

 64-bit Android on ARM, Campus London, September 2015

Demystifying 64-bit development

on Android™

Ramin Zaghi

Senior Applications Engineer

 Partner Enablement Group, ARM

24 Sep 2015

 64-bit Android on ARM, Campus London, September 2015

 PART I: ARM® 64-bit Architecture in Android

 PART II: Developing 64-bit Applications for Android

Demystifying 64-bit development on Android™
Agenda

 64-bit Android on ARM, Campus London, September 2015

PART I: ARM® 64-bit Architecture

in Android™

 64-bit Android on ARM, Campus London, September 2015

1. Why Should I Care?

2. What Has Changed?

3. ART: The New Virtual Machine

4. How Does It All Work?

5. What Difference Does it Make?

6. What Should I Do?

ARM 64-bit Architecture in Android™
Agenda

 64-bit Android on ARM, Campus London, September 2015

 It’s going to be almost everywhere, and soon!

 Already there are sub £100 phones with 64-bit cores

 64-bit is not an automatic performance win, but:

 Android only supports ARMv8 with 64-bit binaries (i.e. AArch64 and not AArch32)

 Increased register number and register width

 Improvements in the instruction set

 Increased pointer size is mitigated in the design of the ART virtual machine

 ’64-bit only’ is the increasing rule in the desktop space and mobile is likely to follow

 Switching to 64-bit mostly involves fixing bugs that you haven’t noticed yet

ARM 64-bit Architecture in Android™
Why Should I Care?

 64-bit Android on ARM, Campus London, September 2015

 There is no “64-bit-only” system but systems that support 64-bit as well as 32-bit

 Also known as Multilib – the 64-bit ARMv8 AArch64, and 32-bit ARMv7 instruction sets

 The way your Android device launches an App is slightly different (see next slide)

 You get all the benefits as well as costs depending on what binaries/libraries you provide

 We think there is more long term scope for optimising for 64-bit

 Last but not least, there is a brand new and improved Virtual Machine (known as ART)

ARM 64-bit Architecture in Android™
What Has Changed?

 64-bit Android on ARM, Campus London, September 2015

 Shorter garbage collection pause times

 Improved compilation techniques

 Suitable for both low-end and high-end Android devices (better on multi-core systems)

 Watch “Google I/O 2014 - The ART runtime” on YouTube

 https://www.youtube.com/watch?v=EBlTzQsUoOw

ARM 64-bit Architecture in Android™
ART: The New Virtual Machine

https://www.youtube.com/watch?v=EBlTzQsUoOw

 64-bit Android on ARM, Campus London, September 2015

 ART supports 64-bit so Apps written only in Java™ benefit with no modification

 ART compiles your App’s bytecode to native code at install time

 This means shorter launch times

 No Just-In-Time (JIT) compilation while your App is running

 64-bit data types are now processed natively and with fewer instructions

 Optimised use of memory and cache

 Java’s object heap uses 32-bit object references (compressed pointers)

ARM 64-bit Architecture in Android™
ART: The New Virtual Machine

 64-bit Android on ARM, Campus London, September 2015

 All Apps are forked from a background Virtual Machine (VM) process called Zygote

 Multilib devices run two Zygotes (a 32-bit one and a 64-bit one) in parallel!

 When an application is launched on a 64-bit system

 If it contains a supported 64-bit library, it runs as a 64-bit process against the loaded system

 If it contains a supported 32-bit library, it is launched as a 32-bit process

 Applications with no native code are launched using the default virtual machine (typically 64-bit)

ARM 64-bit Architecture in Android™
How Does It All Work?

 64-bit Android on ARM, Campus London, September 2015

ARM 64-bit Architecture in Android™
How Does It All Work?

 64-bit Android on ARM, Campus London, September 2015

ARM 64-bit Architecture in Android™
How Does It All Work?

 64-bit Android on ARM, Campus London, September 2015

 OS Images are larger & Take longer to build

 Not really your problem if you are developing Apps…

 Increased binary size

 But asset files (such as the graphics which make up most of an App) are unchanged

 Future-proofing done early rather than in a panic

 Huge chunks of Android built for AArch64 at least three or four years ago

 Lots of work done by Google (and a bit by ARM and others)

ARM 64-bit Architecture in Android™
What Difference Does it Make?

 64-bit Android on ARM, Campus London, September 2015

 Have a pure Java™ application?

 Just sit back and enjoy…

 Well written code will just work (most of the time)

 You do pay attention to your types in C/C++ code, don’t you?

 NEON™ code needs a little updating

 Less if it uses intrinsics

 If you want to take full advantage of 64-bit

 ARM has lots of training courses…

ARM 64-bit Architecture in Android™
What Should I Do?

 64-bit Android on ARM, Campus London, September 2015

PART II: Developing 64-bit Applications

for Android™

 64-bit Android on ARM, Campus London, September 2015

1. Overview of developing Apps using Android Native Development Kit (NDK)

2. The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

3. The new way: Gradle™ and Android Studio

4. Building as part of the Android Open Source Project (AOSP) source tree

Developing 64-bit Applications for Android™
Agenda

 64-bit Android on ARM, Campus London, September 2015

“The NDK is a toolset that allows you to implement

parts of your app using native-code languages such as C

and C++. Typically, good use cases for the NDK are

CPU-intensive applications such as game engines, signal

processing, and physics simulation.”

https://developer.android.com/tools/sdk/ndk/index.html

 64-bit Android on ARM, Campus London, September 2015

1. Write Java™ code that links to native code through the JNI standard
e.g. public static native void SomeFunction();

2. Compile your native code into shared object files
e.g. libMyNative.so

3. Place them under one of the architecture specific directories under “libs”
e.g. libs/arm64-v8a/libMyNative.so

4. Build your App’s final package (i.e. the .Apk that can be installed)

Developing 64-bit Applications for Android™
Overview of developing Apps using Android Native Development Kit (NDK)

 64-bit Android on ARM, Campus London, September 2015

Directory structure for

a typical Android™ App project

http://malideveloper.arm.com

http://malideveloper.arm.com/

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

Directory structure for a typical Android™ App project

 64-bit Android on ARM, Campus London, September 2015

Write Java™ code that links to

native code through the JNI standard

 64-bit Android on ARM, Campus London, September 2015

Developing 64-bit Applications for Android™
Write Java™ code that links to native code through the JNI standard

 64-bit Android on ARM, Campus London, September 2015

Developing 64-bit Applications for Android™
Write Java™ code that links to native code through the JNI standard

 64-bit Android on ARM, Campus London, September 2015

Compiling the native code

and building the final package

 64-bit Android on ARM, Campus London, September 2015

Developing 64-bit Applications for Android™
The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

 64-bit Android on ARM, Campus London, September 2015

 Commands to build your native code using NDK

cd jni/

<path-to-your-ndk-root>/ndk-build

Developing 64-bit Applications for Android™

The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

 64-bit Android on ARM, Campus London, September 2015

 Don’t forget that you do need correct Android.mk and Application.mk

Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := samples

LOCAL_SRC_FILES := Native.cpp.........

LOCAL_MODULE := libMali_ShadowMapping_Native

LOCAL_STATIC_LIBRARIES :=

LOCAL_C_INCLUDES += $(JNI_H_INCLUDE)

LOCAL_LDLIBS := -llog -lGLESv3

LOCAL_CFLAGS +=

LOCAL_DEX_PREOPT := false

include $(BUILD_SHARED_LIBRARY)

Developing 64-bit Applications for Android™

The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

Application.mk

APP_ABI := arm64-v8a

Older API levels might miss some libraries

such as “libGLESv3.so”

APP_PLATFORM := android-21

 64-bit Android on ARM, Campus London, September 2015

Developing 64-bit Applications for Android™
The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

 64-bit Android on ARM, Campus London, September 2015

 Commands to prepare your project for building the final package using Apache Ant

(if you are not using Android ADT from within Eclipse)

android update sdk –u

android list targets

android create project --target current --name Mali_ShadowMapping

--path . --activity ShadowMapping --package

com.arm.malideveloper.openglessdk.shadowMapping

Developing 64-bit Applications for Android™

The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

 64-bit Android on ARM, Campus London, September 2015

 The command to build the final package using Apache Ant

 (if you are not using Android ADT from within Eclipse)

Developing 64-bit Applications for Android™

The old way: Apache Ant™ and Android Development Tools (ADT) for Eclipse

ant debug

 64-bit Android on ARM, Campus London, September 2015

 Android Studio is the future

 It takes a familiar approach

 Android SDK now includes Android Studio:

 https://developer.android.com/sdk/index.html

Developing 64-bit Applications for Android™

The new way: Gradle™ and Android Studio

https://developer.android.com/sdk/index.html

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 NDK support is experimental

 It is only supported in the preview versions of Android Studio

 http://tools.android.com/tech-docs/android-ndk-preview

Developing 64-bit Applications for Android™

The new way: Gradle™ and Android Studio

http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview
http://tools.android.com/tech-docs/android-ndk-preview

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 64-bit Android on ARM, Campus London, September 2015

 Download and installed Android Studio

 Make sure you follow the guidelines or the release notes for using the NDK

 Import your current project files into Android Studio

 Modify Gradle scripts to suit your project and your particular version of Android Studio

Developing 64-bit Applications for Android™

The new way: Gradle™ and Android Studio

 64-bit Android on ARM, Campus London, September 2015

DEMO

 64-bit Android on ARM, Campus London, September 2015

 Useful for Systems Engineers or anyone working on the Android Open Source Project

 Drop your sample code into the AOSP source tree
e.g. /work/android/android-5.1.1_r1/development/samples

 With Android.mk and Application.mk in your App’s project and jni/ directories do
mm –j8

 This will build a “system” App which will only support the default architecture

Developing 64-bit Applications for Android™
Building as part of the Android Open Source Project (AOSP) source tree

 64-bit Android on ARM, Campus London, September 2015

Questions?

 64-bit Android on ARM, Campus London, September 2015

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

