
1

Adding Intelligent Vision to Your 
Next Embedded Product

Radhika Jagtap, Product Manager
Alessandro Grande, Developer Advocate

White Paper

Embedded vision refers to the practical use of computer vision in machines that 

understand their environment through visual means.

Embedded vision has proved to enhance solutions in a 

broad range of markets including automotive, security, 

medical and entertainment. Leaps in understanding of deep 

learning technology combined with increasing embedded 

compute performance will lead to an explosive growth in 

embedded vision products. Join this tour of hardware and 

software components and the trade-offs a designer has to 

make in order to satisfy the broad market requirements. 

What are the key enablers for easily adding intelligent vision 

to your next embedded product? Will the intelligence be 

local or in the cloud, and why? This paper presents answers 

to these questions and more.

Introduction
Computer vision (CV) is the ability of machines to understand images or video, infer 

information and potentially use it to make decisions. Embedded vision alliance defines 

embedded vision as the following.

The major problems addressed by embedded vision technology which makes the devices 

intelligent are image classification, object detection, and recognition. According to our 

estimates, the demand for embedded devices with intelligent vision capabilities is highest for 

devices connected to the internet.

https://www.embedded-vision.com/what-is-embedded-vision


2

	� The security (surveillance) and IP camera market is on pace for an annual growth rate of 

20% through to 2021 reaching over 500 million shipped units;*

	� Personal robots are growing at a staggering 75% y-o-y rate and are expected to reach  

2 million units shipped in 2021;* 

	� The smart home market is growing at 14% y-o-y to 88 million in 2021, and other devices 

like drones, augmented reality (AR)/ mixed reality (MR) equipment and action cameras 

are shifting from emerging to widely adopted in terms of market category* 

From a technical viewpoint, the sub-problems that embedded vision can be broken down 

into are capturing high-quality images and video, analyzing them, detecting and recognizing 

objects, and be able to give a response to human users in real-time. Object detection and 

recognition are hard, if not impossible to solve using classic rules-based programming. 

In traditional CV, feature extraction is key and algorithms for detecting features such as 

edges, corners and objects are based on mathematical models. One needs to be an expert 

to implement traditional CV and manually decide which features to extract and which 

algorithm to use for the specific class of objects. Deep learning has gained momentum for 

complex CV problems for which it is feasible to obtain a large amount of visual data. While 

many researchers believe deep learning will not make traditional CV obsolete, it has a clear 

advantage, which is doing end-to-end object detection without requiring to define features 

specifically.

A. End-to-end deep learning flow

Neural networks are at the core of deep learning, which is a subset of machine learning (ML). 

Neural networks have an architecture inspired by the structure of the brain. They transform 

an input through a series of layers wherein each layer comprises of neurons, each neuron has 

a set of weights, and the neurons belonging to different layers are connected. The final layer 

outputs the answer, for example, whether an object is detected or not. In practice, there are 

two phases of deep learning.

The first phase of deep learning is training which is when the neural network learns the features 

automatically. The outcome of the training phase is a neural network with weights configured 

so that it works for the images it was trained on, called the neural network model. Many image 

databases are available online to aid this, for example, ImageNet contains 10s of millions 

of classified images. The second phase, called inference, is deploying the network onto the 

embedded device that will run the vision application, for example, a smart doorbell. During the 

inference phase, a new image is input to the neural network, and it outputs a prediction of the 

answer. An important metric of design and in turn the user-experience is the accuracy of the 

prediction. Fig 1 shows an illustration of the end-to-end flow. Deep learning has significantly 

enhanced the speed, accuracy and scalability of solving computer vision problems as shown in 

the widely cited ImageNet paper.

* These estimates have been 

produced by Arm based on 

market forecast sources 

from ABI Research and IHS 

Markit.

https://zbigatron.com/has-deep-learning-superseded-traditional-computer-vision-techniques/
https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
http://www.image-net.org/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


3

Fig 1:  

The two phases of training 

and inference make up 

the end-to-end flow for 

embedded vision using 

deep learning.

An example of inference is whether the object in the image belongs to a specific class 

of objects. This problem called image classification is the focus of our paper. Recent 

research has shown that Convolutional Neural Networks (CNNs) are highly effective 

at classifying images and maps well onto embedded devices.

B. Embedded vision explosion

Advances in embedded compute capability have resulted in an explosion of embedded vision 

applications and products. Here are a few examples of embedded vision applications in home 

automation, automotive, medical and industrial.

	 �Intuition Robotics’ ElliQ is a social companion robot that helps the elderly. Arm’s partner, 

Brodmann17 worked with them to speed up the performance of the robot  

via the software solution. The SoC is a Qualcomm Snapdragon 820 which is based  

on Armv8-A. 

	 �Skydio is an autonomous camera drone that senses the environment, identifies and tracks 

people so that they can be filmed, for example when athletes want to record their fitness 

activities. It maps things like trees and building which are obstacles in real-time and 

deploys a series of CNNs to track people using a combination of identifiers, for example, 

colour of clothing.

	� A cucumber sorting application developed on Raspberry Pi 3 takes images of the 

cucumbers with a camera and runs a small-scale neural network on TensorFlow to detect 

whether or not the image is of a cucumber. 

https://www.skydio.com/
https://cloud.google.com/blog/products/gcp/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow


4

In all the above examples, the inference runs locally on the device, closest to the source of the 

input data and the user of the intelligent embedded device. There are several advantages of 

deploying intelligent vision locally on embedded devices compared to utilizing cloud compute:

	� Bandwidth saving and lower latency as there is no need to communicate with the server

	 Lower cost as embedded devices are cheaper than provisioning a machine in the cloud

	 Reliability as it works in the absence of internet connectivity

	� Smaller attack surface compared to exposing the device to attacks over the  

network connection

C. Model optimization gap

To enable the end-to-end deep learning flow in a flexible manner, layers of abstraction are 

designed such that neural network models trained using any framework can be deployed on a 

variety of hardware platforms. These layers are introduced below and are described in detail 

in Sections titled Hardware and Software.

	� ML frameworks – these enable specifying neural networks in high-level languages and 

training them, for example, Caffe, TensorFlow and Torch

	� Optimization libraries - typically, neural network models are implemented using libraries 

optimized for specific hardware targets 

	� Embedded hardware - from general-purpose to dedicated, providing a range of 

performance and cost points

	� –   General purpose processors, for example, Arm Cortex-A, Cortex-R and Cortex-M processors

	 –   �Dedicated or specialized hardware, for example, neural network accelerators

To enable developers to easily ride the wave of intelligent embedded vision, Arm is addressing 

Open-source ML frameworks and pre-trained models are readily available. Alongside 

that, there is a strong trend that embedded hardware is becoming increasingly 

accessible. The layer in between, comprising of libraries that abstract away advanced 

optimizations that are specific to target hardware, requires deep technical expertise. 

Without this layer, developers who aren’t experts in ML and hardware would 

experience a gap, as shown in Fig 3.  We call this the model optimization gap

this gap by contributing to libraries known as CMSIS-NN, Arm-NN and 

Arm Compute Library.

In summary, market and technical insights indicate we are at the brink of crossing the 

https://www.arm.com/products/silicon-ip-cpu
http://arm-software.github.io/CMSIS_5/NN/html/index.html
https://developer.arm.com/products/processors/machine-learning/arm-nn
https://developer.arm.com/technologies/compute-library


5

Fig 2:  

Developers who 

aren’t experts in ML 

and hardware would 

experience a gap when 

adding intelligent vision to 

their embedded devices.  

We call this the model 

optimization gap.

inflection point after which embedded vision will be omnipresent. This paper shows the 

embedded community how to add intelligent vision to your device by bringing it all together - 

low-cost and low-power embedded hardware, open-source ML frameworks and key enablers 

such as optimized libraries. In the remainder of this paper, we deep-dive into a versatile and 

easy-to-use smart camera module from OpenMV. We describe the steps to leverage open-

source software framework and libraries

Hardware
There is a broad range of compute performance requirements for machine learning 

applications based on neural networks, illustrated in Fig 4. For most of the markets, vision 

dominates the compute requirement.

Arm IP portfolio offers a scalable platform that serves a broad range of performance and 

energy efficiency needs of embedded vision applications. An important consideration across 

the spectrum is image processing – cleaner the image, the better the accuracy of inference. In 

embedded devices, the key function of an Image Signal Processor (ISP) is delivering the most 

accurate and highest image quality when pulling data from an image sensor and processing 

each pixel, particularly where ML is involved. Arm Mali-C52 and Mali-C32 apply over twenty-

five processing steps to each pixel, of which three critical ones deliver key differentiation in 

terms of image output quality. These include high-dynamic range (HDR), noise reduction and 

color management.

https://community.arm.com/members/kwabena-w.-agyeman
https://www.arm.com/company/news/2019/01/a-sharper-digital-eye-for-intelligent-devices


6

Fig 3:

There is a broad range of 

performance requirements 

for machine learning based 

on neural networks. For 

most of the markets, vision 

dominates the compute 

requirement. 

* Server market is merely 

shown for reference.

Fig 4: 

OpenMV Cam M7 allows 

you to implement real-

world embedded vision 

applications easily.

Next, we describe the hardware components needed in an embedded vision pipeline with the 

help of a smart camera module that is available to purchase.

A. OpenMV Cam

The OpenMV Cam M7 shown in Fig 4 is a small, low-power, microcontroller board which 

allows you to implement applications using machine vision in the real-world easily. You 

program the OpenMV Cam in high level Python script, courtesy of the MicroPython 

Operating System. This makes it easier to process complex outputs of machine vision 

algorithms and aids working with high-level data structures. You can also readily trigger 

capturing photos and videos on external events or execute machine vision algorithms as you 

have direct control of the I/O pins.

The board allows you to capture image and video in a highly controlled way, perform 

vision functions and directly draw on the captured content before saving it. There is code 

available for face and eye detection, eye tracking, QR Code and Bar Code decoding and CNN 

inference. The board is available to buy online, and the software tools and scripts are open-

source.

https://openmv.io/products/openmv-cam-m7


7

Here is a summary of the OpenMV Cam M7 components.

Image sensor – OV7225
�– �Small, low voltage (3.3 V), providing single-chip VGA camera up to 60 FPS and image signal 

processor

�– �Image processing functions including gamma curve process, white balance, saturation, color 

�– ��640x480 16-bit RGB565 images at 60 FPS for resolutions above 320x240 and 120 FPS 

for below

Processor
STM32F765VI Arm Cortex M7 processor running at 216 MHz with 512KB of RAM and 2 

MB of Flash. In addition, the module has a built-in camera lens, microSD card socket and a 

USB interface to connect to a PC.

B.	 Trade-offs in hardware 

If the neural network model for the vision problem does not fit in the on-chip RAM memory, 

then it is possible to expand the memory by using an SD card, but this will result in a slower 

inference output. The next generation of OpenMV platform is the H7 Cam based on the 

STM32H743VI Arm Cortex M7 processor running at 400 MHz with 1MB of RAM and 

2 MB of flash – higher speed and twice the RAM size compared to the M7 Cam. For a 

significant boost in compute performance and memory, application processors such as the 

Arm Cortex-A processors can be chosen. JeVois smart camera is a gadget that packs an 

impressive amount of compute capability, runs on a battery and is also available to purchase 

online. JeVois A33 smart camera is based on the Allwinner A33 quad-core Arm Cortex 

A7 processor running at 1.34GHz with VFPv4 and NEON, and a dual-core Mali-400 GPU 

supporting OpenGL-ES 2.0. It uses 256MB DDR3 SDRAM which enables more complex 

neural network models.

These are a few of the trade-offs a designer has to make when choosing a hardware platform. 

Having covered embedded hardware components, we turn our attention to the software 

needed to make applications come alive.

Software
Next, we describe in detail the layers of abstraction, what their contribution is to the flow and 

what are the most widely used software frameworks, libraries and toolchains.

A.	 ML frameworks

ML frameworks enable specifying neural networks as software models (functions in high-level 

languages) and training the models using large data sets. Popular frameworks include Caffe, 

TensorFlow and PyTorch. At the end, you get a neural network with weights configured so 

that it works for the data it was trained on. Caffe was developed for image classification and 

other vision problems using CNNs. Caffe is perhaps best known for Model Zoo, a set of pre-

trained models which you can use without writing any code.

https://developer.arm.com/products/processors/cortex-m/cortex-m7
https://www.st.com/en/microcontrollers/stm32h743vi.html
https://developer.arm.com/products/processors/cortex-a
http://jevois.org/
https://www.jevoisinc.com/pages/hardware
http://caffe.berkeleyvision.org/
http://tutorial.caffe.berkeleyvision.org/model_zoo.html


8

For inference, we need to select models with smaller neural network architectures such 

that they better match the capability of an embedded device, rather than the capabilities of 

workstations on which they are trained. Next, it needs to be optimized to fit an embedded 

device that is designed with optimal memory and compute capability. Techniques that 

enable this without sacrificing application accuracy or increasing hardware cost are critical 

to the wide deployment of embedded vision. While embedded hardware, open-source ML 

frameworks as well as pre-trained models are readily available, the layer in between that 

encapsulates technically-challenging optimizations needs attention, as there is a risk of it 

becoming the weakest link. If this layer is missing, developers would experience a gap, which 

we call the model optimisation gap, illustrated in Fig 2.

B.	 Addressing the model optimization gap

Libraries are an attractive solution that bridges the model optimization gap between 

ML frameworks and embedded devices. Libraries enable developers and the embedded 

community to ride the wave of embedded intelligent vision without needing to become an 

expert on CNN optimization.

Next, we describe a range of libraries developed by Arm to hide the complexity of neural 

networks and hardware inside the library, so the developer only needs to call the high-level 

functions in their application code. Details on the optimizations implemented in CMSIS-NN 

CMSIS-NN is an open source collection of efficient neural network kernels developed 

to maximize the performance and minimize the memory footprint of neural networks 

on Arm embedded processors.

library are in the original paper. CMSIS-NN is publicly available as open-source software 

under Apache 2.0 license without any fee on CMSIS-NN Github. CMSIS-NN for Cortex-M 

processors and CMSIS-NN Cortex-A processors are open to extensions by anyone to add 

more functions.

Currently, translating a Caffe model to CMSIS-NN functions is supported. Support for 

other frameworks, such as TensorFlow and PyTorch will come in the future. Below are a few 

intelligent embedded devices that use CMSIS-NN.

	� Real-time water quality monitoring system that detects harmful microbes and bacteria 

implemented using CIFAR-10 CNN and CMSIS-NN library.

	� Although not a vision application, the enablement potential of CMSIS-NN has also been 

demonstrated for speech recognition on the Nuvoton NuMaker-PFM-M487 platform, 

based on the Cortex-M4 processor.

https://developer.arm.com/embedded/cmsis
https://arxiv.org/abs/1801.06601
https://github.com/ARM-software/CMSIS_5/
http://arm-software.github.io/CMSIS_5/Core/html/index.html
http://arm-software.github.io/CMSIS_5/Core/html/index.html
http://arm-software.github.io/CMSIS_5/Core_A/html/index.html
https://medium.com/embedded-computing-design-iot-design/making-the-world-a-better-place-with-a-low-cost-neural-network-based-skin-cancer-detector-c89e15b305a8
https://www.nuvoton.com/hq/applications/consumer/machine-learning/?__locale=en


9

Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between 

existing neural network frameworks and the underlying IP. It enables efficient 

translation of existing neural network frameworks, such as TensorFlow and Caffe, 

allowing them to run efficiently – without modification – across Arm Cortex CPUs and 

Arm Mali GPUs.

Fig 5 and Fig 6 capture the support for the Android and the embedded Linux operating 

systems respectively.

Fig 5:  

Arm NN providing 

support for Mali 

GPUs under Android 

NNAPI.

Fig 6:  

Arm NN currently 

provides support for 

Cortex-A CPUs and 

Mali GPUs under 

embedded Linux 

while support for the 

Ethos-N77 NPU will 

come in the future.

https://developer.arm.com/products/processors/machine-learning/arm-nn


10

Bringing it all together
A flowchart of the steps to deploy a CNN model on the OpenMV M7 Cam is shown in Fig 7. 

OpenMV is one of the first published examples of an end-to-end embedded vision solution 

including hardware board as well as software utilizing CMSIS-NN under the hood.

1.	 Train the model

Training the neural network model takes place on workstations or laptops and is beyond the 

scope of this paper. Plenty of pre-trained networks are publicly available which can be used as 

the input to the next step of quantization.

2.	 Quantize

Once we have a trained model, we need to shrink it to a reasonable size to be able to deploy 

it on an embedded device designed with optimal memory and speed to achieve high energy 

efficiency. A quantization script is available from Arm to convert the Caffe model weights and 

activations from a 32-bit floating point to an 8-bit and fixed-point format. This will not only 

reduce the size of the network, but also avoid floating point computations.

The NN quantizer script works by testing the network and figuring out the best format for the 

dynamic fixed-point representation. The output of this script is a serialized Python file which 

includes the network’s model, quantized weights and activations, and the quantization format 

of each layer.

3.	 Convert to binary

Finally using the OpenMV NN converter script, the model can be converted into a binary 

format, executable by the OpenMV Cam. The converter script outputs a code for each 

layer type, followed by the layer’s dimensions and weights (if any). On the OpenMV Cam, 

the firmware reads the binary file and builds the network in memory using a linked list data 

structure.

4.	 Deploy

The binary obtained from the above step is then downloaded to the Open MV board via a 

USB. When the model is run, it calls CMSIS-NN libraries.

For more information covering everything from installation to troubleshooting, please refer 

to the developer guide on the Arm website - Deploying a Caffe Model on OpenMV using CMSIS-

NN.

https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-caffe-model-on-openmv-using-cmsis-nn/single-page
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-caffe-model-on-openmv-using-cmsis-nn/single-page


11

Optimization techniques require deep expertise in both neural network optimization and 

underlying embedded hardware. A key enabler is software libraries optimized for embedded 

processors, for example, CMSIS-NN and Arm-NN that are open-source. These libraries 

address the model optimization gap between ML frameworks and underlying hardware. 

Arm’s contribution ensures developers don’t need to become an expert in both ML and 

embedded technologies, and we have already seen real-world examples of applications using 

CMSIS-NN. 

Fig 7: 

Deployment flow on 

OpenMV Cam for a 

model trained using 

the Caffe framework

Summary
Adding intelligent vision to your next embedded devices unlocks applications in medical, 

industrial, smart home automation and more. There is a broad spectrum of hardware compute 

capabilities with trade-offs in processing speed, memory capacity and cost. Low-cost and 

low-energy embedded devices, such as OpenMV are available to deploy image classification 

models based on neural networks.

Image classification models that are optimized for running on embedded devices, offer fast 

classification without needing to go to the cloud. Techniques that enable energy-efficient 

processing of CNNs on embedded devices with limited memory, without sacrificing application 

accuracy or increasing hardware cost, are critical to the wide deployment of embedded vision. 



12

For further reading about this topic, please visit the below:

	 Machine learning on Arm

	 Software for machine learning on Arm

	 Guide: Deploying a Caffe Model on OpenMV using CMSIS-NN

	 Arm Mali-C52 and Mali-C32 ISPs

	 The Arm Innovators, including OpenMV and JeVois

Acknowledgment

We would like to thank Ibrahim Abdelkader and Kwabena Agyeman, the co-founders and 

Arm Innovators behind OpenMV for working with us on the guide. The authors are also 

immensely grateful to their Arm colleagues for giving great inputs and reviewing.

The combination of accessible hardware and the ease of development makes adding 

intelligent vision to your next embedded device highly attractive from a business 

and technical point of view. There is an increasing trend for delivering compute 

capabilities on embedded devices and soon, the advantages of local compute vs the 

cloud will make intelligent vision in embedded devices omnipresent.

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the product described in, 

this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in this document is 

subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied or 

expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information to the 

reader about the product. To the extent permitted by local laws ARM shall not be liable for any loss or damage arising from the use of any information in this document or any error 

or omission in such information.

© ARM Ltd. 2019

10/19

https://developer.arm.com/technologies/machine-learning-on-arm
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides
https://developer.arm.com/technologies/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-caffe-model-on-openmv-using-cmsis-nn/single-page
https://www.arm.com/company/news/2019/01/a-sharper-digital-eye-for-intelligent-devices
http://arm.com/innovation
https://community.arm.com/members/ibrahim-abdelkader
https://community.arm.com/members/kwabena-w.-agyeman
http://arm.com/innovation
https://community.arm.com/members/kwabena-w.-agyeman

