
1

ASTC: The Extra Dimension

Daniele Di Donato

Senior Software Engineer, ARM

2

Particles system overview

Input
• Particles position

and velocity

• ASTC 3D texture

Simulation
Vertex
Shader

• Simulate
physics

Transform
Feedback

• Store the result in
a buffer for the
next simulation
step

Rendering
Vertex
Shader

• Render as:

• Points for smoke

• Quads for
confetti

Rendering
Fragment
Shader

•Use ARM
framebuffer
fetch
extensions

3

 Since the simulation is run in the vertex

shader we need to provide information

about the environment to collide with

 Voxelizing the environment allow us to save

it as 3D texture

 In the vertex shader simulate the physics

and sample the 3D texture to check for

collisions

Physics Simulation

 3D textures for collision simulation

4

 Texture data is big

 32bpp * 256 * 256 * 256 = 67MB per texture

 We need to compress the data to cope

with the hardware memory limitations

 Would be good to have hardware

decompression that saves memory and

bandwidth

Physics Simulation

 3D textures for collision simulation

ASTC

(Adaptive Scalable Texture Compression)

5

What Makes ASTC Special

 Wide range of bit rates

 Wide range of formats

 Handles sRGB

 Handles HDR

 3D textures

 Non proprietary

L

LA

X+Y

HDR L

RGB

XY+Z

RBGA

RGB+A

HDR X+Y

HDR RGB

HDR XY+Z

HDR RGBA

HDR RGB+A

In
p
u
t

C
o
lo

r
Fo

rm
at

s

1 2 3 4 5 6 7 8
Compressed bits/pixel

8

16

16

16

24

24

32

32

32

48

48

64

64

In
p
u
t

b
it
s/

p
ix

e
l

All ASTC

6

What Makes ASTC Special

 Hardware needs random access

 Texture compression is block based

 Look up a block from the texel coords

 Decompress into local cache

 Sample cached block

7

What Defines Quality in ASTC?

 Quality decided by 3 factors

 Precision of data points (bit rate)

 Number of attempts per tile (limits)

 Types of error to reject/ignore (priority)

8

 Various block sizes to choose from

 Each compressed block will still occupy

128 bits

 HDR support allows us to store 16 bit

half-floats per channel

3D Texture Support

Block Dimension
Bit Rate

(bits per texel)

3x3x3 4.74

4x3x3 3.56

4x4x3 2.67

4x4x4 2.00

5x4x4 1.60

5x5x4 1.28

5x5x5 1.02

6x5x5 0.85

6x6x5 0.71

6x6x6 0.59

9

ASTC 3D Texture Example

Skull

Texture resolution 180x255x255

Texture Size MB

Uncompressed 82.62

ASTC 3x3x3 6.12

ASTC 4x4x4 2.63

ASTC 5x5x5 1.32

Memory read bandwidth in

MB/s

Uncompressed 752.18

ASTC 3x3x3 285.78

ASTC 4x4x4 179.43

ASTC 5x5x5 167.90

Energy consumption per

frame DDR2 mJ per frame

Uncompressed 5.08

ASTC 3x3x3 1.93

ASTC 4x4x4 1.21

ASTC 5x5x5 1.13

Energy consumption per

frame DDR3 mJ per frame

Uncompressed 4.17

ASTC 3x3x3 1.59

ASTC 4x4x4 1.00

ASTC 5x5x5 0.93

 ~90% memory reduction

 ~62% memory bandwidth reduction

Statistics

10

Physics Simulation
Exploiting OpenGL® ES 3.0 for numerical explicit methods

Input

Transform
Feedback

Vertex
Shader

Fragment
Shader



12

 In the demo:

1) Define 2 buffers as input/output

2) Initialize it with the initial particle’s data

3) Define which output attribute that goes

from vertex to fragment shader needs to

be also saved with Transform Feedback

4) For each frame:

i. Issue a draw command as GL_POINTS

to update the particle’s position

ii. Render the particles with the desired

effect.

iii. Swap input/output buffers

Physics Simulation
Exploiting OpenGL® ES 3.0 for numerical explicit methods

Input

Transform
Feedback

Vertex
Shader

Fragment
Shader

13

 The smoke has been rendered using a noise

texture to compute a normal for the

lighting and an opacity factor

 Typically, quads that intersect the geometry

will cause sharp edges due to Z-Test

 In the demo we implemented soft-particles

disabling Z-Test and using the

GL_ARM_shader_framebuffer_fetch_depth

_stencil to read the value previously stored

in the depth buffer

Rendering the Particles I
Soft particles for the smoke effect

14

 In the confetti scene, we wanted to give a

more realistic behaviour orientating the

confetti upon collision

 We store the normal of the collision

surface in the attributes of the particles

 We compute the TBN matrix and apply it

to the unit quad in the plane Z=0

 Use OpenGL® ES 3.0 instancing to improve

performance

Rendering the Particles II
Collision orientation for the confetti effect

15

 Use case: render the same geometry

multiple times with different parameters

but with a single drawcall

 The confetti is a perfect match for the

feature since they are all quads and the

different shapes are implemented

procedurally

 Instancing allows the user to render

multiple instances of a template geometry,

each instance will have common and specific

parameters (ModelView matrix,

materials…)

Rendering the Particles III
OpenGL® ES 3.0 instancing for the confetti effect

Instance

1 Data

Instance 1 Instance 3 Instance 2 Instance N

Template

 DrawCall

Instance

2 Data

Instance

3 Data

Instance

N Data

Template

Data

16

Why Not Try OpenGL ES 3.0 and ASTC Right Now?

 Command line compressor

 ASTC Evaluation Codec

 GUI compressor

 ARM® Mali™ Texture Compression Tool

 Lacking compatible hardware?

 ARM Mali OpenGL® ES 3.0 Emulator

Mali Developer Center:

MaliDeveloper.arm.com

17

MaliDeveloper.arm.com

Thank you

Any questions?

community.arm.com

