
64-bit Android on ARM, Campus London, September 20150839 rev 12368 1

ARMv8-A A64 ISA Overview

presented by

Matteo Franchin
<matteo.franchin@arm.com>

64-bit Android on ARM, Campus London, September 20150839 rev 12368 2

Agenda

 Introduction

 Registers

 Loads and stores

 Data processing and control flow

 Scalar floating-point and SIMD

64-bit Android on ARM, Campus London, September 20150839 rev 12368 3

Motivation

My aim:

 Tell you more about A64, an instruction set which is going to be widespread in the mobile market.

 Help you to write A64 code, in case you need hand written assembly code.

 Help you to read A64 code, to keep an eye on what your compilers do

 Reading A64 code also helps when debugging your native code.

 Tell you what is new in A64 and why you may want to recompile your app for 64-bit.

64-bit Android on ARM, Campus London, September 20150839 rev 12368 4

Introduction

 This is a general introduction to the A64 instruction set

 But does not cover all available instructions

 Does not detail all forms, options, and restrictions for each instruction

 For more information, see the following on infocenter.arm.com:

 ARMv8-A Architecture Reference Manual. Document number: DDI 0487

 ARM® Compiler 6 armasm Reference Guide. Document number: DUI 0802

 Has an A-Z listing of all available instructions and can be easier to digest than the ARMv8-A Architecture Reference Manual

 ARM Architecture Procedure Call Standard for 64-bit (AAPCS64). Document number IHI 0055B

 How registers are used by compilers, how arguments are passed, etc.

 For presentations on 64-bit Android on ARM see:

 LCU14-504: Taming ARMv8 NEON: from theory to benchmark results – YouTube: Using NEON™ in native code

 HKG15-300: Art's Quick Compiler: An unofficial overview – YouTube: A64 support in the Android Java runtime

 LCU14-100: Dalvik is Dead, Long Live Dalvik! OR Tuning ART – YouTube: Porting Android to 64-bit ARM

 More Presentations on Porting to 64-bit

http://infocenter.arm.com/
http://www.youtube.com/watch?v=ixuDntaSnHI
http://www.youtube.com/watch?v=ixuDntaSnHI
http://www.youtube.com/watch?v=ixuDntaSnHI
http://www.youtube.com/watch?v=ixuDntaSnHI
http://www.youtube.com/watch?v=ixuDntaSnHI
http://www.youtube.com/watch?v=ixuDntaSnHI
http://www.youtube.com/watch?v=ixuDntaSnHI
https://www.youtube.com/watch?v=iho-e7EPHk0
https://www.youtube.com/watch?v=iho-e7EPHk0
https://www.youtube.com/watch?v=iho-e7EPHk0
https://www.youtube.com/watch?v=iho-e7EPHk0
https://www.youtube.com/watch?v=iho-e7EPHk0
https://www.youtube.com/watch?v=iho-e7EPHk0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://www.youtube.com/watch?v=dR0FbB4uJC0
http://community.arm.com/groups/android-community/blog/2014/12/03/more-presentations-on-porting-to-64-bit
http://community.arm.com/groups/android-community/blog/2014/12/03/more-presentations-on-porting-to-64-bit
http://community.arm.com/groups/android-community/blog/2014/12/03/more-presentations-on-porting-to-64-bit

64-bit Android on ARM, Campus London, September 20150839 rev 12368 5

 An application may mix A32 and T32 code, but not 32-bit and 64-bit code

 AArch64 offers more general purpose (GP) registers than AArch32: 31 rather than 15

 All GP registers can store up to 64 bits: one int64_t integer requires 1 register rather than 2.

 Single process can use more than 4 GB of RAM: 64-bit virtual address space.

Instruction sets in ARMv8

T32 (previously known as Thumb2)

Instructions: variable 16-bit / 32-bit size

GP Registers: 32-bit

A32 (previously known as ARM)

Instructions: 32-bit fixed size

GP Registers: 32-bit

A64

Instructions: 32-bit fixed size

GP Registers: 32-/64-bit

AArch32 AArch64

Switch between Thumb2 and ARM

done via the instructions:

 BX, BLX, MOV PC, LDR PC

64-bit Android on ARM, Campus London, September 20150839 rev 12368 6

Agenda

 Introduction

 Registers

 Loads and stores

 Data processing and control flow

 Scalar floating-point and SIMD

64-bit Android on ARM, Campus London, September 20150839 rev 12368 7

General purpose and dedicated registers

 31 general purpose + 2 dedicated registers, each 64-bit wide

 Example: add two registers

GENERAL PURPOSE DEDICATED NOTES

Architectural names R0, R1, R2, …, R30 SP, ZR • names rarely used in practice

64-bit views X0, X1, X2, …, X30 SP, XZR
• “x” stands for eXtended word

• all 64 bits are “used”

32-bit views W0, W1, W2, …, W30 WSP, WZR
• “w” stands for Word

• only bottom 32 bits are “used”

same register

INITIAL VALUES

X0=0x2222222222222222

X1=0x3333333333333333

X2=0xffffffffffffffff

AFTER 64-BIT ADD

X0=0x2222222222222222

X1=0x3333333333333333

X2=0x5555555555555555

AFTER 32-BIT ADD

X0=0x2222222222222222

X1=0x3333333333333333

X2=0x0000000055555555

ADD X2, X0, X1

Upper 32 bits of X0, X1 are ignored.

Upper 32 bits of X2 are cleared

on write

All 64 bits of X2 are written

ADD W2, W0, W1

AFTER 64-BIT ADD

X0=0x2222222222222222

X1=0x3333333333333333

X2=0x5555555555555555

AFTER 32-BIT ADD

X0=0x2222222222222222

X1=0x3333333333333333

X2=0x0000000055555555

64-bit Android on ARM, Campus London, September 20150839 rev 12368 8

Special dedicated registers

2 dedicated registers:

 sp, the stack pointer register: holds pointer to bottom of the stack

 preferred register to access the stack

 must be 16-bytes aligned

 STR W0, [SP, #4] ; Stores W0 into the stack at address SP + 4.

 ADD SP, SP, #8 ; WARNING: SP is now “unusable”: it is not aligned anymore!

 STR X0, [SP] ; ERROR: cannot use unaligned SP!

 zr: the zero register

 when used as source register it always returns the integer value zero.

 MOV W0, #0 ; W0 = 0

 MOV W0, WZR ; W0 = 0, same effect as previous instruction

 when used as a destination register it discards the value

 SUBS WZR, W10, W11 ; Does W10 – W11, set the flags and discard the result

 CMP W10, W11 ; Compare two numbers: CMP is an alias for the SUBS above

Two ways of writing the same instruction

64-bit Android on ARM, Campus London, September 20150839 rev 12368 9

Scalar FP and SIMD registers

 Separate set of 32 registers, each 128-bit wide

 Architecturally named V0 – V31

 Used by scalar floating-point and SIMD instructions

 The instruction syntax uses qualified register names

 Bn for byte, Hn for half-word, Sn for single-word, Dn for double-word, Qn for quad-word

B0

H0

S0

D0

Q0

B1

H1

S1

D1

Q1

V0 V1

64-bit Android on ARM, Campus London, September 20150839 rev 12368 10

System registers

 System registers define the processor context

 Controls the behavior of the processor

 System registers are suffixed with “_ELx”, for example SCTLR_EL1

 Suffix defines the lowest exception level that can access that system register

 MRS

 Read a system register

 MSR

 Set a system register

 MRS X0, SCTLR_EL1 ; X0 = SCTLR_EL1

 MSR SCTLR_EL1, X0 ; SCTLR_EL1 = X0

64-bit Android on ARM, Campus London, September 20150839 rev 12368 11

Agenda

 Introduction

 Registers

 Loads and stores

 Data processing and control flow

 Scalar floating-point and SIMD

64-bit Android on ARM, Campus London, September 20150839 rev 12368 12

Register load/store

 LDR

 Load data from an address into a register

 STR

 Store data from a register to an address

 LDR X0, <addr> ; Load from <addr> into X0

 STR X0, <addr> ; Store contents of X0 to <addr>

 By default, the size of the load/store is determined by the source/destination register name

 Xn will load/store 64 bits, Wn will load/store 32 bits

 Instruction can be suffixed to force a smaller load/store size

 ‘B’ for byte, ‘H’ for half-word, ‘W’ for word

 Result will be zero-extended by default, combine with the ‘S’ suffix for sign-extension

 LDRSB X0, <addr> ; Load byte from <addr> into X0 and sign-extend

 STRH W1, <addr> ; Store half-word from W1 to <addr>

64-bit Android on ARM, Campus London, September 20150839 rev 12368 13

Example: Byte loads

00 00 00 00 FF FF FF 8A

8A

FF FF FF FF FF FF FF 8A

8A

00 00 00 00 00 00 00 8A

8A

Memory

R4

Memory

R4

Memory

R4

Sign-extend

Sign-extend

Zero-extend

LDRSB W4, <addr>

LDRSB X4, <addr>

LDRB W4, <addr>

Sign-extended 8-bit load to a Wn register:

Sign-extended 8-bit load to an Xn register:

Zero-extended 8-bit load to a Wn register:

Hex 8A is decimal -118 or 138

depending on whether it is

considered signed or unsigned

64-bit Android on ARM, Campus London, September 20150839 rev 12368 14

Specifying the load/store address

 Address to load/store from is a 64-bit base register plus an optional offset

 LDR X0, [X1] ; Load from address held in X1

 STR X0, [X1] ; Store to address held in X1

 Offset can be an immediate or a register

 LDR X0, [X1, #8] ; Load from address [X1 + 8 bytes]

 LDR X0, [X1, #-8] ; Load with negative offset

 LDR X0, [X1, X2] ; Load from address [X1 + X2]

 A Wn register offset needs to be extended to 64 bits

 LDR X0, [X1, W2, SXTW] ; Sign-extend offset in W2

 LDR X0, [X1, W2, UXTW] ; Zero-extend offset in W2

 Both Xn and Wn register offsets can include an optional left-shift

 LDR X0, [X1, W2, UXTW #2] ; Zero-extend offset in W2 & left-shift by 2

 LDR X0, [X1, X2, LSL #2] ; Left-shift offset in X2 by 2

64-bit Android on ARM, Campus London, September 20150839 rev 12368 15

 /* Analogous C code */

 int *intptr = …; // X1

Simple: X1 is not changed int out; // W0

 LDR W0, [X1] out = *intptr;

Offset: X1 is not changed

 LDR W0, [X1, #4] out = intptr[1];

Pre-indexed: X1 changed before load

 LDR W0, [X1, #4]! ADD X1, X1, #4 out = *(++intptr);

 LDR W0, [X1]

Post-indexed: X1 changed after load

 LDR W0, [X1], #4 LDR W0, [X1] out = *(intptr++);

 ADD X1, X1, #4

Addressing modes

64-bit Android on ARM, Campus London, September 20150839 rev 12368 16

Floating-point loads and stores

 Load and store instructions can also target scalar FP / SIMD registers

 Size of load/store is determined by qualified name of target register

 Bn for byte, Hn for half-word, Sn for single-word, Dn for double-word, Qn for quad-word

 No size or sign specifier on instruction

 Address is still specified by an Xn register base plus an optional offset

 Same range and options as scalar integer loads

 LDR D1, [X0] ; Load 64-bits from [X0] into D1

 STR Q0, [X0, X1] ; Store 128-bits from Q0 to [X0 + X1]

64-bit Android on ARM, Campus London, September 20150839 rev 12368 17

Register pair load/store

 New Load Pair and Store Pair instructions

 Support both integer and scalar FP / SIMD registers

 Both source/destination registers must be the same width

 LDP W3, W7, [X0] ; [X0] => W3, [X0 + 4 bytes] => W7

 STP Q0, Q1, [X4] ; Q0 => [X4], Q1 => [X4 + 16 bytes]

 No Load Multiple, Store Multiple, or PUSH / POP instructions in AArch64

 Construct these operations using STP and LDP instructions

 STP X0, X1, [SP, #-16]! ; Push X0 and X1 onto the stack

 LDP X0, X1, [SP], #16 ; Pop X0 and X1 from the stack

64-bit Android on ARM, Campus London, September 20150839 rev 12368 18

Using the PC

 There are variants of LDR to load PC relative data

 Use a label operand rather than a 64-bit base address register

 Linker generates a PC relative load from the address of the label in the executable image

 LDR X0, label ; Load value at <label>

 Assemblers may support a “Load (immediate)” pseudo-instruction

 Creates a PC relative load, and a literal pool containing the value to be loaded

 LDR X0, =imm ; Load from literal containing imm

 Obtaining the address of a label

 PC relative loads and ADR are limited in range to ±1MB, whereas ADRP has range ±4GB

 LDR X0, =label ; Load address of label from literal pool

 ADR X0, label ; Calculate address of label (PC relative)

 ADR X0, . ; Get current PC (address of ADR instruction)

 ADRP X0, label ; Calculate address of 4KB page containing label

64-bit Android on ARM, Campus London, September 20150839 rev 12368 19

Agenda

 Introduction

 Registers

 Loads and stores

 Data processing and control flow

Scalar floating-point and SIMD

64-bit Android on ARM, Campus London, September 20150839 rev 12368 20

Data processing

 Values in registers can be processed using many different instructions

 Arithmetic, logic, data moves, bit field manipulations, shifts, conditional comparisons, and more

 These instructions always operate between registers, or between a register and an immediate

 Example bit manipulation: Example countdown loop:

 ; add W3 to all elements of an

 ; Clear bit 4, set bit 7 at X1 ; array of loop_count ints in X2

 LDR X0, [X1] MOV X0, #<loop_count>

 AND X0, X0, #~(1 << 4) loop:

 ORR X0, X0, #(1 << 7) LDR W1, [X2]

 STR X0, [X1] ADD W1, W1, W3

 STR W1, [X2], #4

 SUB X0, X0, #1

 CBNZ X0, loop

64-bit Android on ARM, Campus London, September 20150839 rev 12368 21

Shifts and rotates

 Standalone instructions for shifts and rotates

 Source register may be an Xn or Wn register

 Also used for flexible second operands, such as to shift an LDR / STR Xn register offset

 Shift amount may be an immediate or a register

 Immediate shifts up to (register_size – 1)

 Register values taken modulo 32-bit or 64-bit

register

register

register

register

Multiply by power of 2 Divide by power of 2

Divide by power of 2

(preserves sign bit)
Shift right with wrap

around from

LSB to MSB

0 0

LSL
Logical Shift Left

LSR
Logical Shift Right

ASR
Arithmetic Shift Right

ROR
Rotate Right

64-bit Android on ARM, Campus London, September 20150839 rev 12368 22

These are just some examples, there are many more bit manipulation instructions

Bit manipulation (1)

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0

0 1 0 1 0 1

0 1 1

0 31

31

31

31

0

0

0

W0

W0

W1

W1

BFI W0, W0, #9, #6 ; Bit Field Insert

UBFX W1, W0, #18, #7 ; Bit Field Extract

BFI W1, WZR, #3, #4 ; Bit Field Clear
0 0 WZR

1 0

0 1 1 0

0 1

0 0

0 0 0 0

64-bit Android on ARM, Campus London, September 20150839 rev 12368 23

Bit manipulation (2)

 Count leading sign-bits / zeros

 CLS / CLZ

 Reverse bit order of a register (MSB LSB)

 RBIT

 Reverse byte order of a register

 REV reverse the order of bytes

 REV16 variant reverses the order of each half-word in a register

 REV32 variant reverses the order of each single-word in a register

 Source register for REV32 must be an Xn register

64-bit Android on ARM, Campus London, September 20150839 rev 12368 24

Extension

 SXTB / SXTH / SXTW

 Sign-extend byte / half-word / single-word

 UXTB / UXTH / UXTW

 Zero-extend byte / half-word / single-word

 Destination register may be an Xn or Wn register

 Wn destination extends source to 32-bits, Xn destination extends source to 64-bits

 Source register must always be a Wn register

 SXTB X3, W2 ; Sign-extend low byte of W2 to 64-bits

 UXTH W4, W5 ; Zero-extend low half-word of W5 to 32-bits

 SXTW X6, W7 ; Sign-extend word in W7 to 64-bits

64-bit Android on ARM, Campus London, September 20150839 rev 12368 25

Multiplication and division

 Regular 32-bit and 64-bit multiplication:

 MUL Rd, Rn, Rm Rd = Rn*Rm (alias of MADD: Ra = ZR)

 MADD Rd, Rn, Rm, Ra Rd = Ra + Rn*Rm

 MSUB Rd, Rn, Rm, Ra Rd = Ra - Rn*Rm

 MNEG Rd, Rn, Rm Rd = -Rn*Rm (alias of MSUB: Ra = ZR)

 Long result multiplication: 32-bit source registers, 64-bit destination register.

 Signed variants: SMULL, SMADDL , SMSUBL, SMNEGL

 Unsigned variants: UMULL, UMADDL , UMSUBL, UMNEGL

 Upper 64 bits in 128-bit multiplication result: UMULH, SMULH

 Signed and unsigned 32-bit and 64-bit division

 SDIV / UDIV Rd, Rm, Rn Rd = Rn/Rm

 Division by 0 returns 0 (with no exception)

 MAXNEG integer divided by -1 overflows (returns MAXNEG)

64-bit Android on ARM, Campus London, September 20150839 rev 12368 26

Branches

 B <offset>

 PC relative branch ±128 MB

 Conditional version B.cond (covered later) has ±1 MB range

 BL <offset>

 Similar to B (branch range ±128 MB) but also stores return address in LR (X30), hinting that this is a function call

 No conditional version

 BR Xm

 Absolute branch to address in Xm

 BLR Xm

 Similar to BR, but also stores return address in LR (X30), hinting that this is a function call

 RET Xm or simply RET

 Similar to BR, but also hints that this is a function return

 Use LR (X30) if register is omitted, but can use other register

64-bit Android on ARM, Campus London, September 20150839 rev 12368 27

Conditional execution

 A64 does not allow instructions to be conditionally executed

 Except for branch instructions

 Unlike A32, which allows for most instructions to include a condition code, for example ADDEQ R0, R1, R2

 Unlike T32, which supports the IT (If Then) instruction

 A64 has conditional operations

 These instructions are always executed, but their result depends on the ALU flags

 Some data processing instructions will set the ALU flags after execution

 Mnemonics appended with ‘S’, for example SUBS

 Some encodings have preferred syntax for disassembly to aid in clarity

 SUBS X0, X1, X2 ; X0 = (X1 – X2), and set ALU flags

 TST X0, #(1 << 20) ; Alias of ANDS XZR, X0, #(1 << 20)

 CMP X0, #5 ; Alias of SUBS XZR, X0, #5

64-bit Android on ARM, Campus London, September 20150839 rev 12368 28

Setting the ALU flags

 The ALU flags are part of PSTATE

 NZCV Negative, Zero, Carry, Overflow

 MOV X0, #1 ; NZCV

 SUBS X1, X0, X0 ; 0100

 MOV W0, #0xFFFFFFFF

 MOV W1, #1 ; NZCV

 ADDS W2, W0, W1 ; 0110

 MOV W0, #0

 MOV W1, #1 ; NZCV

 SUBS W2, W0, W1 ; 1000

64-bit Android on ARM, Campus London, September 20150839 rev 12368 29

Using the ALU flags

 Condition codes change the behaviour of some instructions based on the ALU flags

 Suffixed to conditional branches, for example B.EQ label

 Passed as an operand to conditional operations, for example CSINC W0, EQ

 Some of the available condition codes are shown below

 See appendix for complete list

Condition Code Description ALU Flags

EQ Equal Z == 1

NE Not Equal Z == 0

CS / HS Unsigned Higher or Same C == 1

CC / LO Unsigned Lower C == 0

MI Minus N == 1

64-bit Android on ARM, Campus London, September 20150839 rev 12368 30

Conditional branches

 B.cond

 Branch to label if condition code evaluates to true

 CMP X0, #5

 B.EQ label ; Branch to label if (X0 == #5)

 CBZ / CBNZ

 Branch to label if operand register is equal to zero (CBZ) or not equal to zero (CBNZ)

 CBZ X0, label ; Branch to label if (X0 == #0)

 CBNZ W0, label ; Branch to label if (W0 != #0)

 TBZ / TBNZ

 Branch to a label if a specific bit in the operand register is set (TBNZ) or cleared (TBZ)

 TBZ W0, #20, label ; Branch to label if (W0[20] == #0b0)

 TBNZ X0, #50, label ; Branch to label if (X0[50] == #0b1)

64-bit Android on ARM, Campus London, September 20150839 rev 12368 31

Conditional operations

 CSEL

 Select between two registers based on a condition

 CSEL X7, X2, X0, EQ ; if (cond == true) X7 = X2, else X7 = X0

 CSINC / CSINV / CSNEG

 Variants of CSEL that cause the second source register to be processed in several ways

 CSINC increments, CSINV inverts, CSNEG negates

 CSINC X7, X2, X0, EQ ; if (cond == true) X7 = X2, else X7 = (X0 + #1)

 Aliases of these instructions for setting a register to a constant:

 CSET W2, HS ; if (cond == true) W2 = 1, else W2 = 0

 CSETM X1, LO ; if (cond == true) X1 = -1, else X1 = 0

64-bit Android on ARM, Campus London, September 20150839 rev 12368 32

Example: Condition execution
C Source Code: A64 Conditional Branching:

 if (a == 0) CMP W0, #0

 { B.NE else

 y = y + 1; ADD W1, W1, #1

 } B end

 else else:

 { SUB W1, W1, #1

 y = y – 1; end:

 }

A32 Conditional Execution: A64 Conditional Operations:

 CMP R0, #0 CMP W0, #0

 ADDEQ R1, R1, #1 SUB W2, W1, #1

 SUBNE R1, R1, #1 CSINC W1, W2, W1, NE

 CSINC W0, W1, W2, cond

 W0 = (cond) ? W1 : W2 + 1

64-bit Android on ARM, Campus London, September 20150839 rev 12368 33

Agenda

 Introduction

 Registers

 Loads and stores

 Data processing and control flow

 Scalar floating-point and SIMD

64-bit Android on ARM, Campus London, September 20150839 rev 12368 34

Floating-point operations

 Scalar floating-point equivalents exist for most general purpose data processing instructions

 Prefixed with ‘F’: FABS, FNEG, FSQRT, FADD, FSUB, FDIV, FMUL, FMADD, FMSUB, FCMP, FCCMP, FCSEL, …

 FMADD D3, D11, D15, D0 ; D3 = ((D11 * D15) + D0) (fused)

 FCMP S7, S9 ; Set NZCV flags based on comparison

 FCSEL D5, D4, D3, EQ ; if (cond == true) D5 = D4, else D5 = D3

 SCVTF / UCVTF

 Convert signed / unsigned scalar integer to floating-point

 Rounding mode specified by FPCR register

 FCVT…S / FCVT…U

 Convert scalar floating-point to signed / unsigned scalar integer

 Rounding mode specified by additional CVT suffix

 Can also use FMOV to move data without conversion

X0 D0

SCVTF D0, X0

FCVTNS X0, D0

(round to nearest)

64-bit Android on ARM, Campus London, September 20150839 rev 12368 35

SIMD operations

 Operand registers are treated as being vectors of individual elements

 Operations are performed simultaneously on a number of “lanes”

 In this example each lane contains a pair of 32-bit elements, one from each of the operand 128-bit vector registers

Element

Element

Op

Element

Op Op Op

Vn

Vm

Vd

0 31 32 63 64 95 96 127

Lane

64-bit Android on ARM, Campus London, September 20150839 rev 12368 36

Vectors

 When accessing a SIMD vector, the Vn register name is used, with an extension to indicate the

number and size of elements in the vector

 Vn.xy

 n is the register number, x is the number of elements, y is the size of the elements encoded as a letter

 FADD V0.2D, V5.2D, V6.2D ; 2x double-precision floats

 Total vector length must be either 128-bits or 64-bits

 If 64-bits are written, Vn[127:64] are automatically cleared to 0

 ADD V0.8H, V3.8H, V4.8H ; 8x 16-bit integers

 ADD V0.8B, V3.8B, V4.8B ; 8x 8-bit integers, clear top of V0

 Some instructions refer to a single element of a vector

 Example: V3.B[3] – Byte in V3[23:16]

 Rest of register is unaffected when an element is written

 FMUL V0.4S, V2.4S, V3.S[2] ; Multiply each element of V2 by V3.S[2]

64-bit Android on ARM, Campus London, September 20150839 rev 12368 37

ARMv8-A A64 ISA Overview

64-bit Android on ARM, Campus London, September 20150839 rev 12368 38

Appendix

64-bit Android on ARM, Campus London, September 20150839 rev 12368 39

Key differences from A32

 31 general purpose registers, all 32-bits (Wn) or 64-bits (Xn)

 Program Counter and Stack Pointer are no longer general purpose and therefore cannot be used by most instructions

 Load/store addressing modes are now consistent across sizes and type

 No Load Multiple (LDM), Store Multiple (STM), PUSH, or POP instructions

 Construct these operations using the new Load Pair (LDP) / Store Pair (STP) instructions

 Unaligned accesses are supported by almost all instructions (except for exclusive accesses)

 No conditionally executed instructions or IT instruction (except for conditional branches)

 Some conditional instructions that are always executed such as Conditional Select (CSEL)

 Different immediate ranges (no longer 8-bit rotated)

 Saturating and SIMD instructions can only use the scalar floating-point / SIMD register bank

 No coprocessor instructions
 Functionality moved to system registers that are read by MRS and set by MSR

64-bit Android on ARM, Campus London, September 20150839 rev 12368 40

AAPCS64: Role of integer registers

Register

Alternative

name Role

R0 Return value (for integers and pointers)

R0 … R7 Arguments in function calls (for integers and pointers)

R8
Indirect result location register. Used in C++ for returning non-trivial objects (set

by the caller).

R9 … R15 Temporary registers (trashed across calls)

R16, R17 IP0, IP1
The intra-procedure-call temporary registers. The linker may use these in PLT

code. Can be used as temporary registers between calls

R18 Platform register

R19 … R28 Callee-saved registers: register preserved across calls

R29 FP Frame pointer. Copy of SP before function stack allocation

R30 LR Link register. BL and BLR instructions save return address in it

SP Stack pointer

64-bit Android on ARM, Campus London, September 20150839 rev 12368 41

AAPCS64: Role of floating-point registers

Register Role

V0 Return value (for floating-point values)

V0 … V7 Arguments in function calls (for floating-point values)

V8 … V15
Callee-saved registers. The bottom 64 bits of these registers are preserved across

calls. Upper 64 bits must be saved by the caller if needed.

V16 … V31 Temporary registers (trashed across calls)

64-bit Android on ARM, Campus London, September 20150839 rev 12368 42

Specifying register load size

Load Size Extension Xn Wn

8-bit
Zero -- LDRB

Sign LDRSB LDRSB

16-bit
Zero -- LDRH

Sign LDRSH LDRSH

32-bit
Zero -- LDR

Sign LDRSW --

64-bit Zero LDR --

 There is no encoding for a zero-extended load of less than 64-bits to an Xn register

 Writing to a Wn register automatically clears bits [63:32], which accomplishes the same thing

Store Size Xn Wn

8-bit -- STRB

16-bit -- STRH

32-bit -- STR

64-bit STR --

64-bit Android on ARM, Campus London, September 20150839 rev 12368 43

Condition codes

Condition Code Description Flags Tested

EQ Equal Z == 1

NE Not Equal Z == 0

CS / HS Unsigned Higher or Same C == 1

CC / LO Unsigned Lower C == 0

MI Minus N == 1

PL Positive or Zero N == 0

VS Overflow V == 1

VC No Overflow V == 0

HI Unsigned Higher C == 1 && Z == 0

LS Unsigned Lower or Same C == 0 && Z == 1

GE Greater Than or Equal N == V

LT Less Than N != V

GT Greater Than Z == 0 && N == V

LE Less Than or Equal Z == 1 || N != V

AL Always --

 NZCV Negative, Zero, Carry, Overflow

64-bit Android on ARM, Campus London, September 20150839 rev 12368 44

AArch64 cryptographic instructions

Instruction Descriptrion

PMULL Vd.1Q, Vn.1D, Vm.1D Polynomial Multiply Long (Vector)

PMULL2 Vd.1Q, Vn.2D, Vm.2D Polynomial Multiply Long (Vector, Part 2)

AESE Vd.16B, Vn.16B AES Single Round Encrypt

AESD Vd.16B, Vn.16B AES Single Round Decrypt

AESMC Vd.16B, Vn.16B AES Mix Columns

AESIMC Vd.16B, Vn.16B AES Inverse Mix Columns

SHA256H Qd, Qn, Vm.4S SHA256 Hash Update Accelerator

SHA256H2 Qd, Qn, Vm.4S SHA256 Hash Update Accelerator (Part 2)

SHA256SU0 Vd.4S, Vn.4S SHA256 Schedule Update

SHA256SU1 Vd.4S, Vn.4S, Vm.4S SHA256 Schedule Update (Part 2)

SHA1C Qd, Sn, Vm.4S SHA1 Hash Update Accelerator (Choose)

SHA1P Qd, Sn, Vm.4S SHA1 Hash Update Accelerator (Parity)

SHA1M Qd, Sn, Vm.4S SHA1 Hash Update Accelerator (Majority)

SHA1H Sd, Sn SHA1 Hash Update Accelerator (Rotate Left by 30)

SHA1SU0 Vd.4S, Vn.4S, Vm.4S SHA1 Schedule Update Accelerator

SHA1SU1 Vd.1Q, Vn.1D, Vm.1D SHA1 Schedule Update Accelerator (Part 2)

