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 Compute shaders introduction 

 Shader storage buffer objects 

 Shader image load/store 

 Shared memory 
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 Indirect commands 

 Best practices on ARM® Mali™ Midgard GPUs 
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Content 
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 Brings some OpenCL™ functionality to OpenGL ES 

 Familiar Open GLSL syntax 

 

 Random access writes to buffers and textures 

 Sharing of data between threads 

 

Introduction to Compute Shaders 
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Introduction to Compute Shaders (cont.) 
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Compute model 

 Traditional graphics pipeline 

 No random access write 

 Implicit parallelism 

 No synchronization between 

threads 

 

 

 Compute 

 Random access writes to buffers 

and textures 

 Explicit parallelism 

 Full synchronization and sharing 

between threads in same work 

group 
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 Work group – the compute building block 

 Independent 

 Up to three dimensions 

Compute model (cont.) 

Compute dispatch 
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 Work group 

 Shared memory 

 Concurrent threads 

 Synchronization 

 Unique identification 

 gl_LocalInvocation{ID,Index} 

 gl_GlobalInvocationID 

 gl_WorkGroupID 

Compute model (cont.) 

Work group 

Shared Memory 

Thread Thread Thread 

Thread Thread Thread 
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Hello compute world 

#version 310 es 

layout(local_size_x = 1) in; 

 

layout(std430, binding = 0) buffer Output { 

    writeonly float data[]; 

} output; 

 

void main() { 

    uint ident = gl_GlobalInvocationID.x; 

    output.data[ident] = float(ident); 

} 
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Compiling and executing a compute shader 

GLuint shader = glCreateShader(GL_COMPUTE_SHADER); 

// ... Compile, attach and link here. 

 

glUseProgram(program); 

glDispatchCompute(work_groups_x, 

    work_groups_y, 

    work_groups_z); 
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 ”Writeable uniform buffers” 

 Minimum required size 128 MiB 

 Can be unsized in shader 

 New buffer layout for SSBOs (std430), better packing than 

std140 

 

Shader storage buffer objects (SSBO) 

glBindBufferBase(GL_SHADER_STORAGE_BUFFER,  

    binding, buffer_object); 

 

layout(std430, binding = 0) buffer SomeData { 

    float data[]; 

}; 
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 Raw read/write texel access 

 Layering support 

 Atomics support in OES_shader_image_atomic 

Shader image load/store 

glBindImageTexture(0, tex, level, layered, layer, 

    access, format); 

 

layout(r32f, binding = 0) uniform writeonly image2D myImage; 

imageStore(myImage, ivec2(x, y), color); 
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 Same as ”local” address space in OpenCL™ 

 Shared between threads in same work group 

 Coherent 

 Limited in size 

 GL_MAX_COMPUTE_SHARED_MEMORY_SIZE 

 Implementations must support at least 16 KiB 

Shared memory 
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 Dedicated atomic counters 

 

 

 

 

 SSBOs and shared memory 

 Add, Min/Max, Exchange, CompSwap, etc 

 

Atomic operations 

glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, atomic); 

 

layout(binding = 0, offset = 0) uniform atomic_uint myCounter; 

void main() { 

    uint unique = atomicCounterIncrement(myCounter); 

} 

shared uint sharedVarible; 

uint previous = atomicMax(sharedVariable, 42u); 
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 Applies to SSBOs and images 

 coherent  

 Writes can be read by other shader invocations in the same command 

 Ensure visibility with shader language memory barrier 

 Writes only visible if they have actually happened 

 Shared memory implicitly declared coherent 

 readonly / writeonly 

 volatile / restrict 

 Same meaning as in C 

 

 

Memory qualifiers 
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 OpenGL ES synchronizes GL commands for you 

 Appears to operate as-if everything is in-order 

 Random access writes are unsynchronized 

- Ensure visibility to other GL commands with API memory barrier 

Synchronization 
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 glMemoryBarrier() 

 Ensures shader writes are visible to subsequent GL calls 

 Specify how data is read after the barrier 

Synchronization (cont.) 

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, vbo); 

glDispatchCompute(groups_x, groups_y, groups_z); 

 

// Non-blocking call! Flush caches on GPU, etc. 

glMemoryBarrier(GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT); 

 

// Draw using updated VBO contents. 

glDrawElements(...); 
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 groupMemoryBarrier(), memoryBarrier*() 

 Ensures coherent writes are visible to other shader invocations 

 Writes below barrier not visible before writes above barrier 

 

 barrier() 

 All threads in work group must reach barrier before any thread can 

continue 

 Must be called from dynamically uniform control flow 

 Does not order memory 

 memoryBarrierShared() before barrier() 

 

 

Synchronization (cont.) 
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Synchronization (cont.) 

#version 310 es 

layout(local_size_x = 128) in; 

shared float sharedData[128]; 

 

void main() { 

  sharedData[gl_LocalInvocationIndex] = 0.0; 

 

  // Ensure shared memory writes are visible to work group 

  memoryBarrierShared(); 

   

  // Ensure all threads in work group 

  // have executed statements above 

  barrier();  

 

  // Entire buffer now cleared for every thread 

} 
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 Three new indirect commands 

 glDrawArraysIndirect 

 glDrawElementsIndirect 

 glDispatchComputeIndirect 

 Draw/dispatch parameters sourced from buffer object 

 Lets GPU feed itself with work 

 Very useful when draw parameters are not known by CPU 

 Avoids CPU/GPU synchronization point 

Indirect commands 
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Indirect commands (cont.) 

struct IndirectCommand { 

    GLuint count; 

    GLuint instanceCount; 

    GLuint firstIndex; 

    GLuint baseVertex; 

    GLuint reservedMustBeZero; 

}; 

 

glBindBuffer(GL_DRAW_INDIRECT_BUFFER, command); 

// Update instanceCount on GPU. 

glDrawElementsIndirect(GL_TRIANGLES,  

    GL_UNSIGNED_SHORT, NULL); 
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Indirect commands (cont.) 

struct IndirectDispatch { 

    GLuint num_groups_x; 

    GLuint num_groups_y; 

    GLuint num_groups_z; 

}; 

 

glBindBuffer(GL_DISPATCH_INDIRECT_BUFFER, command); 

// Update dispatch buffer on GPU. 

glDispatchComputeIndirect(0); 
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 Global memory just as fast as shared memory 

 Avoid reads from global to shared memory just for caching 

 Use shared if sharing of computation is needed 

 Atomics on SSBOs just as efficient as atomic counters 

 SSBOs cleaner anyways 

 Cheap branching 

 Branch on gl_LocalInvocationIndex == 0u for expensive once-per-work-

group code paths 

Best practices on ARM® Mali™ Midgard 
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 Many small indirect draws are expensive 

 instanceCount of 0 often just as expensive as 1 

 Use sparingly 

 Ideal case is instancing 

 Avoid tiny work groups 

 Limits maximum number of concurrent threads 

 Work group of 128 threads recommended 

Best practices on ARM® Mali™ Midgard (cont.) 
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 Wave simulation 

 Occlusion culling 

 Physics 

 Particle effects 

 Image processing 

 

Use cases for compute 
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Occlusion culling with compute 
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Occlusion culling with compute (cont.) 
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Occlusion culling with compute (cont.) 
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 Only want to draw visible meshes 

 Frustum culling not enough 

 OpenGL ES 3.0 occlusion query too inefficient 

 Doesn’t support instancing 

 CPU readback required 

 Traditional CPU methods not always viable 

 Instance data updated every frame by GPU 

 CPU already busy with other tasks 

Occlusion culling with compute (cont.) 
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 Rasterize occluders to depth map 

 Simplified occluder meshes 

 Reduced resolution good enough (256x256) 

 Mipmap depth manually with max() filter 

 Test every bounding volume in parallel with compute 

 Find screen space bounding box 

 Sample depth at appropriate LOD 

 Append visible per-instance data to buffer 

 Atomic counter to increment instanceCount 

 Indirect Draw 

Hierarchical-Z occlusion culling 
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Results (without culling) 
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Results (with culling) 
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Performance, Mali™-T604 

 Vertex bound 

 ~100 vertices per sphere 

 ~114k spheres in scene 

Method Frame time 

(ms) 

Culling time 

(ms) 

Vertices 

(per frame) 

Hi-Z culling 10.8 3.3 186k 

Frustum culling    120.5 1.3 2837k 

No culling    246.9 N/A 11271k 
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 Compute shaders is a very useful addition to OpenGL ES 

 Indirect features allow GPU to feed itself with work 

Closing 


