executor thread
 Waits for job completion
 Builds the primary command buffer
 Barriers, copies, resource uploads
 Begin/End Renderpass
 Executes the tasks
 Can reorder things for efficiency

© ARM2017 37

  Scratch buffer is shared between threads
 Lockless allocation unless need to switch VkBuffers
 Fast path is a single atomic add

 Descriptor set cache is also shared between threads
 User-mode RWLock way too slow
 Having descriptor set cache per shader program helps
 Ended up making dense_hash_map re-entrant for reading (mutex-protected for writing)
 Detect if insertion would cause the table to be resized
 Create completely new dense_hash_map, copy contents over
 Delay deletion until end of frame

© ARM2017 38

  Vulkan is pretty fast. Use it!
 Vulkan support is shipping in Unity 5.6
 Android
 Linux
 Windows

 Enable it from the Player Settings inspector
 Uncheck “Automatic Graphics API” checkbox
 Add Vulkan to the API list, and drag it to top

 Feedback and bug reports are welcome!

© ARM2017 39

Don’t miss the chance to win cool prizes

Prize draw at 5 PM Thursday at ARM booth #1942
See the postcard we handed out for more detail.

Thur. March 2nd, 2:45 PM
Unity Booth #1402

Improving mobile gaming experience with Vulkan
Unity and Samsung

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners.

Copyright © 2016 ARM Limited

Thank you!

	Get the most from Vulkan in Unity with practical examples from Infinite Dreams��
	Agenda
	Slide Number 3
	Multi-threading / multicore efficiency
	Multi-pass rendering
	Vulkan benefits in Lofoten demo
	Mali Graphics Debugger
	Wrap Up
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Vulkan in Unity – under the hood�Mikko Strandborg – Vulkan Lead, Unity�@m_strandborg
	Talk outline
	Overview of Unity rendering abstraction
	Hey, none of this maps to Vulkan!
	Some building blocks
	Tooling considerations
	SPIR-V generation
	Descriptor set objects
	Constant buffers
	Constant buffers, or lack thereof
	Descriptor set cache
	Memory management
	Push constants
	Specialization constants
	Going multicore
	Vulkan-specifics
	Our approach
	Making it fast
	Summary
	Don’t miss the chance to win cool prizes
	Slide Number 40

