
1

Get the most out of the new

OpenGL ES 3.1 API

Hans-Kristian Arntzen

Software Engineer

2

 Compute shaders introduction

 Shader storage buffer objects

 Shader image load/store

 Shared memory

 Atomics

 Synchronization

 Indirect commands

 Best practices on ARM® Mali™ Midgard GPUs

 Use cases

 Example

Content

3

 Brings some OpenCL™ functionality to OpenGL ES

 Familiar Open GLSL syntax

 Random access writes to buffers and textures

 Sharing of data between threads

Introduction to Compute Shaders

4

Introduction to Compute Shaders (cont.)
Graphics

FBO

Compute

Fragment

Vertex

Read

Random access write

Sequential access write

Buffers

Textures

5

Compute model

 Traditional graphics pipeline

 No random access write

 Implicit parallelism

 No synchronization between

threads

 Compute

 Random access writes to buffers

and textures

 Explicit parallelism

 Full synchronization and sharing

between threads in same work

group

6

 Work group – the compute building block

 Independent

 Up to three dimensions

Compute model (cont.)

Compute dispatch

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

Work

group

7

 Work group

 Shared memory

 Concurrent threads

 Synchronization

 Unique identification

 gl_LocalInvocation{ID,Index}

 gl_GlobalInvocationID

 gl_WorkGroupID

Compute model (cont.)

Work group

Shared Memory

Thread Thread Thread

Thread Thread Thread

8

Hello compute world

#version 310 es

layout(local_size_x = 1) in;

layout(std430, binding = 0) buffer Output {

 writeonly float data[];

} output;

void main() {

 uint ident = gl_GlobalInvocationID.x;

 output.data[ident] = float(ident);

}

9

Compiling and executing a compute shader

GLuint shader = glCreateShader(GL_COMPUTE_SHADER);

// ... Compile, attach and link here.

glUseProgram(program);

glDispatchCompute(work_groups_x,

 work_groups_y,

 work_groups_z);

10

 ”Writeable uniform buffers”

 Minimum required size 128 MiB

 Can be unsized in shader

 New buffer layout for SSBOs (std430), better packing than

std140

Shader storage buffer objects (SSBO)

glBindBufferBase(GL_SHADER_STORAGE_BUFFER,

 binding, buffer_object);

layout(std430, binding = 0) buffer SomeData {

 float data[];

};

11

 Raw read/write texel access

 Layering support

 Atomics support in OES_shader_image_atomic

Shader image load/store

glBindImageTexture(0, tex, level, layered, layer,

 access, format);

layout(r32f, binding = 0) uniform writeonly image2D myImage;

imageStore(myImage, ivec2(x, y), color);

12

 Same as ”local” address space in OpenCL™

 Shared between threads in same work group

 Coherent

 Limited in size

 GL_MAX_COMPUTE_SHARED_MEMORY_SIZE

 Implementations must support at least 16 KiB

Shared memory

13

 Dedicated atomic counters

 SSBOs and shared memory

 Add, Min/Max, Exchange, CompSwap, etc

Atomic operations

glBindBufferBase(GL_ATOMIC_COUNTER_BUFFER, 0, atomic);

layout(binding = 0, offset = 0) uniform atomic_uint myCounter;

void main() {

 uint unique = atomicCounterIncrement(myCounter);

}

shared uint sharedVarible;

uint previous = atomicMax(sharedVariable, 42u);

14

 Applies to SSBOs and images

 coherent

 Writes can be read by other shader invocations in the same command

 Ensure visibility with shader language memory barrier

 Writes only visible if they have actually happened

 Shared memory implicitly declared coherent

 readonly / writeonly

 volatile / restrict

 Same meaning as in C

Memory qualifiers

15

 OpenGL ES synchronizes GL commands for you

 Appears to operate as-if everything is in-order

 Random access writes are unsynchronized

- Ensure visibility to other GL commands with API memory barrier

Synchronization

16

 glMemoryBarrier()

 Ensures shader writes are visible to subsequent GL calls

 Specify how data is read after the barrier

Synchronization (cont.)

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, vbo);

glDispatchCompute(groups_x, groups_y, groups_z);

// Non-blocking call! Flush caches on GPU, etc.

glMemoryBarrier(GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT);

// Draw using updated VBO contents.

glDrawElements(...);

17

 groupMemoryBarrier(), memoryBarrier*()

 Ensures coherent writes are visible to other shader invocations

 Writes below barrier not visible before writes above barrier

 barrier()

 All threads in work group must reach barrier before any thread can

continue

 Must be called from dynamically uniform control flow

 Does not order memory

 memoryBarrierShared() before barrier()

Synchronization (cont.)

18

Synchronization (cont.)

#version 310 es

layout(local_size_x = 128) in;

shared float sharedData[128];

void main() {

 sharedData[gl_LocalInvocationIndex] = 0.0;

 // Ensure shared memory writes are visible to work group

 memoryBarrierShared();

 // Ensure all threads in work group

 // have executed statements above

 barrier();

 // Entire buffer now cleared for every thread

}

19

 Three new indirect commands

 glDrawArraysIndirect

 glDrawElementsIndirect

 glDispatchComputeIndirect

 Draw/dispatch parameters sourced from buffer object

 Lets GPU feed itself with work

 Very useful when draw parameters are not known by CPU

 Avoids CPU/GPU synchronization point

Indirect commands

20

Indirect commands (cont.)

struct IndirectCommand {

 GLuint count;

 GLuint instanceCount;

 GLuint firstIndex;

 GLuint baseVertex;

 GLuint reservedMustBeZero;

};

glBindBuffer(GL_DRAW_INDIRECT_BUFFER, command);

// Update instanceCount on GPU.

glDrawElementsIndirect(GL_TRIANGLES,

 GL_UNSIGNED_SHORT, NULL);

21

Indirect commands (cont.)

struct IndirectDispatch {

 GLuint num_groups_x;

 GLuint num_groups_y;

 GLuint num_groups_z;

};

glBindBuffer(GL_DISPATCH_INDIRECT_BUFFER, command);

// Update dispatch buffer on GPU.

glDispatchComputeIndirect(0);

22

 Global memory just as fast as shared memory

 Avoid reads from global to shared memory just for caching

 Use shared if sharing of computation is needed

 Atomics on SSBOs just as efficient as atomic counters

 SSBOs cleaner anyways

 Cheap branching

 Branch on gl_LocalInvocationIndex == 0u for expensive once-per-work-

group code paths

Best practices on ARM® Mali™ Midgard

23

 Many small indirect draws are expensive

 instanceCount of 0 often just as expensive as 1

 Use sparingly

 Ideal case is instancing

 Avoid tiny work groups

 Limits maximum number of concurrent threads

 Work group of 128 threads recommended

Best practices on ARM® Mali™ Midgard (cont.)

24

 Wave simulation

 Occlusion culling

 Physics

 Particle effects

 Image processing

Use cases for compute

25

Occlusion culling with compute

26

Occlusion culling with compute (cont.)

27

Occlusion culling with compute (cont.)

28

 Only want to draw visible meshes

 Frustum culling not enough

 OpenGL ES 3.0 occlusion query too inefficient

 Doesn’t support instancing

 CPU readback required

 Traditional CPU methods not always viable

 Instance data updated every frame by GPU

 CPU already busy with other tasks

Occlusion culling with compute (cont.)

29

 Rasterize occluders to depth map

 Simplified occluder meshes

 Reduced resolution good enough (256x256)

 Mipmap depth manually with max() filter

 Test every bounding volume in parallel with compute

 Find screen space bounding box

 Sample depth at appropriate LOD

 Append visible per-instance data to buffer

 Atomic counter to increment instanceCount

 Indirect Draw

Hierarchical-Z occlusion culling

30

Results (without culling)

31

Results (with culling)

32

Performance, Mali™-T604

 Vertex bound

 ~100 vertices per sphere

 ~114k spheres in scene

Method Frame time

(ms)

Culling time

(ms)

Vertices

(per frame)

Hi-Z culling 10.8 3.3 186k

Frustum culling 120.5 1.3 2837k

No culling 246.9 N/A 11271k

33

 Compute shaders is a very useful addition to OpenGL ES

 Indirect features allow GPU to feed itself with work

Closing

