
Reference Book
JOSEPH YIU

System-on-Chip
Design
with Arm® Cortex®-M Processors

System-on-Chip
Design
with Arm® Cortex®-M Processors

Reference Book
JOSEPH YIU

System-on-Chip
Design
with Arm® Cortex®-M Processors

Arm Education Media is an imprint of Arm Limited, 110 Fulbourn Road, Cambridge, CBI 9NJ, UK

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording or any other information storage and retrieval
system, without permission in writing from the publisher, except under the following conditions:

Permissions
� You may download this book in PDF format for personal, non-commercial use only.

� You may reprint or republish portions of the text for non-commercial, educational or research
purposes but only if there is an attribution to Arm Education.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods and professional practices may become necessary.

Readers must always rely on their own experience and knowledge in evaluating and using any
information, methods, project work, or experiments described herein. In using such information or
methods, they should be mindful of their safety and the safety of others, including parties for whom
they have a professional responsibility.

To the fullest extent permitted by law, the publisher and the authors, contributors, and editors shall
not have any responsibility or liability for any losses, liabilities, claims, damages, costs or expenses resulting
from or suffered in connection with the use of the information and materials set out in this textbook.

Such information and materials are protected by intellectual property rights around the world and are
copyright © Arm Limited (or its affiliates). All rights are reserved. Any source code, models or other materials
set out in this textbook should only be used for non-commercial, educational purposes (and/or subject to
the terms of any license that is specified or otherwise provided by Arm). In no event shall purchasing this
textbook be construed as granting a license to use any other Arm technology or know-how.

ISBN: 978-1-911531-19-7

Version: 1.0.3 – pdf

For information on all Arm Education Media publications, visit our website at
https://www.arm.com/resources/education/books

To report errors or send feedback please email edumedia@arm.com

To our families

Foreword xiv

Preface xviii

Example Codes and Projects / Disclaimer / A note about the scope of this book xix

About the Author xx

Acknowledgments xxi

1. Introduction to Arm Cortex-M
1.1 Why learn Cortex-M system design? 2

1.1.1 Starting Cortex-M system design is easy 2

1.1.2 Cortex-M processor systems on FPGA 3

1.1.3 Security by design is made easier with Arm architecture 4

1.2 Understanding different types of Arm processors 4

1.3 Cortex-M deliverables 7

1.3.1 Licensing through Arm Flexible Access and Arm DesignStart 7

1.3.2 Obfuscated Verilog – DesignStart Eval 8

1.3.3 Verilog RTL sources – DesignStart Pro 9

1.3.4 FPGA Packages – DesignStart FPGA 9

1.3.5 Documentation 9

2. Introduction to system design with Cortex-M processors
2.1 Overview of Cortex-M Processors 12

2.2 What memories are needed? 13

2.2.1 Overview of memories 13

2.2.2 Memory declarations in FPGA design tools 14

2.2.3 Memory handling in ASIC designs 16

2.2.4 Memory endianness 17

2.3 Defining the peripherals 17

2.4 Memory map definition 18

2.5 Bus and memory system design 20

2.6 TCM integration 21

2.7 Cache integration 21

2.8 Defining the processor’s configuration options 22

2.9 Interrupt signals and related areas 22

Contents

vii

2.10 Event interface 24

2.11 Clock generation 25

2.12 Reset generation 27

2.13 SysTick 29

2.14 Debug integration 30

2.15 Power management features 31

2.16 Top-level pin assignment and pin multiplexing 31

2.17 Miscellaneous signals 32

2.18 Sign off requirements 32

3. AMBA, AHB, and APB
3.1 What is AMBA? 36

3.1.1 Introduction to Advanced Microcontroller Bus Architecture 36

3.1.2 History of AMBA 36

3.1.3 Various versions of AMBA specification 37

3.2 Overview of AHB 38

3.2.1 Various versions of AHB 38

3.2.2 AHB signals 38

3.2.3 Basic operations 40

3.2.4 Minimal AHB systems 42

3.2.5 Handling of multiple bus masters 43

3.3 More details on the AHB protocol 45

3.3.1 Address phase signals 45

3.3.2 Data phase signals 51

3.3.3 Legacy arbiter handshake signals 55

3.4 Exclusive access operations 57

3.4.1 Introduction to exclusive accesses 57

3.4.2 AHB5 exclusive access support 60

3.4.3 Mapping of Cortex-M3/M4/M7 exclusive access signals to AHB5 61

3.5 AHB5 TrustZone support 62

3.6 Overview of APB 63

3.6.1 Introduction to the APB bus system 63

3.6.2 APB signals and connection 64

Contents

viii

3.6.3 Additional signals in APB protocol v2.0 68

3.6.4 Data values on APB 69

3.6.5 Mixing different versions of APB components 69

4. Building simple bus systems for Cortex-M processors
4.1 Introduction to the basics of bus design 72

4.2 Building a simple Cortex-M0 system 73

4.3 Building a simple Cortex-M0+ system 74

4.4 Building a simple Cortex-M1 system 76

4.5 Building a simple Cortex-M3/Cortex-M4 system 78

4.6 Handling multiple bus masters 84

4.7 Exclusive access support 86

4.8 Address remap 88

4.9 AHB- based memory connection versus TCM 89

4.10 Handling of embedded flash memories 91

4.10.1 IP requirements 91

4.10.2 Flash programming 91

4.10.3 Bringing up a new device without a valid program image 92

5. Debug integration with Cortex-M processor systems
5.1 Overview of debug and trace features 96

5.2 CoreSight Debug Architecture 98

5.2.1 Introduction to Arm CoreSight 98

5.2.2 Debug connection protocols 99

5.2.3 Debug connection concept - Debug Access Port (DAP) 100

5.2.4 Various arrangements of debug interface structure 101

5.2.5 Trace connection concept 102

5.2.6 Timestamp 104

5.2.7 Debug components discovery (ROM table and component IDs) 104

5.2.8 Debug authentication 106

5.2.9 Debug power request 107

5.2.10 Debug reset request 108

5.2.11 Cross Trigger Interface 108

Contents

ix

5.3 Debug integration 109

5.3.1 JTAG / Serial Wire Debug connections 109

5.3.2 Trace port connections 110

5.3.3 Clocks for the debug and trace system 111

5.3.4 Multi-drop serial wire support 113

5.3.5 Debug authentication 114

5.4 Other related topics 116

5.3.1 Other signal connections 116

5.3.2 Daisy chain of JTAG connection 116

6. Low-power support
6.1 Overview of low-power Cortex-M features 120

6.2 Low-power design basics 121

6.3 Cortex-M low-power interfaces 123

6.3.1 Sleep status and GATEHCLK output 123

6.3.2 Q-channel low-power interface (Cortex-M23, Cortex-M33, Cortex-M35P) 124

6.3.3 Sleep hold interface 126

6.3.4 Wakeup Interrupt Controller (WIC) 128

6.3.5 SRPG’s impact on software 132

6.3.6 Software power-saving approach 132

6.4 Cortex-M processor characteristics that enable low-power designs 133

6.4.1 High code density 133

6.4.2 Short pipeline 133

6.4.3 Instruction fetch optimizations 134

6.5 System-level design considerations 135

6.5.1 Low-power designs overview 135

6.5.2 Clock sources 135

6.5.3 Low-power memories 135

6.5.4 Caches 135

6.5.5 Low-power analog components 136

6.5.6 Maximizing clock gating opportunities 136

6.5.7 Sleep mode that completely powers down the processor 137

Contents

x

7. Design of bus infrastructure components
7.1 Overview of a simple AMBA system design 142

7.2 Typical AHB slave design rules 144

7.3 Typical AHB infrastructure components 146

7.3.1 AHB decoders 146

7.3.2 Default slave 147

7.3.3 AHB Slave multiplexer 149

7.3.4 ROM and RAM with AHB interface 151

7.3.5 AHB to APB Bridge 159

7.4 Bridging from Cortex-M3/Cortex-M4 AHB Lite to AHB5 168

8. Design of simple peripherals
8.1 Common practices for peripheral designs 172

8.2 Designing Simple APB Peripherals 173

8.2.1 General Purpose Input Output (GPIO) interface 180

8.2.2 Simple APB Timer 186

8.2.3 Simple UART 190

8.3 ID registers 199

8.4 Other peripheral design considerations 200

8.4.1 Security of system control functions 200

8.4.2 Processor’s halting 200

8.4.3 Handling of 64-bit data 200

9. Putting the system together
9.1 Creating a simple microcontroller-like system 204

9.2 Design partitioning 205

9.3 What is inside a simulation environment? 206

9.4 Prepare the minimal software support for simulation 207

9.4.1 Overview of example code based on CMSIS-CORE 207

9.4.2 Device header file for example MCU (cm3_mcu.h) 208

9.4.3 Device start-up file for example MCU (startup_cm3_mcu.s) 211

9.4.4 UART utilities 212

9.4.5 System initialization function 213

Contents

xi

9.4.6 Retargeting 214

9.4.7 Other software support package considerations 215

9.5 System-level simulation 216

9.5.1 Compiling hello world 216

9.5.2 Using Modelsim/QuestaSim to compile and simulate the design 217

9.6 Advanced processor systems and Corstone Foundation IP 220

9.7 Verification 221

9.8 ASIC implementation flow 223

9.9 Design for Testing/Testability (DFT) 224

10. Beyond the processor system
10.1 Clock system design 230

10.1.1 Clock system design overview 230

10.1.2 Clock switching 231

10.1.3 Low-power considerations 232

10.1.4 DFT considerations 232

10.2 Multiple power domains and power gating 232

10.3 Arm processors in a mixed-signal world 235

10.3.1 Convergence of microcontrollers and mixed-signal designs 235

10.3.2 Analog to digital conversions 236

10.3.3 Digital to analog conversions 241

10.3.4 Other analog interface approaches 242

10.3.5 Connecting ADC and DAC IPs into a Cortex-M system 242

10.4 Bring an SoC to life – Beetle test chip case study 243

10.4.1 Beetle test chip overview 243

10.4.2 Beetle test chip challenges 245

10.4.3 Beetle test chip system design 246

10.4.4 Implementation of the Beetle test chip 246

10.4.5 Other related tasks 247

11. Software Development
11.1 Introduction to CMSIS (Cortex Microcontroller Software Interface Standard) 252

11.2 Creating software support for multiple toolchains 254

Contents

xii

11.2.1 What is needed for creating multiple toolchain support? 254

11.2.2 Compilation with Arm Compiler 6 254

11.2.3 Compilation with gcc 256

11.3 Introduction of the Arm Development Studio featuring Arm Keil Microcontroller
Development Kit (MDK) 261

11.3.1 Overview of Keil MDK 261

11.3.2 Keil MDK Installation 262

11.3.3 Create an application 263

11.3.4 Using the project wizard to create a project 264

11.3.5 Create and add source files 266

11.3.6 Edit the source files 268

11.3.7 Defining project options 269

11.3.8 Compile the project 272

11.3.9 Download and debug the application 272

11.3.10 Using ITM for text message output (printf) 274

11.3.11 Software development in collaborative environments 279

11.4 Using an RTOS 279

11.4.1 RTOS software concepts 279

11.4.2 Using Keil RTX 280

11.4.3 Optimizing memory usage 282

11.4.3.1 The need for RAM usage analysis 282

11.4.3.2 Configure RTX for stack watermarking 282

11.4.3.2 RTX RTOS viewer in Watch windows 283

11.5 Other toolchains 286

Glossary of terms 288

References 301

Index 302

Contents

xiii

Foreword

Why Read this Book?
Right now, you are probably surrounded by Arm processors without even knowing they are there.
More than 145 billion chips containing an Arm processor have been produced up to now – this is
19 for every human on the planet.

The most surprising thing is that Arm does not produce chips. It just designs the technology and
enables its partners to manufacture differentiated devices that integrate them.

Many more of those chips, also called SoCs (system-on-chip), are expected to be produced in the
coming years. We even start talking about trillions of devices for the Internet of Things (IoT). Of the
total number of SoCs currently out in the market, the great majority use the smallest processors in the
Arm product range: the Cortex-M series. Small, very energy efficient and powerful enough for many
applications, they are at the heart of many of today’s electronic devices.

This book is here to explain how SoCs based on the Arm Cortex-M processor portfolio cores are
designed, detail the different elements that compose such a system, explain the different design
issues, describe the integration into systems, and discuss how these SoCs are programmed.

A Brief History of Arm
The crazy years marking the history of personal computing began in the 1980s. Acorn, a British
company, became very successful with the BBC Micro-computer, which was used in many
schools throughout the country. For its future generation computers, the company wanted an
updated processor and started a quest for such a component. Unfortunately, none of the available
microprocessors were suitable for its needs. Most of them were either too complex or not available
and required a large number of external components. The Acorn team then learned about the Reduced
Instruction Set Computer (RISC) concept and found it could lead to powerful, yet low-cost, solutions.

At the time, RISC processors were confined to high-end computers, where cost was less of an issue,
since no existing RISC processors were exactly suitable. That led the team to embark on the journey
to develop their own piece of silicon.

This secret project was named “Acorn RISC Machine” (ARM, in short). The first processor, ARM1, was
launched in 1985. It was produced by VLSI Technology in a 3µm technology (almost 500 times larger
than the most advanced designs now) and could run at 6 MHz. One of the side-benefits of this simple
processor architecture was its lower power consumption (compared to contemporaneous CPUs),
which allowed the component to use a lower-cost plastic package without melting it.

At the heart of the processor design was the Arm instruction set, which progressively evolved to
optimize the performance and efficiency of new generations of processors. This is a key element of
what is called the ‘architecture.’

xiv

The Arm processors powered several models of Acorn computers, but a major change happened when
VLSI Technology, which was manufacturing the components in its factories, signed an agreement with
Acorn to re-sell the chips to other companies. This was the first ‘Arm license.’

In 1990, after discussions with Apple Computer, who needed a new processor for the Newton
project, Acorn decided to spin-off its processor division and form a joint venture with Apple and VLSI
Technology. The team then changed the meaning of Arm to ‘Advanced RISC Machines’, which became
Arm Ltd later on.

This evolution came at the same time as a great change in the new company’s business model. On
the one hand, Arm had unique assets: great expertise in processor design and an original architecture.
However, producing chips required caring about fabrication, yield, quality, logistics, sales channels,
complex application-specific marketing, or any other tasks that a silicon manufacturer should do to be
successful. This was not optimal.

On the other hand, silicon manufacturers had a hard time staying competitive, because they had to
excel at these activities while simultaneously investing in design and innovation around processors,
at an increasingly fast pace. This was not great either.

The revolutionary idea for the newly-formed company was to become a specialist in R&D and focus
on the processor design only. Instead of selling components, Arm would license ‘Intellectual Property’
(IP in short) to semiconductor manufacturers, who would then use this IP to design their chips, in
combination with other elements that would be more application-specific.

Arm Ecosystem
The IP model selected from the start by Arm required a very tight relationship with the other
companies using the IP. As the company did not manufacture products, its success was entirely
dependent on the success of chip manufacturers embedding the Arm IP into their chips. Conversely,
to make sure that they always get the best performance and efficiency for their products, silicon
manufacturers had to make sure that the success of their products also benefited Arm, so that part of
the increasing revenues would be invested in improved and competitive IP. Together, Arm and partners
solidified the symbiosis using a royalty-based model: Arm revenues were largely dependent on the
success of the chips containing its IP. This resulted in a strong partnership between the company and
its customers, and a great sign of this very special relationship is that customers were called ‘partners’
(This is still the case more than 25 years after the foundation of the company).

Another great benefit from these partnerships was that each semiconductor ‘partner’ could focus
on a different set of applications, on different market segments, and integrate its own expertise and
‘secret sauce’ into the design of their products. This business model allowed the creation of a rich
variety of products that no single company (even the largest ones) would have been able to put into
their product catalog. It also made it increasingly difficult for processor manufacturers using other
architectures to compete with Arm because they had to compete with a whole ‘ecosystem.’ Many
of them progressively decided to stop wasting money on processor architecture development and
realized that it was much less expensive just to license state-of-the-art IP from Arm.

Foreword

xv

Another consequence of having several companies using the same processor IP cores was that tools,
software, and expertise could be reused from one chip to another. Indeed, a processor requires many
tools like code compilers or debuggers: having a larger market for these tools encouraged several
companies to start supporting the Arm architecture. Similarly, having a family of processors that could
execute the same instructions enabled the software developers to propose many operating systems,
libraries, frameworks or various elements that could easily run or be adapted to several components.
Finally, this allowed engineers to avoid having to learn about a new processor every time they changed
their chip, which allowed them to build strong expertise and become more efficient.

All of these factors meant that Arm could add several additional partners in the ecosystem, bringing
even greater value to every participant and making Arm-based solutions even more attractive. This
virtuous circle has significantly contributed to the success of the Arm ecosystem.

Softbank Acquisition
Even if the IP model has been duplicated many times, no other company has managed to be as
successful. This propelled Arm into a very special position in the industry. Its long-term success
required fairness with each member of the industry, and careful management to keep the balance
between all partners of the ecosystem.

2016 marked a significant milestone in Arm’s history: Softbank group agreed with Arm management
to acquire the company with the promise to continue promoting the same values of fairness and
partnership while accelerating its development.

Market and Applications
Arm-based processors are used in virtually all applications requiring processing capability: as the
company says, “wherever computing happens.” Over the years, the company has developed a range
of products that address very different needs, from the tiniest processors for embedded applications
(the Arm Cortex-M processor portfolio) to the largest application processors that are used in high-
performance servers or that power 95% of the mobile phones in the world (the Cortex-A processor
portfolio). There is more than a factor of 100 in complexity and size between the smallest and the
highest performing cores.

However, central processing units are not the only IP offered by Arm: a diverse range of IP has been
developed or acquired by the company to address the needs of many applications. This is the case of
what is called ‘System IP’: all the elements that enable processors to connect to the rest of the system,
transfer or store data between those elements, manage security, enable the debug of the software,
and manage power. Another very important line of products relates to media processing, and the Arm
Mali series is now the world’s ‘most shipped’ commercial GPU IP.

Enabling Future Technology Today
Even if the core business of Arm remains semiconductor IP, more and more software is being developed
to complement hardware designs. This can be seen, for example, in products for IoT applications.
With the Mbed software platform, Arm not only brings the software that is closest to the hardware
elements but also provides many standard functions needed in these devices: to manage security,
connectivity, firmware updates or association to the Cloud services.

Foreword

xvi

An entire division in Arm is now focusing on building this embedded software foundation, and also
creating a Cloud platform, called Pelion, to connect and manage to all these embedded devices, and
to integrate the associated data into enterprise systems.

From providing the IP for the chip to delivering the Cloud services that allow organizations to manage
the deployment of products throughout their lifecycle securely, Arm delivers a pre-integrated IoT
solution for its partners, rooted in its deep understanding of the future of compute and security.

Arm technologies continuously evolve to ensure that intelligence is at the core of a secure and
connected digital world. With a range of licensing options, such as Arm DesignStart and Arm Flexible
Access, it’s now never been easier or faster to start working with Arm IP. Developed to facilitate the
design of modern innovations—from the sensor to the smartphone to the supercomputer—Arm
technologies are making smart possible.

Mike Eftimakis
Director of Business Innovation Strategy, Arm

Foreword

xvii

Preface

In the past, apart from microprocessors and microcontrollers, not many chip designs had internal
embedded processors. This has changed significantly since Arm Cortex-M processors were released,
and many more device types have emerged that are part of the rapidly growing Internet of Things (IoT).
Today, Arm processors are being used in smart sensors, smart batteries (e.g., for battery health monitor
systems), wireless communication chipsets, power electronics controllers, etc. This trend is driven by
the need for tighter system integration, additional functional features, better system reliability, and
reduction of supply chain dependency.

SoC design is an exciting industry with plenty of opportunities – the applications of Cortex-M based
SoCs ranges from consumer products, industrial and automotive applications, communications,
agriculture, transportation, healthcare/medical, etc. With the expanding IoT device market, the need
for embedding processors into SoC designs continues to increase.

Cortex-M processors, like Cortex-M0, Cortex-M0+, and Cortex-M3, are very small and can integrate
into a range of SoC designs easily. With Arm DesignStart lowering the cost barrier, many small
businesses and start-ups are taking advantage of this to develop their own SoC solutions to offer
better product differentiation. All of these developments have resulted in significant demand for SoC
designers with Arm DesignStart. Arm DesignStart has also received strong interest from academia,
where we see some universities interested in introducing SoC design topics into their courses.

In addition to the popular Armv6-M and Armv7-M processors, newly available SoCs/microcontrollers
based on the Armv8-M processors such as Cortex-M23 and Cortex-M33 processors, deliver enhanced
security solution with Arm TrustZone technology. In February 2019, Arm announced the new
Armv8.1-M architecture with Arm Helium technology, which brings vector processing capability to
Arm Cortex-M devices. These technology enhancements continue to enable the Cortex-M processors
to be used in an even wider range of applications.

While there are many technical resources on the internet on Arm software development, very limited
information was available for Arm-based SoC design, particularly on topics about integrating Arm
processors and on-chip bus protocols. This book is written to fill this gap to enable beginners in the
field to understand a range of technical concepts on SoC design, and also provide detailed descriptions
of design integration with several of the Arm Cortex-M processors. A range of other topics, including
system component design, SoC design flow, and software development, are also covered.

If you are a beginner in SoC design, I hope that this book will enable you to gain SoC design
knowledge and help you to kickstart your SoC or FPGA design projects. For those of you who are
experienced chip designers, I hope that you find this a useful reference source. Enjoy the book -
and let your SoC design creativity go wild! There are always opportunities for new and fascinating
Arm-based SoCs on the market.

xviii

Example Codes and Projects – Free to Download!

For readers of this book, Joseph Yiu has prepared a package of example codes and projects
to download that includes:

�� An example Cortex-M3 system design based on Arm Cortex-M3 DesignStart Eval.

�� A simulation setup for the example system.

�� An FPGA project setup for the example system, for Digilent Arty-S7-50T FPGA board
and Xilinx Vivado 2019.1.

The package can be downloaded from the book section of Arm Education Media’s website at
https://pages.arm.com/socrefbook.html

A note about the scope of this book

This book focuses on the concepts of system designs based on Cortex-M0 and Cortex-M3 processors.
Since the product offering DesignStart and DesignStart FPGA will change over time, the full details of
using those packages will not be covered here. However, the system design concepts and some of the
technical details in this document are relevant to most of the Cortex-M system designs.

Disclaimer
The Verilog design examples and related software files included in this book are created for
educational purposes and are not validated to the same quality level as Arm IP products.
Arm Education Media and the author do not make any warranties of these designs.

xix

About the Author

Joseph Yiu
Distinguished Engineer, Embedded Technology at Arm

Joseph is a distinguished engineer in the Arm IoT/Embedded processors product marketing team.
His role is focused on technologies and products for embedded applications, including areas such as:

�� Cortex-M processor products technical development

�� Embedded product roadmaps

�� Technical marketing

�� Technical advisory for various internal and external projects, as well as Arm’s product support team

He also works with EEMBC (www.eembc.org) on benchmark development – for example, ULPMark.

Joseph started as an IP designer on accelerated 8-bit processors in 1998 before joining Arm in 2001,
where he worked on some of the first Arm-based SoC projects in the emerging System-on-Chip
group. In 2005, he moved to the processor division and worked on a range of Cortex-M processor
and design kit projects. After over 10 years in various senior engineering roles, he moved into the
product management team, while continuing his involvement in Arm embedded technology projects.
His technical specialisms include microcontroller and SoC system-level design with Arm Cortex-M
processors, applications and programming, ASIC/SoC designs, verifications, FPGA prototyping and
implementation areas such as low-power design and production tests (DFT), and RF circuit design.

Authorship
Joseph’s previous book titles include:

The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, 1st to 3rd edition
(Elsevier, October 2013)

The Definitive Guide to the ARM Cortex-M3, 1st and 2nd edition
(Elsevier, January 2010)

xx

Acknowledgments

A big thank you to the editor, Michael Shuff, for his efforts in proofreading and various useful
suggestions. I would also like to thank Christopher Seidl, Chris Shore, and Jon Marsh for contributing
materials, and the Arm marketing team for their support on this project.

xxi

Introduction to
Arm Cortex-M

CHAPTER
1

System-on-Chip Design with Arm® Cortex®-M processors

2

1.1 Why learn Cortex-M system design?
1.1.1 Starting Cortex-M system design is easy
Arm Cortex-M processors represent one of the most popular architectures used today for Internet
of Things (IoT) and embedded applications. For many digital system designers, the digital blocks they
design need to interface with processors in some ways, for example, using a processor for operation
flow control. Having a small, easy-to-use Cortex-M processor integrated into the design makes it
easier for them to provide a total solution.

You may wonder, ‘Why not use a state machine to handle the control function?’ In the simplest digital
applications, a finite state machine (FSM) implemented in Verilog or VHDL could handle all the required
control functions, and in those cases, there is indeed no need to have a processor in the system. However,
when the application gets more complex, the number of states in the control function FSM increases,
or when the system’s behavior needs to be more flexible, the inclusion of a processor in the system
is unavoidable. To enable better flexibility, complex control flows are handled by a processor running
control software, which can be easily modified and debugged. As a result, embedded processors are
being increasingly embedded in FPGA designs. Although it is possible to use a separate microcontroller to
control an FPGA-based digital system, this will result in an increased component count in the completed
system, as well as potential issues with signal routing between the processor and the FPGA-like timing,
PCB signals routing, noise, and reliability problems.

In general, the advantages of including a processor in the FPGA are:

�� Ability to handle complex tasks like Graphical User Interface (GUI) and data storage management
(e.g., file system);

�� Application programs can be developed and updated separately from the hardware design, allowing
better flexibility in product development;

�� Reduces the total number of components in the system because there is no need for a separated
processor chip;

�� Signal routing between the processor and the functional logic is handled automatically by FPGA
design tools;

�� Debugging software on a well-established processor is much easier than debugging a complex state
machine;

�� Little limitation on the interface between the processor and the user-defined logic blocks;

�� In comparison, the use of separated processor chips can have limitations on the interface like the
number of pins, selection of protocol and electrical characteristics;

�� Program code can be stored on configuration flash for the FPGA, allowing firmware update to the
hardware design and the application code to be carried out at the same time;

3

�� Processor implementation features are now becoming part of the FPGA development tools, making
integration of the processor into FPGA easier than using separate processor chip.

There are other intellectual property (IP) products available in the market, of course. However, the
designs of the Cortex-M processors provide:

�� Good performance with a small area/power budget,

�� Easy software development, and

�� Well-proven technology.

Products based on Arm Cortex-M processors have been around since 2005. In recent years, Arm has
made Cortex processor IP more accessible to cost-constrained companies through easy to arrange,
fast, no/low-cost licensing. For example, Arm Flexible Access introduced in 2019 offers a simple way
to evaluate and fully design system-on-chip (SoC) solutions with a wide-ranging mix of Arm IP before
committing to production, paying only for what is used at manufacture. There are also Arm DesignStart
programs that assist designers who are new to Cortex-M technology with a range of Arm IP to help
them get started on their designs instantly and risk-free. You can source various FPGA development
solutions, like affordable FPGA development boards, that can save you both time and money. Through
partnerships with FPGA vendors, Arm also offers DesignStart FPGA, which includes instant and free
access to Cortex-M1 and Cortex-M3 soft CPU IP Cortex-M processors for use on selected FPGA
platforms. Together with an industry-leading ecosystem of tools, software, and services, the Arm
Cortex-M processor portfolio offers some of the best embedded processors for digital system designs.

1.1.2 Cortex-M processor systems on FPGA
Since there are so many ready-to-use Cortex-M based microcontrollers and SoCs, why should someone
spend their time to create their own Cortex-M based systems in FPGA? There can be many different reasons:

�� Education – for many universities teaching digital system design, FPGAs are perfect platforms.
Universities had been interested in using Arm processors in their teaching of digital design courses,
like how to create a typical SoC design with a processor and develop applications for it. However,
doing real chip design is costly and takes a long time, making the FPGA platform much more suitable.

�� Commercial product development – many digital designers are creating custom digital systems with
FPGA and need a processor to control the operations of the digital systems they design. In some
other applications, the digital functions needed are not available in off-the-shelf microcontroller
products, and therefore using the Cortex-M processors in FPGA enables alternate solutions.

�� Prototyping for chip/SoC designs – many ASIC designers use FPGA for prototyping their designs
and their chip/SoC designs that contain the Cortex-M processors. It is also a useful way to prototype
new product ideas, and to provide demonstrations/proof of concepts. With these systems, software
developers can reuse their Cortex-M programming knowledge to program such devices.

While there have been several FPGA vendor-specific processors available, most of those architectures
are proprietary and could be restricted to certain FPGA architectures. In contrast, the Cortex-M

Chapter 1 | Introduction to Arm Cortex-M

System-on-Chip Design with Arm® Cortex®-M processors

4

processors are much more generic. Most of the Cortex-M processors (e.g., Cortex-M0 and Cortex-M3)
are optimized for ASIC/SoC applications. The Cortex-M1 processor was designed to be optimized for
most of the FPGA devices (it is small and allows high operation frequency), and at the same time can
be portable between different FPGA types and is upward-compatible to other Cortex-M processors.
For example, from a software point of view, the architecture used in Cortex-M1 is based on the same
instruction set used by the popular Cortex-M0, Cortex-M0+ processors. Designers can also upgrade to
a Cortex-M3 or other Cortex-M processor if more instruction features are needed.

Since the recent availability of the Cortex-M processor IP in FPGA design tools, Cortex-M system
designs are no longer restricted to SoC design professionals. Even students, academic researchers,
and electronics enthusiasts now have access to the world of Cortex-M system design.

1.1.3 Security by design is made easier with Arm architecture
Securing connected devices requires a step-by-step approach to building in the right level of device
security, reducing risk around data reliability, and allowing businesses to innovate on new ideas to
reap the benefits of digital transformation. Arm has started an industry-wide initiative called Platform
Security Architecture (PSA) that is supported by a range of silicon vendors and ecosystem partners
who are seeking better collaboration and alignment of security standards.

Although the PSA framework was devised by Arm, it is ‘architecture agnostic’ in that it requires
that all compliant devices, regardless of architecture, are designed to meet a set of defined security
objectives. PSA resources include programming interfaces (APIs), best practices, threat models to
consider, and open-source reference firmware. You can find out more by visiting: https://developer.
arm.com/architectures/security-architectures/platform-security-architecture

1.2 Understanding different types of Arm processors
Arm processors are deployed in many different applications, with very different needs - and to support
that, Arm has developed a broad portfolio of processors to help designers select the best-fit compute
for their device. For example, the application requirements for a smartphone are very different from
the requirement of a motor controller. To address the wide variety of application requirements, Arm
provides a range of processor products in different profiles belonging to the Cortex processor families:

�� The Cortex-A portfolio – Application processors for complex systems. An example of the processors
in this class is the Cortex-A53. It is developed to support applications like smartphones, PDAs, set-
top boxes, which need high-performance processing and require OS support like Linux, Android,
Microsoft Windows, etc.

�� The Cortex-R portfolio – Processors for real-time, high-performance systems. An example of
a processor in this class is the Cortex-R52. It is developed to provide high performance, low
latency, and robust characteristics. Typical applications include hard disk controllers and baseband
processing in communication devices.

�� The Cortex-M portfolio – Processors for microcontroller applications. An example of a processor in
this class is the Cortex-M3 processor. It has been developed for deeply embedded, and cost-sensitive

5

applications, and yet provides good performance and rapid interrupt response. Typical applications
include industrial controls, consumer products, like portable audio devices, and digital cameras.

Key characteristics of these processors are summarized in Table 1.1.

Table 1.1: Key characteristics of different Cortex processors.

If you are planning to use Linux in your applications, a Cortex-A processor would be needed. Both
Xilinx and Intel (previously Altera) have FPGA products with built-in Cortex-A processor subsystems.
On the other hand, the Cortex-M processors are ideal for smaller embedded systems, often with real-
time requirements.

There are different types of the Cortex-M processors, too. We can classify them into three product ranges:

Table 1.2: Different Cortex-M processors.

Armv6-M and
Armv7-M architecture

Armv8-M architecture
(supports TrustZone security extension)

High performance Cortex-M7 (Armv7-M) Coming soon

Mainstream processor Cortex-M3 and Cortex-M4 processors (Armv7-M) Cortex-M33 and Cortex-M35P processors

Processors for
constrained systems

Cortex-M0, Cortex-M0+, and Cortex-M1 (all
Armv6-M architecture)

Cortex-M23 processor

Cortex-A Cortex-R Cortex-M

Architecture type Support both 64 and 32-bit from
Armv8-A, 32-bit in Armv7-A and
older architecture

Support both 64 and 32-bit from
Armv8-R, 32-bit in Armv7-R and
older architecture

32-bit only

Clock frequency range
and pipeline

Longer pipeline optimized for high
clock frequency range

Medium-length pipeline
(e.g., 8-stage in Cortex-R5)

Short to medium length pipeline
(2 to 6 stages) for low-power
systems

Virtual memory support
(required for Linux)

Yes No (it is permitted in Armv8-R,
but not supported in current
Cortex-R processors)

No

Virtualization support Yes Yes, from Armv8-R
(e.g., Cortex-R52)

No

Arm TrustZone security
extension

Yes No Yes, from Armv8-M, but not
in Armv6-M and Armv7-M
architectures

Interrupt handling Based on Generic Interrupt
Controller (GIC) with multi-core
and virtualization support.
Non-deterministic interrupt
response speed.

Based on Generic Interrupt
Controller with multi-core and
virtualization support, or Vectored
Interrupt Controller in older
Cortex-R. Fast interrupt response.

Based on Nested Vectored
Interrupt Controller (NVIC)
internal to the processor.
Low interrupt latency and easy
to use.

ISA for DSP acceleration Neon Advanced SIMD
(128-bit vectored processing).
Latest architecture from
Armv8.3-A supports Scalable
Vector Extension (SVE).

Neon Advanced SIMD support
on Armv8-R. Also, support legacy
SIMD (32-bit vector processing).

Support legacy SIMD (32-bit
vector processing) in Cortex-M4,
Cortex-M7, Cortex-M33, and
Cortex-M35P

Chapter 1 | Introduction to Arm Cortex-M

System-on-Chip Design with Arm® Cortex®-M processors

6

For general data processing and control applications, Armv6-M processors are more than capable of
handling these requirements:

�� Cortex-M0 processor: the smallest Arm processor (only 12K gates in minimum configuration) with
a simple 3-stage pipeline, based on Von-Neumann bus architecture. No privilege level separation
and no memory protection unit (MPU).

�� Cortex-M1 processor: similar to the Cortex-M0 processor, but optimized for FPGA applications.
It provides Tightly-Coupled-Memory (TCM) interface to simplify memory integration on FPGA and
delivers higher clock frequency for FPGA implementations.

�� Cortex-M0+ processor: also based on Armv6-M architecture, with privilege level separation and
an optional memory protection unit (MPU). It also has an optional single-cycle I/O interface for
connecting peripheral registers that need low latency accesses, and a low-cost instruction trace
feature called Micro Trace Buffer (MTB).

�� Cortex-M23 processor: For constrained embedded systems that need advanced security, the
Cortex-M23 processor with the Arm TrustZone security extension is more suitable. In addition
to TrustZone support, the Cortex-M23 processor has many other enhancements compared to
Armv6-M processors:

�� Additional instructions (e.g., hardware divide, compare, and branches);

�� Supports more interrupts (up to 240);

�� Real-time instruction trace using Embedded Trace Macrocell (ETM);

�� More configurability options.

�� Cortex-M3 processor: For applications that need more complicated data processing, Armv7-M
processors could be more suitable. The instruction set in Armv7-M provides support for more
addressing modes, conditional execution, bit field processing, multiply, and accumulate (MAC).
So even with a relatively small Cortex-M3 processor, you can have a relatively high-performance
system.

�� Cortex-M4 processor: If DSP-intensive processing or single-precision floating-point processing
are needed, the Cortex-M4 processor is more suitable than Cortex-M3 because it supports 32-bit
SIMD operations and an optional single-precision floating-point unit (FPU).

�� Cortex-M7 processor: the highest performance Cortex-M processor today with a six-stage
pipeline and superscalar design, allowing execution of up to two instructions per cycle. Similar to
the Cortex-M4, it supports 32-bit SIMD operations and an optional FPU. The FPU in Cortex-M7
can be configured to support single-precision or both single and double-precision floating-point
operations. It is also designed to work with high performance and complex memory system by
supporting instruction and data caches and TCM.

7

�� Cortex-M33 processor: a mid-range Armv8-M processor at similar footprint to Cortex-M4, adding
TrustZone security extension support, co-processor interface and a newer pipeline design to enable
higher performance.

�� Cortex-M35P processor: similar to the Cortex-M33 processor, but with the enhancement of
anti-tampering features to prevent physical security attacks (e.g., side-channel and fault injection
attacks). It also includes an optional instruction cache.

For beginners, Cortex-M0, Cortex-M1, and Cortex-M3 are good starting points for most projects.

1.3 Cortex-M deliverables
1.3.1 Licensing through Arm Flexible Access and Arm DesignStart
When this chapter was written, the following licensing options were available from Arm:

Find out more about various Arm licensing options
Arm provides a range of licensing options, including no or low upfront fees and free access for
academic purposes. Visit www.arm.com/licensing for more information.

Arm DesignStart
�� Cortex-M0 and Cortex-M3 processors are available via DesignStart program (Note: The Cortex-A5
processor is also available, but this book is not intended to cover this).

�� Cortex-M1 and Cortex-M3 processors are available at no cost as soft CPU IP optimized for easy
integration with FPGA partners.

The Cortex-M33 processor is available as DesignStart FPGA on Cloud: (https://developer.arm.com/
docs/101505/latest/designstart-fpga-on-cloud-cortex-m33-based-platform-technical-reference-
manual)

There are different types of deliverables for each of these DesignStart programs. Currently, Cortex-M
DesignStart is divided into several types:

�� DesignStart Eval(ulation) – delivered as obfuscated Verilog with fixed configuration. Instant access
and free. Suitable for evaluation, research, and teaching.

�� DesignStart Pro – delivered as full RTL source, configurable and requires a simple license;
Zero license fee and success–based royalty model.

�� DesignStart for University - delivered as full RTL source, configurable and requires a simple license.
Zero license fee.

�� DesignStart FPGA – delivered as packages for FPGA development tools. Instant access and free.
Suitable for evaluation, research, teaching, and commercial use.

Chapter 1 | Introduction to Arm Cortex-M

System-on-Chip Design with Arm® Cortex®-M processors

8

For the latest information and details of DesignStart (including licensing conditions), please visit the
Arm website: https://developer.arm.com/products/designstart

Cortex-M0 and Cortex-M3 DesignStart Eval and Pro contains the following offerings:

Table 1.3: Offerings from Arm Cortex-M DesignStart Eval and Pro.

Trial license for IAR Embedded Workbench for Arm is also available from IAR Systems (https://www.
iar.com/designstart).

You can find out more about Flexible Access and DesignStart on the Arm website and request more
information: https://arm.com/why-arm/how-licensing-works

Disclaimer: The IP offering and commercial terms available through Arm DesignStart and Flexible
Access above are accurate as of July 2019 and are subject to change.

1.3.2 Obfuscated Verilog – DesignStart Eval
The Cortex-M0 and Cortex-M3 DesignStart Eval deliver the processors as obfuscated Verilog files.
These RTL files are not encrypted, but the internal logic is flattened, and the signal names replaced
with random names. You can simulate it with standard Verilog simulators and synthesize it for FPGA
testing (but the synthesis outcome will not be optimized due to the nature of the code). The top-
level signals of the processors are retained as clear un-obfuscated text. DesignStart Eval can be
implemented using any FPGA fabric.

The Cortex-M0 DesignStart Eval includes an example system based on the Cortex-M System Design
Kit (CMSDK) product. The example system is delivered as RTL sources, with example test codes and
simulation scripts. A FPGA prototyping project for MPS2 (Microcontroller Prototyping System 2) is
also included.

Cortex-M0 DesignStart Eval Cortex-M3 DesignStart Eval Cortex-M0 DesignStart Pro Cortex-M3 DesignStart Pro

Cortex-M0 obfuscated model Cortex-M3 obfuscated model Full version of Cortex-M0
deliverable

Full version of Cortex-M3
deliverable

Cortex-M0 System Design Kit
(CM0SDK)

Corstone-100 foundation IP
including SSE-050 subsystem

Cortex-M0 System Design Kit
(CM0SDK)

Cortex-M System Design
Kit (CMSDK), Corstone-100
foundation IP including
SSE-050 subsystem and
several IP blocks including
TRNG (True Random Number
Generator) for security

Cortex-M3 Cycle Model
(1-year license)

Cortex-M3 Cycle Model
(1-year license)

FPGA project for MPS2 FPGA
board

FPGA project for MPS2 FPGA
board

FPGA project for MPS2 FPGA
board

FPGA project for MPS2 FPGA
board

Trial license of Keil MDK
(time-limited license)

Trial license of Keil MDK
(time-limited license)

Trial license of Keil MDK
(time-limited license)

Trial license of Keil MDK
(time-limited license)

DesignStart RTL Review DesignStart RTL Review

9

The Cortex-M3 DesignStart Eval includes a system design based on the CoreLink System Design Kit SDK-
100 (a successor of CMSDK). It also has examples, simulation scripts, and FPGA projects for MPS2.

1.3.3 Verilog RTL sources – DesignStart Pro
The Cortex-M0 and Cortex-M3 DesignStart Pro deliver the RTL source code of the processor (not
obfuscated). These provide configuration options in the form of Verilog parameters, allowing designers
to select the features they need. Since the design is delivered as RTL source, the synthesis tools can
provide the best optimization in synthesis.

The DesignStart Pro also includes the deliverable for the full CoreLink subsystem products.

1.3.4 FPGA Packages - DesignStart FPGA
Cortex-M1 and Cortex-M3 can be integrated into an FPGA vendor’s toolchain as an encrypted
component. The components will typically allow some configuration and already include TCM
integration. Some packages will convert the native AHB interface of the processor to an AXI bus.
These packages can only be used with the toolchain from the specific FPGA vendor, but support
a range of devices.

1.3.5 Documentation
There are several types of documents that you will come across when working on Arm system designs:

Architecture reference manuals: these documents specify the behavior of the architecture (e.g.,
instruction set, programmer’s model) but not the processor-specific implementation details (e.g.,
pipeline and interface). There are separated architecture reference manuals for Armv6-M, Armv7-M,
and Armv8-M, and you can download them from https://developer.arm.com (Please refer to Table 1.2
to see which architecture is for which processors).

Technical reference manuals: Often known as TRM, they describe the specification of the processors
or other system IPs. These documents are public and can be found on https://developer.arm.com

Integration and Implementation manuals: Also known as IIM, they describe the interface,
configuration options and explain how to use the deliverables like the execution testbenches. These
documents are confidential and are inside product bundles.

User guides: The details of the FPGA examples are documented in user guides notes.

Release notes: All of the deliverables from ARM are provided with a release note which identifies
the versions of parts within a bundle, any known issues and any changes since a previous release.
The release note will also describe how to install and test the deliverable. These documents are
confidential and are inside product bundles.

Errata: The errata document describes known issues with ARM products, together with workarounds
if applicable.

Chapter 1 | Introduction to Arm Cortex-M

Introduction to system
design with Cortex-M
processors

CHAPTER
2

System-on-Chip Design with Arm® Cortex®-M processors

12

2.1 Overview
One of the key advantages of using the Cortex-M processor is that, for small system designs, in
particular, it is not that difficult to get the system to work in a Verilog simulation or on FPGA. You will,
of course, need to acquire some knowledge beforehand, like a basic overview of the architecture used
in the Cortex-M processors. Also, if you are using a Verilog RTL version of the design, you will need an
understanding of the bus protocols used in the Cortex-M processors, such as AHB and APB protocols.

The first step of the project is to understand the requirements of the applications. For example, you
will need to know:

�� Which Cortex-M processor is the best fit for your needs?

�� How much memory (ROM and SRAM) is needed?

�� How fast the system runs (i.e., clock speed)?

�� What peripherals are needed?

For ASIC designs, many additional areas should be investigated. For example, the following are
generic chip design considerations:

�� What semiconductor process node should be used?

�� What types of memory technologies are available (e.g., embedded flash memories are not available
for many small geometry process nodes)?

�� How should non-volatile memory (NVM) programming be handled?

�� What type of power management features should be used?

�� What type of chip packaging should be used?

�� What type of Design-for-Test (DFT) features are needed for device manufacturing testing?

For the era of IoT, designers should also investigate security aspects and many other challenging areas
of integrating wireless communication interfaces inside SoC designs.

To keep this document manageable, let us look into the processor system design areas only. To get
a simple Cortex-M processor system to work, typically we need to consider and, where appropriate,
define, the following (this is not a definitive list):

�� Memory blocks – what type of memories are needed, and memory sizes?

�� Peripherals – what peripherals are needed, and creation of peripherals if needed?

13

�� Memory map.

�� Bus system design.

�� Processor configuration options.

�� Interrupt assignments and interrupt types.

�� Event interface integration.

�� Clock and reset generation.

�� Debug integration.

�� Power management features of the system.

�� Top-level pin assignment and pin multiplexing.

In the rest of this chapter, you can read an overview of some of these areas.

2.2 What memories are needed?
2.2.1 Overview of memories
In a typical Cortex-M based system, there are at least two types of memories:

�� Non-volatile memory (NVM), typically using embedded flash technologies or masked ROM, for
program storage;

�� RAM, for read-write data including stack and heap.

In some systems, there can be additional memories for bootloader and other preloaded firmware.
Some low-power devices also have special retention static RAM (SRAM) for holding small amounts
of data while the rest of the device is shut down during sleep modes.

Most of the Cortex-M processors use 32-bit AHB for memory interfacing (except Cortex-M1 which
uses Tightly Coupled Memory (TCM) interfaces for connecting memories, and Cortex-M7 which
supports both Tightly-Coupled-Memory (TCM) and AXI bus interfaces). Therefore, the memory system
designs are normally 32-bit wide, but they also need to be byte-addressable – it means the RAM must
support byte (8-bit), half-word (16-bit) and word (32-bit) write operations.

For FPGA-based projects, the SRAM inside the FPGA can be used for both program storage (most
FPGA initialization sequences can initialize SRAM contents at the same time) and read-write data.

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

14

Therefore, in theory, you could use just one SRAM block for a Cortex-M based FPGA system design.

Figure 2.1: SRAM in FPGA can have initial values so that a single SRAM block can be used as both program ROM and RAM.

However, such an arrangement differs from ASIC/SoC system designs where SRAM cannot be
initialized in the same way. Also, doing so will impact performance on a Cortex-M3/M4-based system
as it will no longer be using a Harvard bus architecture. To avoid confusion, the rest of the examples in
this book use two memory blocks for separating program storage and data read-writes.

2.2.2 Memory declarations in FPGA design tools
If you are using FPGA DesignStart, the memory system for the Cortex-M1 or Cortex-M3 could be
generated for you by the FPGA design tools, so it is easy to do. However, if you are not using FPGA
DesignStart, you might need to handle the memory integration manually.

A long time ago, FPGA tools could not generate RAM blocks using behavioral Verilog codes and
declaration of memories in FPGA projects required instantiation of memory macros manually. This was
changed a few years ago, but such a capability might require the RAM declarations to be written in
a specific way to allow the FPGA design tools to recognize it correctly.

In the Cortex-M0 & Cortex-M3 DesignStart Eval, the file “logical\cmsdk_fpga_sram\verilog\cmsdk_
fpga_sram.v” provides a synthesizable SRAM model that works with most FPGA flows. You can
attach this SRAM model to an AHB bus using a bus wrapper(“cmsdk_ahb_to_sram.v”), as shown in
“logical\models\memories\cmsdk_ahb_ram.v” or “logical\models\memories\cmsdk_ahb_rom.v”.

Figure 2.2: FPGA SRAM instantiation with an AHB interface.

This arrangement allows you to swap over the FPGA ROM/RAM with other memories easily
(e.g., when migrating to ASIC).

cmsdk_ahb_to_sram cmsdk_fpga_rom /
cmsdk_fpga_ram

AHB interface SRAM
interface

SRAM in FPGA

Initial content
Use as

program
storage

Use for data
(R/W)

FPGA image

15

If you would like to simplify the design, it is possible to use a simple AHB block SRAM design (from
my paper in Embedded World 2014 – “Arm Cortex-M Processor-based System Prototyping on FPGA”
https://community.arm.com/processors/b/blog/posts/embedded-world-2014---arm-cortex--m-
processor-based-system-prototyping-on-fpga

module AHBBlockRam #(
// --------------------------------------
// Parameter Declarations
// --------------------------------------
parameter AWIDTH = 12
)
(
// --------------------------------------
// Port Definitions
// --------------------------------------
input HCLK, // system bus clock
input HRESETn, // system bus reset
input HSEL, // AHB peripheral select
input HREADY, // AHB ready input
input [1:0] HTRANS, // AHB transfer type
input [1:0] HSIZE, // AHB hsize
input HWRITE, // AHB hwrite
input [AWIDTH-1:0] HADDR, // AHB address bus
input [31:0] HWDATA, // AHB write data bus
output HREADYOUT, // AHB ready output to S->M mux
output HRESP, // AHB response
output [31:0] HRDATA // AHB read data bus
);
parameter AWT = ((1<<(AWIDTH-2))-1); // index max value
// --- Memory Array ---
reg [7:0] BRAM0 [0:AWT];
reg [7:0] BRAM1 [0:AWT];
reg [7:0] BRAM2 [0:AWT];
reg [7:0] BRAM3 [0:AWT];
// --- Internal signals ---
reg [AWIDTH-2:0] haddrQ;
wire Valid;
reg [3:0] WrEnQ;
wire [3:0] WrEnD;
wire WrEn;
// --------------------------------------
// Main body of code
// --------------------------------------
assign Valid = HSEL & HREADY & HTRANS[1];
// --- RAM Write Interface ---
assign WrEn = (Valid & HWRITE) | (|WrEnQ);
assign WrEnD[0] = (((HADDR[1:0]==2’b00) && (HSIZE[1:0]==2’b00)) ||
 ((HADDR[1]==1’b0) && (HSIZE[1:0]==2’b01)) ||
 ((HSIZE[1:0]==2’b10))) ? Valid & HWRITE : 1’b0;
assign WrEnD[1] = (((HADDR[1:0]==2’b01) && (HSIZE[1:0]==2’b00)) ||
 ((HADDR[1]==1’b0) && (HSIZE[1:0]==2’b01)) ||
 ((HSIZE[1:0]==2’b10))) ? Valid & HWRITE : 1’b0;
assign WrEnD[2] = (((HADDR[1:0]==2’b10) && (HSIZE[1:0]==2’b00)) ||
 ((HADDR[1]==1’b1) && (HSIZE[1:0]==2’b01)) ||
 ((HSIZE[1:0]==2’b10))) ? Valid & HWRITE : 1’b0;
assign WrEnD[3] = (((HADDR[1:0]==2’b11) && (HSIZE[1:0]==2’b00)) ||
 ((HADDR[1]==1’b1) && (HSIZE[1:0]==2’b01)) ||
 ((HSIZE[1:0]==2’b10))) ? Valid & HWRITE : 1’b0;

always @ (negedge HRESETn or posedge HCLK)
if (~HRESETn)

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

16

 WrEnQ <= 4’b0000;
else if (WrEn)
 WrEnQ <= WrEnD;

// --- Infer RAM ---
always @ (posedge HCLK)
 begin
 if (WrEnQ[0])
 BRAM0[haddrQ] <= HWDATA[7:0];
 if (WrEnQ[1])
 BRAM1[haddrQ] <= HWDATA[15:8];
 if (WrEnQ[2])
 BRAM2[haddrQ] <= HWDATA[23:16];
 if (WrEnQ[3])
 BRAM3[haddrQ] <= HWDATA[31:24];
 // do not use enable on read interface.
 haddrQ <= HADDR[AWIDTH-1:2];
 end
`ifdef CM_SRAM_INIT
initial begin
 $readmemh(“itcm3”, BRAM3);
 $readmemh(“itcm2”, BRAM2);
 $readmemh(“itcm1”, BRAM1);
 $readmemh(“itcm0”, BRAM0);
 end
`endif
// --- AHB Outputs ---
assign HRESP = 1’b0; // OKAY
assign HREADYOUT = 1’b1; // always ready
assign HRDATA = {BRAM3[haddrQ],BRAM2[haddrQ],BRAM1[haddrQ],BRAM0[haddrQ]};
endmodule

Using an Arm toolchain such as Keil MDK (Microcontroller Development Kit) or DS-5, we can create
a hex file that can be read by $readmemh for SRAM initialization, using the fromelf utility with the
following command-line:

$> fromelf --vhx --8x4 image.elf –output itcm

This generates four hex files (itcm0, itcm1, itcm2 and itcm3), one for each byte lane, which need to
be available during the FPGA synthesis. The tool merges the data into the FPGA bitstream so that the
SRAM content can be set up during FPGA configuration stage.

2.2.3 Memory handling in ASIC designs
In ASIC designs, SRAM and NVM blocks cannot be generated from Verilog RTL in behavioral
synthesis. Typically, you need a specific memory generation tool (SRAM compiler) to create the SRAM,
and for embedded flash, you need to instantiate the flash macro manually.

In most cases, to connect a SRAM block to AHB, you can use the “cmsdk_ahb_to_sram” block, possibly
with a little bit of glue logic for signal protocol conversion. Additional considerations apply when low-
power support is a requirement, as SRAM macros usually have some low-power modes or even state
retention modes.

17

To connect embedded flash macros to AHB, you need a flash interface controller. The interface on the
flash macros is vendor and process node-specific. However, Arm has worked with multiple embedded
flash vendors to define a Generic Flash Bus protocol (GFB, https://developer.arm.com/docs/ihi0083/a),
so most parts of the flash controller are generic; only a smaller part of the interface is process-dependent.
Arm provides generic flash controller IP, which is licensable as a part of the Corstone-101 product.

Since embedded flash macros are often relatively slow (e.g., around 30MHz to 50MHz access speed)
and many Cortex-M designs run at over 100MHz, cache systems are often required to reach desired
performance levels. To address this need, Arm also offers cache units such as the AHB flash cache,
which is part of the Cortex-M3 DesignStart Pro.

2.2.4 Memory endianness
When designing memory systems, one of the considerations is endianness. Most Cortex-M systems
today are based on little-endian memory systems. However, it is possible to create big-endian
Cortex-M systems as these processors support big-endian configuration options. When doing this, it
is important to make sure that the software developers of the product are aware so that they can use
correct compilation switches in their software projects.

Figure 2.3: Data arrangement in a Little-Endian system. Figure 2.4: Data arrangement in a Big-Endian system.

Please note that the endiann configuration only affect data accesses (including read-only data). Instructions
are always encoding as little endian. Also, access to the Private Peripheral Bus (PPB) is always in little endian.

2.3 Defining the peripherals
A microcontroller is not complete without a range of peripherals for various input/output and hardware
control functions such as timers. For the most basic Cortex-M based systems, we would expect to find
digital peripherals like:

�� General-purpose input/output (GPIO);

�� Timers;

�� Pulse Width Modulator (PWM) – usually for motor or power electronic system control;

�� UART for serial communication;

�� SPI (Serial Peripheral Interface) for external hardware modules such as LCDs;

�� I2C / I3C – commonly used for sensors.

Byte 3 Byte 2 Byte 1 Byte 00x00000000

Byte 7 Byte 6 Byte 5 Byte 40x00000004

Byte 0xB Byte 0xA Byte 9 Byte 80x00000008

Bits [31:24] [23:16] [15:8] [7:0]

Byte 3Byte 2Byte 1Byte 00x00000000

Byte 7Byte 6Byte 5Byte 40x00000004

Byte 0xBByte 0xAByte 9Byte 80x00000008

Bits [31:24] [23:16] [15:8] [7:0]

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

18

In addition to these basic peripherals, a simple system might also integrate a group of registers for
various system control functions (e.g., clock source control, selection of low-power modes). This could
be integrated as part of the peripheral system, but additional care must be taken for system security
reasons. Typically, system management functions need to be restricted to privilege accesses only.

More information on digital peripheral designs is covered in Chapter 8 (page 171).

Microcontrollers also have analog interfaces like ADC (Analog to Digital Converter) and DAC (Digital
to Analog Converter). However, many FPGA devices do not support such peripherals. For ASIC
designs, typically the ADC and DAC IP need to be sourced from specialist IP providers.

2.4 Memory map definition
The architectures used in the Cortex-M processors define a memory map that allocates address ranges
into regions. This allows the built-in peripherals like the interrupt controller and debug components
to be accessed by simple memory access instructions, thus allowing system features to be accessible
in C program code. Having a predefined memory map also allows the Cortex-M processors to
be optimized for performance. For example, a memory region called CODE at the beginning of
the memory is dedicated to program memory, and a memory region called SRAM starting from
0x20000000 is dedicated to data memory. In the Cortex-M3 processor, CODE and SRAM regions use
separated buses to allow the system to utilize the performance benefits of a Harvard bus architecture.
It is possible to use the memory regions differently, but it may not be able to get the best performance
by doing so.

The general layout of the memory map is shown in the diagram below (Figure 2.5).

Figure 2.5: Memory map overview.

CODE

SRAM

External RAM

External Device

Peripherals

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

Reserved

0xA0000000

0xDFFFFFFF

0xE0000000

0xFFFFFFFF

Private peripherals including
building interrupt controller
(NVIC) and debug components

Mainly used as external
peripherals.

Mainly used as external
memory.

Mainly used as peripherals.

Mainly used as static RAM.

Mainly used for program
code. Also, provides
exception vector table after
power-up

Private Peripheral
Bus (PPB)

0xE0000000

0xE00FFFFF

System Control
Space (SCS)

0xE000E000

0xE000EFFF

0.5GB

0.5GB

0.5GB

1GB

1GB

Private Peripheral Bus

19

The top 512Mb of the System Level Memory contains a region for system control and reserved areas.
This bus provides access to the built-in interrupt controller and various debug components. Within the
PPB memory range, a special range of memory is defined as System Control Space (SCS). It contains
the interrupt control registers, system control registers, debug control registers, and so on. The
remaining system-level memory space from address 0xE0100000 is reserved.

By having a predefined memory map, it makes porting of applications easier as all of the Cortex-M
systems have a similar look and feel, and an identical address range for NVIC and SysTick timer, etc.
It also simplifies the boot code as there is no need to program the system to define the memory
attributes for different memory/device types.

There are some restrictions concerning what the memory maps look like:

1. In many Cortex-M processors, including Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, and
Cortex-M4, the initial vector table address must be zero after reset.

2. In Cortex-M3 and Cortex-M4 processors, there is an optional bit band feature that allows the first
1MB of SRAM and the first 1MB of Peripheral region to be bit addressable. When this feature is
enabled, the bit-band alias region is remapped to bit band address range, and therefore the bit-band
alias address range cannot be used for data memory or peripherals.

3. In Cortex-M1 and Cortex-M7 processors, the instruction TCM and data TCM has fixed memory
addresses (TCM sizes are configurable). Both of these TCMs are optional.

Figure 2.6: TCM memory map in Cortex-M1.

For example, in the Cortex-M1 processor, there are two TCM interfaces: the ITCM interface is
primarily for instruction memory (including literal data access inside a program), and the DTCM is
primarily for data transfers. If the TCM size is set to 0, the TCM interface is not used, and the transfers
are carried out on the system bus. The maximum size of the TCM supported on Cortex-M1 is 1MB for
each TCM interface.

CODE

SRAM

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0.5GB

0.5GB

External to processor
(System bus)

ITCM lower alias
(1MB maximum)

External to processor
(System bus)

DTCM (1MB maximum)

ITCM upper alias
(1MB maximum)

0x00000000

0x10000000

0x20000000

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

20

The TCM interfaces on the Cortex-M1 processor are designed to be used with typical RAM blocks in
modern FPGA architecture. The accesses are single-cycles (i.e., have no wait state) and are limited to
a maximum size of 1MB each.

It is possible to add additional memory blocks on the system bus of the Cortex-M1 processor. The
original design of the Cortex-M1 system bus is based on AHB Lite protocol (AMBA version 3), it is
generic and allows wait state and error response. Please note that the Cortex-M1 design integrated
with the FPGA design tool might have been customized for a specific FPGA design environment and
might, therefore, have some cycle timing differences as a result.

The TCM interfaces on the Cortex-M7 processor are designed to be used with RAM blocks for ASIC
designs and support wait states. The maximum TCM size is 16MB each, but in practice, the TCM sizes
used in Cortex-M7 based microcontrollers are likely to be in the range of 64KB to 512KB. A large TCM
can increase the cost of the silicon due to the size of the area used and can have an impact on the
maximum clock frequency that can be achieved. For Cortex-M7, you can also add additional memories
on the AXI master interface.

Peripherals are typically placed in the Peripheral region of the memory map (0x40000000 to
0x5FFFFFFF). In most designs, peripherals are grouped into address ranges based on the bus segment
that they are placed in. For example, a Cortex-M based system can have multiple AHB and APB
peripheral buses. Bus bridges can be used to allow these buses to run at different clock frequencies.

When using Cortex-M3 and Cortex-M4 processors, if the designer would like to take advantage of the
bit-band feature which allows peripheral registers to be bit addressable (using bit-band alias), then the
peripherals that use this feature need to be in the first 1MB of the peripheral region. Similarly, when
supporting the bit-band feature for SRAM, the SRAM must be placed in the 1MB of the SRAM region.

When using Cortex-M23 and Cortex-M33 processors with TrustZone security extension enabled, the
memory map design needs to divide memory spaces into Secure and Non-secure ranges. More details
on this topic are covered in Section 3.5 AHB5 TrustZone support.

2.5 Bus and memory system design
When designing the bus system for a Cortex-M processor system, many factors need to be considered:

�� The bus interface on the Cortex-M processor being used – different Cortex-M processors can have
different bus interfaces (e.g., Harvard versus Von Neumann bus architecture).

�� The performance of memory blocks (e.g., if embedded flash memories are used for program storage
and the design need to provide high performance, then a cache unit should be considered).

�� The bus bandwidth of other bus masters in the system. For example, a USB controller is likely to
have a bus master interface and needs high data bandwidth to SRAM. In such cases, you might
need to have multiple blocks of SRAM and design the bus system to allow the processor and the

21

USB controller to have concurrent access to SRAM blocks. Another type of common bus master is
DMA controller – DMA operations enable high-performance data transfers and device-driven data
transfers without software intervention.

�� The clock speed of peripheral buses – your designs might have multiple peripheral buses with
multiple clock speeds to enable low-power operations for some peripherals and higher performance
for peripherals that can benefit from lower access latency.

�� Security – with TrustZone based systems for Cortex-M23 and Cortex-M33 processors, security
management in bus system design is an important area to ensure that security measures cannot
be compromised. For some of the other Cortex-M systems without TrustZone, you might still
want to have some levels of security level management to handle the separation of privileged and
unprivileged software components.

Later on in this book, we cover some of the processor-specific bus system design concepts in Chapter 4.

2.6 TCM integration
In the case of system designs for Cortex-M1 and Cortex-M7 processors, memory blocks can be
connected to the processor using the TCM (Tightly Coupled Memory) interfaces. In most designs,
SRAM macros generated by SRAM can be connected to the processor via simple glue logic.

For microcontroller designs with the Cortex-M7 processor, it is unlikely that you will connect slow
memory blocks like an embedded flash to instruction TCM because accesses to TCM memories
bypass the caches. Therefore, for Cortex-M7 system designs, slow program memories are expected to
be connected via the AXI master interface.

For details of TCM integration, please refers to the Integration and Implementation Manual (IIM) in the
product bundle.

2.7 Cache integration
Another type of memory that needs to be integrated is caches. Currently, these Cortex-M processor
products support cache(s):

�� The Cortex-M7 processor supports optional built-in instructions and data caches (they are
optional).

�� The Cortex-M35P processor supports an optional built-in program cache (sometimes referred to as
instruction cache but technically it is a unified cache that can cache both instruction and read-only
data).

For details of cache RAM integration on these processors, please refers to the IIM in the product
bundles.

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

22

2.8 Defining the processor’s configuration options
The source codes of the Cortex-M processors are highly configurable. You can configure the options
using Verilog parameters in the module instantiation. Also, some of the newer Cortex-M processors
have configuration scripts to help set up configurations of the product bundle.

System designers using the Cortex-M processor source code need to study the configuration options
documented in the Integration and Implementation Manual (IIM) carefully to select the right options
for their applications. Some other parts of the product bundles also need to be configured with
matching options. If the options of some parts of the deliverable are not configured correctly, items
like the execution testbench might not work correctly.

2.9 Interrupt signals and related areas
Assigning interrupt numbers and connecting interrupt signals from peripherals to the processor is
possibly one of the easiest parts of the system design task. Normally you have several interrupt signals
from peripherals to be connected to the processor. The allocation of interrupt signals affects the C
head files for software development, including the vector table definitions and interrupt numbers,
which are both visible to the software.

The maximum number of interrupts supported by the Cortex-M processors are listed in Table 2.1:

Table 2.1: Maximum number of interrupts in the Cortex-M processors.

If the number of interrupt signals exceeds the maximum number support, it is possible to merge
multiple interrupt lines and share one interrupt service routine (ISR) and determine which interrupt to
be serviced in the ISR by software.

On all current Cortex-M processors, the interrupt signals:

�� Are active high and must be synchronous to the processor’s system clock signal;

�� Can be level triggered or pulse triggered. If using pulse triggered, the duration of the pulse must be
at least one clock cycle.

The unused or not implemented interrupt input pins should be tied to 0 and must not be allowed
to enter unknown state ‘X.’ (e.g., if a peripheral outputs X in its interrupt line when the peripheral is
powered down, the signal level must be clamped to 0 before the power down happened). Issues with
unknown or ‘X’ signal values generally affect simulation but represent possible unexpected values
when using ASIC or FPGA.

Processor Maximum number of interrupts

Cortex-M0, Cortex-M0+, Cortex-M1 32

Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23 240

Cortex-M33, Cortex-M35P 480

23

If the peripheral interrupt is generated at a different clock domain, a synchronization circuit (such as
the example in Figure 2.7) is needed to remove potential metastability issue and to prevent transients
from forming unexpected pulses.

Figure 2.7: Interrupt synchronizer to convert interrupt signal from one clock domain to processor’s clock domain.

Cortex-M processors have a Non-Maskable Interrupt (NMI) input. In common embedded systems the
NMI could be connected to:

�� Voltage monitoring logic (also known as brownout detector) to ensure that the system is shut down
correctly when support voltage drops to a certain value or

�� The NMI could be connected to a watchdog timer to carry out remedial actions if the system has
stopped normal operation.

NMI is unlikely to be used as the interrupt for normal peripherals. This is because the built-in
interrupt controller NVIC already provides interrupt prioritization, so each peripheral can already be
programmed as the highest priority by just using the normal IRQ connection. Also, a fault generated
within the NMI handler can cause the processor to enter lockup state, which can be problematic
for some applications. Faults in normal interrupt handlers allow the Hard Fault handler (or other
configurable fault handlers) to be triggered and executed.

Another characteristic of the NVIC is that it can handle interrupt requests in the form of pulse as well
as level signal. If a peripheral generates an interrupt request in the form of a pulse signal, the request is
held by pending status within the NVIC until the interrupt request is processed, or when the pending
status is cleared manually. If a peripheral generates an interrupt request in the form of a level signal,
the interrupt handler must clear the request at the peripheral.

The key advantage of a pulsed interrupt is that it saves a few clock cycles in the ISR that there is no
need to clear the interrupt requests at the peripherals. However, in many cases, a level-triggered
interrupt is preferred because:

�� Cross clock domain synchronization of level-triggered interrupts is simpler than pulsed interrupts.
In the case where pulse interrupt synchronization logic is used, two successive interrupt request
pulses could be merged into one after the synchronizer due to the latency of the synchronization,
which can be confusing.

DFF

D Q

CLK

DFF

D Q

DFF

D Q

CLK CLK

Interrupt input
(Different clock

domain)

Interrupt
Output

Double flip-flop
synchronization to

prevent metastability

Remove pulses form by
glitches

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

24

�� If the interrupt event occurred when the processor is reset, the interrupt event could be lost.

�� Level trigger interrupts can remain at a high level to indicate an additional service is needed by the
peripheral (e.g., when additional data is available in a receiver’s FIFO).

�� Easier for debugging (e.g., in Verilog simulation, where it is hard to tell if there has been an interrupt
event unless the event information is kept by, for example, a waveform database).

�� The peripheral design can be reused for other processors that do not support pulsed trigger
interrupts.

In addition to the number of interrupts, there are other configuration options related to interrupt handling:

Number of interrupt priority levels – In Armv7-M and Armv8-M Mainline processors, the
programmable interrupt priority level registers has configurable width from 3-bits to 8-bits. Typically,
the options of 3-bit to 4-bit are used, and some devices do support 5-bit. Most applications do not
need many interrupt priority levels, so eight levels (3-bit) is likely to be sufficient.

Wakeup Interrupt Controller (WIC) – An optional block to handle interrupt detection while the
processor is in-state retention power gating (SRPG) or when the processor’s clock is completely
stopped. If the WIC feature is implemented and enabled, the interrupt masking information is
transferred from NVIC to WIC automatically before entering sleep mode. The WIC then takes
over the role of interrupt event detection and can generate a wakeup request to power management
blocks in the system when an enabled interrupt event is detected. The interrupt pending status
is held in the WIC when the processor is waking up and transfers the interrupt request to NVIC
when the processor is back up. At the same time, the masking information inside the WIC is cleared
automatically by hardware as the NVIC is back running.

2.10 Event interface
Apart from the Cortex-M1 processor, all other Cortex-M processors have an event input (typically
named RXEV – receive event) and an event output (typically named TXEV – transmit event). The RXEV
input is used to wake up a processor from Wait-For-Event (WFE) sleep operation, and TXEV output
allows a processor to send an event to another processor in WFE sleep using the SEV (Send event)
instruction. These signals are active high single-cycle pulse.

The event interface is typically used in multi-core systems to allow one processor to wake up another
during spinlocks. In RTOS semaphores, if a processor is waiting for a spinlock, it can enter sleep
mode using WFE to save power and wakes up if there is an interrupt to serve or if there is an
event from another processor. By crossing over the event interface signal (as shown in Figure 2.8),
processors in a dual-core system can wake up each other from WFE sleeps using the SEV (send event)
instruction.

25

Figure 2.8: Example connection of event interface in a dual-core system.

Events could also be generated from peripherals or DMA controller, but normally interrupts are more
suitable for that purpose as we need software to react to those hardware events vis ISRs.
For single-processor systems, it is fine to tie RXEV to 0 and leave TXEV unconnected.

Please note: The event interface on the Cortex-M processor is unrelated to the definition of events in
RTOS. In RTOS, an application thread waiting for a certain operation X to be carried out can call an OS
API that waits for an event Y. This API call also takes the thread out of the ready task queue. When the
specified operation X has been carried out (e.g., in another thread or an ISR), the other thread or ISR that
carried out the operation X can call another OS API to set the OS event Y. This puts all the waiting threads
that were waiting for the operation X to be put back in the ready task queue to resume operation.

2.11 Clock generation
There are several clock signals on the Cortex-M processors. Over the years there have been different
design approaches and therefore the clock and reset signal names vary between different processors.

Most of the existing Cortex-M processors provide:

�� Free-running clock (if gated, all logic in the processor stopped and needs external logic blocks such
as WIC to handle interrupt detection and wakeup);

�� System clock (can be gated during sleep mode);

�� Debug clock(s) – this includes the JTAG or Serial Wire debug clock signals for debug interface, and
also a clock signal for internal debug components which can be gated if there is no active debug
connection.

The free running clock, system clock and debug clock (except the clock for the debug interface and
DAP interface on Cortex-M3/M4 processors) must be synchronous and in the same phase. The
separation of clock signals is to allow the system power to be reduced by gating off some of the clock
signals when they are not needed.

�� In Cortex-M0 and Cortex-M3 processors, the design exported GATEHCLK signal is asserted when
the processor is in sleep mode, and there is no debug connection. This signal can be used to gate off
the system clock.

�� In some of the Cortex-M processors, the clock gating logic is done internally and so might not have
all these clock signals visible on the top-level.

Cortex-M Cortex-M

TXEV TXEV

RXEV RXEV

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

26

It is important not to gate off the system clock when the processor is running. In system-level designs,
there can be multiple clock sources, and a glitch-less clock switching circuit would be needed. The clock
switching circuit is outside of the processor and is normally application and process node dependent. In
FPGA designs, you can design an FSM that controls the PLLs (Phase-Locked Loops) and gate-off the clock
signals to the processor subsystem during PLL configuration changes.

Figure 2.9: Example clock generation arrangement in a FPGA system design.

Depending on the FPGA design tool being used, the system clock generation/control logic might be
generated by the tools. In this case, there is no need to develop your own clock generation/control logic.

In ASIC designs, you might have the following clock sources:

�� External crystal oscillator for medium speed (e.g., 1MHz to 12MHz) – this might be turned off by
default after a reset to save power. Instead of using a higher frequency crystal to generate higher
frequency clocks, it is more common to use a PLL to generate a high clock speed when needed to
avoid having a high-frequency clock running all the time to save power.

�� Internal RC oscillator for medium speed (e.g., 1MHz to 12MHz). This will use less power than a crystal
oscillator, but will not provide an accurate frequency reference for timing or peripheral interfaces.

�� External 32KHz oscillator for real-time clock (might also be used for system management).

Figure 2.10: Example clock generation arrangement in an ASIC system design.

Phase Locked
Loop (PLL)

Reference
clock source

Finite State
Machine (FSM)

Lock
status

PLL config

Clock
gate

Control

Generated
clock

Clock buffer
Clock

output

Clock is
stable?

Enable

32KHz
crystal

oscillator

Internal R-C
oscillator

Fast
crystal

oscillator

Clock
switch

On/off
control

On/off
control

PLL

Glitch
free

Clock
switch

Real-time
clock
(RTC)

PLL config

Clock buffer
Free running
clock output

Clock
gate

Clock buffer
Gated

system clock
output

Power
management

control

27

In ASIC/SoC implementations, the system can boot-up from the internal RC oscillator and switch
over to external crystal oscillator or PLL for clock source when needed. PLL can provide higher clock
frequency for high-performance operations.

2.12 Reset generation
In the Cortex-M processors there are usually at least two reset signals, in some cases three signals:

�� System reset;

�� Debug reset;

�� Debug interface reset (e.g., nTRST) for JTAG interface;

�� Optionally you might find a power-on reset, which resets both the system and debug logic.

If power-on reset is present, it resets both the system and debug system. The reason that we separate
the reset into two signals is to allow the processor to be reset without affecting the debug system.
Otherwise, the debug settings like breakpoints, watchpoints, and the debug connection from the
debugger to the core, would be lost each time the processor core is reset.

The processor also outputs a reset request signal called SYSRESETREQ. This is controlled by a register
bit in the Application Interrupt and Reset Control Register (AIRCR) inside System Control Space. This
allows:

�� Software to request a system reset, for example, in the case of fault error handling;

�� Debugger to request a system reset. This is essential to allow the debugger to request a reset of the
targeted processor.

Designers must make sure that:

�� SYSRESETREQ only generates a system reset but not debug reset or power-on reset;

�� SYSRESETREQ does not generate a system reset in a combinatorial path (in other words – it must
be registered by registers that are not affected by the system reset), as the SYSRESETREQ output
is affected by a system reset and the use of a combinatorial path for reset generation causes a reset
glitch.

All of the Cortex-M processors use an asynchronous active-low reset signal and must be de-asserted
synchronously to the system and debug clock to prevent timing violations. This ensures that most of
the registers can be reset when the clock is not running. However, most of the Cortex-M processors
require the reset to last at least two clock cycles. This arrangement has the following benefits:

�� Enables synchronization flip-flops, which present in double DFF synchronizers to be reset.

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

28

�� In the case where the assertion of reset causes timing violations and leads to metastability, the
multi-cycle nature of reset ensures the metastability is cleared up. To ensure reset de-assert occurs
at the correct time, a simple reset generator could be used for a Cortex-M0/M0+/M1/M3/M4
processor. Figure 2.11 shows such an example.

Figure 2.11: A simple reset generator for the Cortex-M processors.

Assuming the Cortex-M1 is used (some other Cortex-M processors have different signal names for
reset signals): The Cortex-M1 processor generates the SYSRESETREQ signal. Since the Cortex-M1
processor can be reset by SYSRESETn, the SYSRESETREQ signal must not drive SYSRESETn in a
combinatorial path. Otherwise, it could result in a race condition where SYSRESETREQ gets cleared
in a very short time after assert, as it gets cleared by its output. This could result in some parts of
the processor getting reset and other parts not. For this reason, the SYSRESETREQ signal must be
registered by a separated flip-flop that is not affected by SYSRESETn before being used to generate
SYSRESETn. In the example above (Figure 2.11), the reset request from the SYSRESETREQ is held in
two registers that are reset by DBGRESETn, or if using Cortex-M3/M4, you can use power-on reset in
Cortex-M3/M4 processor.

We can also design the reset generator so that it can optionally reset the system if it enters lock-up
state. To make this behavior controllable, a programmable register would be needed in your FPGA/
system design to specify if a lock-up state can cause a reset. This register is not provided in the
Cortex-M processor core as such requirement is application dependent. During software development,
the control signal at this external reset control register can be set to 0 to disable the automatic reset.
In a production system, the reset control register can be set to 1 so that when the system enters lock-
up state, the SYSRESETn is activated automatically.

D Q

clr

D Q

clr

D Q

clr

D Q

clr

Registers to ensure
external power-on-reset is

synchronized to HCLK

D Q

clr

D Q

clr

1

D Q

clr

D Q

clr

External power-
on-reset

(active low)

HCLK

SYSRESETREQ

buffer

buffer

Buffer to
generate

debug reset

Registers to hold reset
for 2 cycles after

SYSRESETREQ

DBGRESETn

SYSRESETn

29

Figure 2.12: A reset generator to allow automatic reset at lockup state.

Depending on the FPGA design tool being used, the system reset controller might already be included.
In this case, there is no need to develop your own reset controller.

2.13 SysTick
The SysTick timers in the Cortex-M processors support external reference “clock.” Technically the reference
“clock” is not a clock signal, as it is sampled by D-flip flops inside the SysTick at the processor’s clock speed.

The SysTick interface also provides a calibration input, which is fed to the SysTick calibration value
register:

Table 2.2: Signals for SysTick calibration value register.

The support for SysTick reference clock and calibration value are optional.

�� If no reference clock is provided, STCALIB[25] needs to tied high.

�� If TENMS is not used, STCALIB[23:0] should be tied low, and STCALIB[24] needs to tied high.

Signal SysTick calibration value register

STCALIB[25] NOREF (bit 31) 0 – reference clock is implemented
1- reference clock is not implemented

STCALIB[24] SKEW 0 – TENMS calibration value is exact
1 – TENMS calibration value is skewed (inexact)

STCALIB[23:0] TENMS SysTick reload value for 10ms (100Hz)

D Q

clr

D Q

clr

D Q

clr

D Q

clr

Registers to ensure
external power-on-reset is

synchronized to HCLK

D Q

clr

D Q

clr

1

D Q

clr

D Q

clr

External power-
on-reset

(active low)

HCLK

SYSRESETREQ

buffer

buffer

Buffer to
generate

debug reset

Registers to hold reset
for 2 cycles after

SYSRESETREQ

DBGRESETn

SYSRESETn

LOCKUP

Reset control register
Programmable register to

allow the system to be
reset on a lock-up

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

30

In CMSIS-CORE, an alternate way for software to determine system clock speed is provided that uses
a software approach: the SystemCoreClock variable should provide the clock frequency information,
and that is initialized and updated by the software when the clock settings are updated.

2.14 Debug integration
Debug integration typically involves several interfaces:

�� Interface for debug connection (JTAG or Serial Wire Debug) – for connecting a debugger to the
hardware target to carry out halting, stepping, restart, resume, setting breakpoints/watchpoints,
access to memories and peripherals. Debug connection is also used for downloading code and flash
programming.

�� Interface for trace data (connecting ATB from the processor and ETM to trace port) – enables the
debugger to obtain real-time trace information, either using trace port protocol which contains
multiple data bits (usually 4-bit) and a clock signal or using a single pin trace output protocol for
trace with lower bandwidth (e.g., instrumentation trace, event trace). The trace interface is optional
and is not available on Cortex-M1, Cortex-M0 and Cortex-M0+ processors.

�� CoreSight timestamp generation – CoreSight timestamp feature integrates timing information
into the trace package. Real-time trace operation can take advantage of this to allow the debugger
to restructure timing information. To allow this to work, some Cortex-M processors and ETM
(Embedded Trace Buffer) have a timestamp interface. Typically, a simple counter is used to generate
the timestamp value.

�� Debug authentication control – Cortex-M processors provide hardware interface signals to
allow other hardware blocks in the system to control whether debug and trace operations are
allowed. Typically, debug authentication is controlled by security management IP blocks based on
certificate-based authentication methods. For Armv8-M processor systems, there are separate
debug authentication signals to define debug access permissions for Secure and Non-secure
environments.

�� Debug system clock and reset generation, and power management – depending on which
processor is used, the debug system can have its own clock and reset signals, and in some designs,
debug logic can be powered down or clock gated if not being used.

More details on the debug interface are covered in Chapter 5. Please note, here we only cover single-
core designs. In the case of multi-core designs, the debug integration should be handled by Arm
CoreSight SoC-400/600 products.

31

2.15 Power management features
Cortex-M processors (except Cortex-M1 which is designed for FPGA) support a range of low-power
features.

�� Sleep modes – architecturally, the processor can have sleep and deep sleep, but these sleep modes
could be extended with additional system-specific registers to have addition granularity of sleep
characteristics. The processors have sleep mode status output signals so that system designers can
use these signals to control clock gating and other power management hardware.

�� Sleep hold interface – in the case where a system designer utilizes sleep mode signals to turn off
hardware resources (e.g., program ROM), the wake-up process can take a while (e.g., hundreds
to thousands of clock cycles). In such cases, it is essential to be able to hold off the processor’s
program execution, and the sleep hold interface is designed exactly for this purpose. To use this
feature, the system designer needs to design a simple Finite State Machine (FSM) to handle the
handshaking with the sleep hold interface.

�� Wakeup Interrupt Controller (WIC) – explained in this chapter earlier, the WIC is an optional
feature that allows interrupts or other wakeup events to be detected when the processor is in
a powered-down state, retention state, or if the clock to the processor is gated off. The system
designer can customize the example WIC design if needed.

�� Debug power management – the debug interface modules provides handshaking signals to
indicate whether there is a debugger connection, which allows system designers to implement
power management for the debug system of the processors if needed. For example, in Cortex-M0,
Cortex-M0+, Cortex-M7, Cortex-M23, Cortex-M33, and Cortex-M35P processors, there is a
separate debug power domain that can be powered down if there is no debug connection.

System designers are also likely to integrate additional power management features for memory
blocks, clock generation and distribution systems, and some of the peripherals.

2.16 Top-level pin assignment and pin multiplexing
One of the tasks that chip designers need to do is to define the top-level signals of the devices. Often,
many of the pins on the chips carry multiple functions. For example, a pin might be configurable to
work as a GPIO pin, a communication interface pin, or a debug/trace pin. You can find examples of pin
multiplexing in Cortex-M3 DesignStart Eval.

Apart from the debug and trace signals, normally there is no need to expose other interfaces of the
Cortex-M processors directly to the top-level of the devices. For external interrupt generation, usually,
that is handled by GPIO blocks so that external hardware can trigger interrupts via GPIO. In some
cases, chip designers can also implement a signal path to allow off-chip hardware to generate an
event pulse to the Cortex-M processor so that it can wake up from WFE (Wait-for-event) instruction;
however, this is not essential for many systems.

Chapter 2 | Introduction to system design with Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

32

When designing top-level pins, several areas related to the Cortex-M processors should be
considered:

�� In most cases, the debug interface pins (JTAG or Serial Wire Debug) need to be accessible at the
device’s top-level by default. For Cortex-M3, Cortex-M4 and Cortex-M33 processors, the debug
interface module supports dynamic protocol switching, so it is possible to expose just two pins
of the SWD debug by default. If there is a need to switch over to JTAG, then you can program a
device-specific pin multiplexer (mux) control register to expose the other pins for JTAG, and then
apply a switchover sequence to start JTAG operations.

�� The SWD interface requires a tristate pin for the data connection (SWDIO), which is enabled when
SWDIEN is high.

�� If the debug interface is multiplexed with other peripheral I/O pins, the peripheral I/O operations
can cause a debug connection to be disconnected.

�� The debug and trace interface provides a range of status signals to allow some of the signals to be
multiplexed with functional pins. It is also possible to use device-specific programmable registers
to help control the pin multiplexing. However, in such cases, the device vendor needs to provide
the details of the setup sequence for various debug tools to allow them to work correctly with
the device.

�� When creating systems using Armv8-M processors with TrustZone, the debug connection might
contain Secure information, and therefore the pin multiplexing logic needs to prevent Non-secure
software from seeing activities in the debug connection.

2.17 Miscellaneous signals
Cortex-M processors provide various status signals that can be used by system designers. For
example, in Figure 2.12, we show that the LOCKUP status could be used to generate system resets
automatically. The availability of other status signals depends on the processor you use. Please refer
to documentation in the product bundle for more information.

Newer Cortex-M processors support a CPUWAIT signal. This is used to delay the start-up of the
processor after releasing from reset. In most single-core systems, this pin can be tied low. In multi-core
SoC designs when the Cortex-M subsystem is running a program in SRAM, the CPUWAIT signal can
be used to delay the boot-up so that a different bus master can transfer the program image into the
SRAM. After the program image is loaded, the CPUWAIT signal can be released, and the Cortex-M
processor can start executing the program.

33

2.18 Sign off requirements
For designers using the Cortex-M processors for ASIC/SoC design projects, please note that the
Cortex-M family of products have some sign-off requirements documented in the IIM of the product
bundle. This contains a checklist to help designers to minimize the risk of incorrect implementations.

Chapter 2 | Introduction to system design with Cortex-M processors

AMBA, AHB, and APB

CHAPTER
3

System-on-Chip Design with Arm® Cortex®-M processors

36

3.1 What is AMBA?
3.1.1 Introduction to Advanced Microcontroller Bus Architecture
Advanced Microcontroller Bus Architecture (AMBA) is a collection of on-chip bus protocol specifications
used by Arm processors as well as a wide range of on-chip digital components such as memory
interfaces, peripherals and debug components. The specification is developed by Arm and is an open
standard available to the chip design industry. It means that companies do not need to pay license
or royalty fees for using the bus protocol spec in their designs. AMBA is widely supported, and many
companies develop AMBA-compatible system IP.

Unlike most other bus protocols such as PCI, AMBA bus protocols are designed for on-chip
communications. To enable easier system integration inside chip designs, almost all the AMBA
specifications have the following characteristics:

�� Synchronous operations – use only clock rising edge for flip-flops, friendly to common synthesis flow;

�� No on-chip bi-directional signals – avoiding the need for tri-state buffers.

The most common AMBA bus protocols used in microcontrollers include:

�� AHB (Advanced High-performance Bus) – a lightweight pipelined bus protocol used in the majority
of the Arm Cortex-M processors.

�� APB (Advanced Peripheral Bus) – a simple bus protocol for connecting general simple peripherals
with low data bandwidth requirements.

�� AXI (Advanced eXtensible Interface) – a high-performance bus protocol for efficient, high-
performance processors including the Cortex-M7 processor, Cortex-R processors and the majority
of the Arm Cortex-A processors. The AXI protocol:

�� Provides multiple data channels running concurrently at high clock frequency.

�� Allows new transfers to be issued and take place even with previous transfers still outstanding.

�� Supports unaligned data and provides data security based on TrustZone technology.

3.1.2 History of AMBA
The AMBA standard was developed by Arm and became an open standard from version 2 in 1996. The
version 2.0 of AMBA specification consists of three bus types: AHB, ASB and APB. Both AHB (Advanced
High-Performance Bus) and APB (Advanced Peripheral Bus) are popular choices in system-on-chip
designs, and both have been extended in newer AMBA versions. The ASB (Advanced System Bus) is
obsolete and was only used in older generation Arm cores.

You might wonder why the AMBA standard was developed? Although there are many bus standards in
existence, they mainly focus on circuit board level connections. These types of interface standards contain
overhead for supporting signal multiplexing, configuration detection, and electrical characteristics handling

37

(e.g., turn-around time when signals switch direction). Overheads of this kind do not apply to system-on-chip
environments. At the same time, there is a need to have an open standard to allow better design reusability
and enable Intellectual Properties (IP) providers to develop peripherals for the Arm platform. As a result,
Arm published the AMBA 2 specification as an open standard (royalty-free), and this has become the most
popular processor interface standard for embedded 32-bit processors. Due to its open nature and simplicity,
AMBA has been for some time a de-facto standard for bus interface in system-on-chip architectures.
The low overhead and low latency characteristics are often necessary for high speed embedded systems.
The AHB protocol also supports pipelined operation, which is important to most designs.

3.1.3 Various versions of AMBA specification
The AMBA specification family has evolved over the years. Some of the protocols were introduced in
later releases, and not all were updated in more recent AMBA versions.

Table 3.1: Bus protocols in the AMBA specification family.

In this chapter, we will only cover the AHB and APB protocols as they are the most commonly used
in simple embedded microcontrollers and SoC designs. For other protocols, the specifications can be
downloaded from the Arm website. Additional reference materials are also available:

Table 3.2: Reference sources for some of the bus protocols that are out of scope for this document.

Notes AMBA 2 AMBA 3 AMBA 4 AMBA 5

ASB (Advanced System Bus) Used on ARM7TDMI, obsoleted ASB

AHB (Advanced High-
performance Bus)

Used on the Cortex-M processors AHB AHB-Lite AHB5

APB (Advanced Peripheral Bus) Used on almost all Arm processor
systems

APB2 APB3 APB4

AXI (Advanced eXtensible
Interface)

Used on high-performance
processors

AXI3 AXI4
AXI4-Lite
AXI4-Stream

AXI5

ACE (AXI Coherency
Extension)

Used on high-performance
processors with cache coherency
requirements

ACE
ACE-Lite

ACE5
ACE5-Lite

CHI (Coherent Hub Interface) Advanced coherency management CHI

DTI (Distributed Translation
Interface)

Used with system-level Memory
Management Unit (MMU)

DTI

Low-power Interface
specification

For power management Q channel
and P
channel

ATB (Advanced Trace Bus) For transferring trace data during
debugging

ATB

Web page address

AMBA https://developer.arm.com/architectures/system-architectures/amba

ACE https://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf

CHI https://community.arm.com/processors/b/blog/posts/what-is-amba-5-chi-and-how-does-it-help

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

38

3.2 Overview of AHB
3.2.1 Various versions of AHB
The AHB specification was first released as a part of the AMBA 2 Specification. It is a multi-master,
multi-slave bus protocol designed to support embedded processors with very low silicon overhead
and low latency. Most of the AHB based systems are 32-bit, but the protocol is designed to support
different bus sizes. The typical bus width for AHB systems is 32 or 64-bit.

The AHB standard has gone through multiple releases and phases:

�� AMBA 2 AHB – first release. This specification release uses a pair of handshaking signals (Bus
Request and Bus Granted) for arbitration between multiple bus masters.

�� Multi-layer AHB designs – The AMBA Design Kit product from Arm introduced an AHB
interconnect component called AHB Bus Matrix. This enables concurrent bus transfers in multi-
master systems for higher bandwidth, avoids the need for the Bus Request and Bus Granted signals,
and was unofficially called ‘AHB Lite.’

�� In the AMBA 3 Specification, AHB Lite became the official name. It removed Bus Request and Bus
Granted signals and simplified several other aspects of the AHB protocol. It is used on many Arm
processor systems.

�� In the AMBA 5 specification, AHB has been updated to support TrustZone for Armv8-M and add
official support for exclusive access sideband signals. It also introduced several improvements
including additional cache attribute support and clarifications.

AMBA 5 AHB (also known as AHB5) is the most recent release of the AHB specification. In many
ways it is highly compatible with its predecessor and existing bus slaves designed for AHB Lite can be
reused in AHB5 systems.

3.2.2 AHB signals
An AHB system operates with a clock signal called HCLK. This signal is common to all bus masters,
bus slaves, and the bus infrastructure blocks in a bus segment. All registers on the AHB trigger at rising
edges of HCLK. There is also an active-low reset signal called HRESETn. When this signal is low, it
resets the AHB system immediately (asynchronous reset). This allows a system to be reset even if the
clock is stopped. For correct operation, the HRESETn signal itself should be synchronized to HCLK so
that race conditions can be avoided. Otherwise, if the HRESETn de-asserts about the same time as
HCLK rising edge, you might find that parts of the registers are still reset at the clock edge and some
are not.

39

For a typical AHB system, you can find most of the following signals:

Table 3.3: Typical AHB signals.

AMBA 5 AHB introduced additional signals:

Table 3.4: Additional signals defined in AHB5.

Signals Direction Descriptions

HCLK Clock source g all AHB blocks Common clock signal

HRESETn Reset source g all AHB blocks Common active-low reset signal

HSEL Address decoder g Slave Device select

HADDR[31:0] Master g Slave Address bus

HTRANS[1:0] Master g Slave Transfer control

HWRITE Master g Slave Write control (1=Write, 0=Read)

HSIZE[2:0] Master g Slave Transfer Size control

HBURST[2:0] Master g Slave Transfer Burst Type control

HPROT[3:0]/[6:0] Master g Slave Transfer Protection control. 4 bits in AHB Lite, extended to 7 bits
in AHB5

HMASTLOCK Master g Slave Transfer Lock control

HMASTER[3:0] Bus components g Bus slave Indicates current bus master identity1

HWDATA[31:0] Master g Slave Write data (typically 32-bit, but it can be 64-bit wide on 64-bit
systems)

HRDATA[31:0] Master f Slave Read Data (typically 32-bit, but it can be 64-bit wide on 64-bit systems)

HRESP[1:0] / HRESP Master f Slave Slave response (2 bit wide in AMBA 2, 1 bit wide in AHB Lite and
AHB5)

HREADY
(HREADYOUT)

Master f Slave (HREADYOUT),
Bus component g other slaves
(HREADY)

Slave ready (transfer completed). The HREADY signal goes two ways.
The currently selected slave drives the HREADY to bus master as well
as all other AHB slaves. As a result, an AHB slave has HREADY input
and HREADYOUT output.

Signals Direction Descriptions

HNONSEC Master g Slave Security attribute of the transfer (TrustZone support)

HEXCL Master g Slave Indicates the transfer is Exclusive access

HEXOKAY Master f Slave Exclusive access success response

HAUSER Master g Slave Optional user sideband for address phase signals (the actual definition
of this signal is system-specific)

HWUSER Master g Slave Optional user sideband for data phase signals (the actual definition
of this signal is system-specific)

HRUSER Master f Slave Optional user sideband for data phase signals (the actual definition
of this signal is system-specific)

1 AHB3 does not have HMASTER though most Cortex-M processors using AHB-Lite have an HMASTER signal provided.

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

40

For older AHB systems (AMBA 2) that use AHB Arbiter to handle multiple master accesses, you can
also see the following signals:

Table 3.5: AMBA 2 AHB signals for arbiter connections.

Many of the signals are optional. For a minimal AHB system with a single Arm Cortex-M0 processor,
it is possible to create a working system using:

�� HCLK, HRESETn, HADDR, HTRANS, HSIZE, HWRITE, HSEL, HWDATA, HRDATA, HRESP, and
HREADY signals.

3.2.3 Basic operations
In a simple design with just one bus master (e.g., a Cortex-M processor) and multiple bus slaves, the
design can be arranged as follows:

Figure 3.1: Simple AHB system with one AHB master and two AHB slaves.

The connections between AHB masters and AHB slaves based on the AMBA 5 Specification can be
viewed in the following diagram: multiple bus masters share the same bus using a master multiplexer,
controlled by a bus arbiter. The return data and responses from bus slaves are also multiplexed using
a slave multiplexer and feedback to the bus masters.

The signals are grouped into “address phase” signals and “data phase” signals.

AHB master

Address &
controls

Address decoder

Ad
dr

es
s

AHB slave #1

AHB slave #2

Write data

HSEL1

HSEL2

Data phase
MUX control

HREADYOUT
HRESP
HRDATA

HREADY
HRESP

HRDATA

HR
EA

DY

HREADYOUT
HRESP
HRDATA

HSEL

HSEL

HREADY

HREADY
HWDATA

HWDATA

HADDR, HTRANS,
HSIZE, HWRITE, etc

HADDR, HTRANS, etc

HADDR, HTRANS,
HSIZE, HWRITE, etc

HWDATA

Signals Direction Descriptions

HBUSREQ Master g Arbiter Bus access request

HGRANT Master f Arbiter Bus granted

HLOCK Master g Arbiter Lock transfer control

HMASTLOCK Arbiter f Slave Transfer Lock control
In newer AHB systems Arbiter is not used and HMASTLOCK is
generated by the bus master or bus interconnect

41

The address phase signals include:

�� HADDR, HTRANS, HSEL, HWRITE, HSIZE.
�� Optional: HPROT, HBURST, HMASTLOCK, HEXCL, HAUSER.

The data phase signals include:

�� HWDATA, HRDATA, HRESP, HREADY (and HREADYOUT).
�� Optional: HEXOKAY, HWUSER, HRUSER.

Each transfer is composed of an address phase and data phase. The transfers are pipelined. The
address phase of a transfer can be overlapped with the data phase of the previous transfer.

Figure 3.2: Splitting of a transfer into address phase and data phase.

Each phase is terminated by the assertion of HREADYOUT (HREADY) from the currently activated
AHB slave in the data phase. The HREADYOUT from the AHB slaves are multiplexed by the slave
multiplexer, forming the system-wide HREADY signal. The multiplexer is operating at the data phase
of each transfer. Control of the multiplexer can be generated from the AHB decoder, or the HSEL
signals and the HREADY signal.

Figure 3.3: HREADYOUT route from AHB slave output to HREADY inputs of AHB slaves and AHB masters.

Address Phase N

Data phase N

Address Phase (N+1)

Data Phase (N+1)Data Phase (N-1)

Address phase
(N-1) Address Phase (N+2)

Data phase
(N-2)

HCLK

HREADY

Address
phase
signals

Data
phase
signals

From HREADYOUT of
AHB slave selected in

transfer N

From HREADYOUT of
AHB slave selected in

transfer N-1

From HREADYOUT of
AHB slave selected in

transfer N+1

AHB slave #1

AHB slave #2

HREADYOUT

HRESP

HRDATA

HREADYOUT

HRESP

HRDATAHREADY, HRESP,
HRDATA

HREADY

HREADYAddress
Decoder

HSEL

HSEL

D Q

En

Address phase
select control

Data phase select
control

HREADY

HADDR

AHB Masters

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

42

If an AHB slave is not currently selected, its HREADYOUT should be high to indicate it is ready.
However, it can only accept a transfer from the bus master when the previous transfer is completed,
indicated by a high level in the system-wide HREADY. For example, if transfer N selects AHB slave A,
transfer N+1 selects AHB slave B, and transfer N+2 selects AHB slave C, the waveform can be like:

Figure 3.4: AHB transfer can only be accepted when the previous transfer is completed, indicated by HREADY being high.

3.2.4 Minimal AHB systems
In a minimal AHB system with a single bus master (e.g., a Cortex-M processor) and bus slaves, we
would expect to find the following components:

Table 3.6: AHB infrastructure components needed in a minimal AHB system.

Components Descriptions

Address decoder Based on HADDR input, generates HSEL signals to bus slaves and AHB slave multiplexer

AHB slave multiplexer Connect multiple bus slaves to a single AHB segment

Default slave This is a special type of AHB bus slave, which is selected when the transfer address (HADDR) does not
match the address range of other AHB slaves. This only happens when something has gone wrong (e.g., the
software attempts to access an invalid memory location due to an error in C pointer processing). This bus
slave only returns an ERROR response when accessed, write data is ignored by the default slave, and it
returns 0 for read accesses. Default slave is optional - If the address space is fully-utilized by other bus
slaves, then there is no default slave.

Address Phase N
(AHB Slave A selected)

Data phase N
(AHB Slave A active)Data Phase N-1

Address Phase (N+3)

Data phase
N+1 (Slave B

active)

HCLK

HREADY
(seen by bus masters)

Address
phase
signals

Data
phase
signals

HREADY
driven by slave

B

HREADY driven by slave
selected in transfer N-1

HREADYOUTA

HREADYOUTB

HREADYOUTC

Address Phase N+1
(AHB Slave B selected)

Address
phase N+2

(Slave C
selected)

Data phase N+2
(Slave C active)

HSELA

HSELB

HSELC

HREADY
driven by slave

C

HREADY
driven by slave

A

Slave A accept the transfer
when HSELA is high and

HREADY is high

Slave B accept the transfer
when HSELB is high and HREADY

is high

43

The design of the address decoder is system-specific – each system has its memory map, and the chip
designers need to create the address decoder for each bus slave accordingly. The HSEL signal is an
address phase signal generated by decoding the HADDR signal. Since the HSEL generation process is
combinatorial, the design of memory maps needs to avoid complex decoding of HADDR. Otherwise,
the synthesis timing could be affected.

The design of AHB slave multiplexer can be much more generic and is available in various Arm AHB based
system IP bundles. Since each AHB slave has their own read data output and response outputs, an AHB
slave multiplexor is needed to select the return data and response from the current active slave.

The slave multiplexer is controlled by a data phase version of the HSEL signal (delayed by one pipeline
stage). This can be generated by registering the HSEL with system-wide HREADY as the enable signal,
as shown in Figure 3.3. In most cases, the functionality of delaying the HSEL is included within the
AHB slave multiplexor, so the system integrator only needs to connect the address phase HSEL to the
AHB slave multiplexor.

There can be more than one address decoder and slave multiplexer in an AHB system. For example,
an AHB system design can be divided into two or more subsystems, and each AHB subsystem can
contain only a part of the memory space. In this case, the address decoders in the subsystems also
need to take account of the HSEL signals from the top-level address decoder.

Figure 3.5: Multiple AHB decoders could be needed if the AHB system is divided into multiple subsystems.

3.2.5 Handling of multiple bus masters
The connections between AHB masters and AHB slaves based on the AMBA 2 Specification can be
viewed as the following diagram: multiple bus masters share the same bus using a master multiplexer,
controlled by a bus arbiter. The return data and responses from bus slaves are also multiplexed using
a slave multiplexer, and feedback to the bus masters.

Bus Master #1 Bus Master #2 Bus Master #3

Master multiplexor Arbiter

AHB
Decoder

Top

Sub-system
AHB

Decoder B

Slave multiplexor

HSEL_B

HSEL_A

AHB Slave B1 AHB Slave B2

Slave
multiplexor

HSEL_B2

HSEL_B1

Sub-system
AHB

Decoder A

AHB Slave
A1

AHB Slave
A2

Slave
multiplexor

HSEL_A2

HSEL_A1

AHB sub-system A AHB sub-system B

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

44

Figure 3.6: AMBA 2 AHB system with two AHB masters and two AHB slaves.

The HBUSREQ (Bus Request) and HGRANT (Bus Granted) handshaking take place before the bus
master is allowed to issue any transfers:

�� A bus master must first assert a bus request (HBUSREQ) to the arbiter, then

�� After arbitration, the arbiter returns the bus granted signal (HGRANT) to one of the bus masters, then

�� The bus master can then generate transfers on the bus.

�� If the HGRANT signal is de-asserted, the bus master must stop issuing new transfers.

This arrangement works for simple systems, but the maximum bus bandwidth is limited. When the
AMBA Design Kit (ADK) product was launched, a new approach called multi-layer AHB was used to
support multiple bus masters.

The AHB Bus Matrix component in the ADK is an AHB interconnect component with multiple bus
ports for connections to bus masters and multiple bus ports for connection to AHB slaves. Potentially,
each bus port for bus slave connection could have multiple bus slaves connected to it by having
additional bus slave multiplexer.

Figure 3.7: System with multiple bus masters using AHB Bus Matrix.

AHB master
#0

AHB master
#1

Arbiter

Master
multiplexer

Slave
multiplexer

AHB slave
#0

AHB slave
#1

Shared
AHB

HBUSREQ

HGRANT

HBUSREQ

HGRANT

Address
decoder

AHB slave
#0

AHB slave
#1

AHB master
#0

AHB master
#1

AHB Bus Matrix

Arbiter

Input
stage

Input
stage

Arbiter

Address
decoder

Address
decoder

45

To resolve the bus access conflict when multiple bus masters try to access to the same bus slave at the
same time, each master port (the port that connects to AHB slaves) has an arbiter. If a transfer from a
bus master is targeting a bus slave, which is accessing by a different bus master, the incoming transfer
is held in the input stage with a buffer. With this arrangement, the HBUSREQ and HGRANT signals
are no longer needed.

The bus matrix design allows different bus masters to access to different bus slaves at the same time,
hence enhance the system bandwidth.

The bus matrix component in AMBA Design Kit is configurable and was enhanced when the Arm
Cortex-M System Design Kit (CMSDK) was developed. In newer IP product development, the AHB Bus
Matrix is now part of the Corstone foundation IP / CoreLink SDK (System Design Kit).

For systems that do not require high data bandwidth, a simplified arrangement similar to the AHB
in AMBA 2 can be used with the AHB Master Multiplexer. The redesigned AHB master multiplexer
component has its internal input stage and arbiter, just like the AHB bus matrix. However, since there
is one downstream AHB, there is no need for an internal address decoder.

Figure 3.8: System with multiple bus masters using AHB Master Multiplexer.

3.3 More details on the AHB protocol
3.3.1 Address phase signals
There are several essential transfer control signals in the address phase. These are HTRANS, HADDR,
HWRITE, and HSIZE.

The HTRANS signal is used to indicate transfer types. Most AHB systems do not need to handle data
transfers 100% of the time. When a bus master does not need to start another transfer immediately,
it can issue an idle transfer. The HTRANS signal in the AHB is used to indicate if the current transfer is
an active transfer or in idle state.

AHB master
#0

AHB master
#1

AHB Master
Multiplexer

AHB Slave
Multiplexer

AHB slave
#0

AHB slave
#1

Shared
AHB

Address
decoder

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

46

Table 3.7: HTRANS encoding.

When a data transfer is needed, the AHB master generates a Non-sequential (NSEQ) or a Sequential
(SEQ) transfer. NSEQ is used in normal transfers or at the beginning of a burst transfer, and SEQ is
used for the remaining part of a burst transfer, indicating that the transfer is a continuation of the
previous one.

Both IDLE and BUSY are non-active transfers. It means that no real data transfer takes place. BUSY
is only used when the bus master has started a burst transfer but is not ready to handle the next
data transfer. In this case, it issues the BUSY transfer between the burst transfers to keep the burst
sequence going, and continues with the next sequential transfer when it is ready.

The HADDR signal is usually 32-bit and specifies the address of the transfer. HWRITE signal indicates
that the transfer is a write transfer if it is set to 1, or if it is set to 0, then the transfer is a read operation.

Table 3.8: HWRITE encoding.

The HSIZE signal is used to indicate the data size to be transferred. Typically, the HSIZE signal is 3-bit
wide, but in most AHB systems only the lowest two bits are used so that you might find some systems
or AHB components with HSIZE of only two bits.

Table 3.9: HSIZE encoding.

HTRANS[1:0] Descriptions

00 IDLE (non-active)

01 BUSY (non-active)

10 Non-Sequential (active)

11 Sequential (active)

HWRITE Descriptions

0 Read operation

1 Write operation

HSIZE[2:0] Size of transfer

000 Byte

001 Half-word

010 Word

011 Double word (64-bit)

100 128-bit

101 256-bit

110 512-bit

111 1024-bit

47

When a bus master generates a transfer, the bus master should ensure that the data being transferred
is aligned. In other words, a half-word transfer should only take place in even memory addresses, and
a word transfer should only take place in addresses divisible by 4. The AHB interface does not support
unaligned transfers; if a bus master needs to access unaligned data, it should split the transfer into
multiple aligned AHB transfers of smaller size.

The Cortex-M processors can generate read and write transfers of byte, half-word, or word size. In
some of the Cortex-M processors like the Cortex-M3 and Cortex-M4, Instruction fetches are always
in word size. For some others like the Cortex-M0+ and Cortex-M23 processors, instruction fetch of a
branch target could be in word or half-word size, depending on the instruction address alignment.

Besides the crucial AHB control signals, there are also optional sideband signals in the AHB interface.
They are helpful for processor systems, for example, providing privilege level information and
supporting burst transfers. However, they might not be present in some AHB systems.

Table 3.10: Additional AHB control signals in the address phase.

In AMBA 2 AHB and AHB Lite, the HPROT signal contains 4 bits, each of them has a different
function:

Table 3.11: HPROT encoding.

Signals Descriptions

HPROT[3:0]/[6:0] Protection information (AHB5 has 7 bits of HPROT, and previous versions of AHB has 4-bits)

HNONSEC Security attribute (available in AHB5 only. This is needed for TrustZone security extension)

HBURST[2:0] Burst transfer information

HMASTLOCK Indicate the transfer sequence is atomic, so bus ownership is locked until this signal is released

HMASTER[3:0] Indicates which bus master issued the current transfer.
In some Cortex-M processors, this signal is used to indicate the transfer types (e.g., whether the transfer is
generated by the debugger). The width of this signal can be customized to fit the system requirement.

HEXCL Exclusive access indication signal. This signal is introduced in AHB5 to support exclusive accesses in Arm
processors. The bus slave response to exclusive access with HEXOKAY, a data phase signal.

HAUSER[x-1:0] This is a user-defined address phase signal introduced in AHB5. Potentially it could be used for the
following: propagation of additional information about the transfer;
parity bits for address phase control signals.

Signal Function When equal 0 When equal 1

HPROT[0] Data/Opcode Instruction fetch Data Access

HPROT[1] Privileged Non-privileged (user) Privileged

HPROT[2] Bufferable The transfer must complete before a
new transfer is issued

Write transfer can be buffered

HPROT[3] Cacheable Data cannot be cached Data can be cached

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

48

When accessing to normal memories (not peripherals), the encoding of the HPROT[3:2] can be used
to indicate cache types:

Table 3.12: Cache type indication with AMBA 2 AHB / AHB Lite.

In AMBA 5 AHB, the cache attribute information is extended, and as a result, the HPROT signal becomes:

Table 3.13: HPROT encoding in AHB5.

The cache type indication with AMBA 5 AHB is shown below:

Table 3.14: Cache type indication with AMBA 5 AHB.

HPROT[3:2]

2’b00 Device (non-bufferable)

2’b01 Device (bufferable)

2’b10 Cacheable memory with Write Through

2’b11 Cacheable memory with Write Back

Signal Function When equal 0 When equal 1

HPROT[0] Data/Opcode Instruction fetch Data Access

HPROT[1] Privileged Non-privileged (user) Privileged

HPROT[2] Bufferable The transfer must complete before
a new transfer is issued

Write transfer can be buffered

HPROT[3] Modifiable Data cannot be cached Data can be cached

HPROT[4] Lookup The transfer is not cached The transfer must be looked up in
the cache

HPROT[5] Allocate No need for cache line allocation Allocate cacheline on cache miss

HPROT[6] Sharable Data is not shared (no need to
maintain data coherency) or transfer
is to a Device (Non-cacheable)

Bus interconnect needs to ensure
data coherency

HPROT[6]
Sharable

HPROT[5]
Allocate

HPROT[4]
Lookup

HPROT[3]
Modifiable

HPROT[2]
Bufferable

Memory Type

0 0 0 0 0 Non bufferable Devices

0 0 0 0 1 Bufferable Device

0 0 0 1 0 Normal Non-cacheable, Non-shareable memory

0 0 or 1 1 1 0 Write Through, Non-shareable memory

0 0 or 1 1 1 1 Write-Back, Non-shareable memory

1 0 0 1 0 Normal Non-cacheable, shareable memory

1 0 or 1 1 1 0 Write Through, shareable memory

1 0 or 1 1 1 1 Write-Back, shareable memory

49

The Cortex-M0 processor does not have a user access level, so HPROT[1] is always 1. Since
Cortex-M0/M0+/M3/M4/M23/M33 processors do not support internal cache, the cacheability
information is often not used.

Another address phase signal is HBURST, which indicates a burst transfer type. Burst transfer can
often improve system performance if the memory device can access data quicker when the accesses
are in sequential orders. If a burst transfer is used, the HBURST signal will indicate the burst transfer
type. AHB supports several types of burst transfers:

�� Single. (Not burst transfer. Each transfer is separated from each other.)

�� Incrementing burst transfer. (The address is incremented by the size of the transfer.)

�� Wrapping burst transfer. For each transfer, the address increments as in an incrementing burst
except when the address reaches the block size boundary of the burst. In this case, the address
wraps round to the beginning of the block size boundary. The block size of the burst can be
determined from the number of beats times the size of each transfer.

Burst transfer sequence is composed of multiple “beats.” Each beat is an AHB transfer with addresses
linked to others inside the burst. Within a burst, the transfer size, direction, and control information of
each transfer must be the same-. Both incrementing and wrapping bursts are supported for 4-beats,
8-beats, and 16-beats transfers. Incremental bursts can also be of unspecified length.

Table 3.15: HBURST encoding.

Wrapping burst is useful in cache controller designs. For example, when a processor requests to
read word data in address 0x1008, a cache controller for cache line size of 4 words might want to
fetch address 0x1000, 0x1004, 0x1008 and 0x100C into the cache memory. In this case, it can use
a 4-beats incrementing burst from address 0x1000, or a wrapping burst from address 0x1008. If
wrapping burst is used, the address wraps around in a block size boundary, which is four times word
size, or four words. Therefore, the address wraps around to 0x1000 after the transfer to 0x100C.

HBURST[2:0] Burst Type Descriptions

000 Single Single transfer (not burst)

001 INCR Incrementing burst of unspecified length

010 WRAP4 Wrapping burst with 4 beats

011 INCR4 Incrementing burst with 4 beats

100 WRAP8 Wrapping burst with 8 beats

101 INCR8 Incrementing burst with 8 beats

110 WRAP16 Wrapping burst with 16 beats

110 INCR16 Incrementing burst with 16 beats

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

50

Figure 3.9: Incrementing burst versus wrapping burst (word size).

The wrapping burst transfers the same data as the incrementing burst, but it has the additional
advantage that the data needed by the processor can be transferred first, hence, reducing the waiting
time in the processor. Wrapping burst is commonly used by cache memory line fill. It allows the
processor core to access the required data as soon as possible while allowing the rest of the data in
the cache line to be cached. Unlike wrapping burst, an incrementing burst from address 0x1008 will
not fetch the data in 0x1000 and 0x1004, so it is not suitable for caching because the data for the
cache line is not complete.

Burst transfers can be carried out in different data sizes (e.g., byte, halfword, word, etc.). For each beat,
the address calculation should be adjusted by the size of the transfer data. There is a restriction in
burst generation: An AHB burst must not cross a 1K byte address boundary. This is because:

�� Easier design of AHB device: to optimize the performance for burst transfers, both AHB masters
and AHB slaves might need to have internal counters to monitor the burst operation and possibly
for advance address generation. By limiting the burst transfers to within a 1K byte address
boundary, a 10-bit counter will be sufficient for all possible burst transfers, even if third parties
develop some of the blocks in the system.

�� It prevents a burst from going across multiple AHB slaves. If a burst crosses a device memory
boundary, the second device receiving the burst will have a SEQ transfer as its first transfer, which
violates the AHB protocol.

HMASTLOCK is used to indicate the bus ownership should be locked for an atomic access sequence.
When HMASTLOCK is set, the bus infrastructure (e.g., arbiter) must not switch the bus ownership
until the HMASTLOCK is released. This is commonly used for semaphore operations, where a memory
location (lock flag) is used to indicate a resource is locked by a process or processor. When a processor
needs to lock a resource, it carries out a locked transfer sequence that reads the lock flag and then
updates it. Since the read-modify-write transfers are locked (atomic), another bus master cannot
change the lock flag between the two transfers, and hence this prevents race conditions.

Apart from the Cortex-M3 and Cortex-M4 processors, most of the Cortex-M processors do not use
HMASTLOCK signal. In Cortex-M3 and Cortex-M4 processors, HMASTLOCK is used for atomic
read-modify-write when a bit-band write operation take place. For other Cortex-M processors, if the
processor top-level does not have HMASTLOCK and connects to a standard AHB component that has
HMASTLOCK. The unused signal can be tied to 0.

0x1000 0x1004 0x1008 0x100C

4 beats incrementing
burst from 0x1000

4 beats wrapping burst
from 0x1008

0x1000 0x1004 0x1008 0x100C

4 beats incrementing
burst from 0x1008

0x1000 0x1004 0x1008 0x100C 0x1010 0x1014

51

In a system with multiple bus masters, the arbiter or master multiplexer can output a signal called
HMASTER. This is used as an ID value for AHB slaves. In most cases, the AHB slave does not need
to know which bus master is accessing it. However, in a few cases, a peripheral might need to have
different behaviors when accessed by different bus masters. In the Cortex-M processors, often the
HMASTER signal is used to indicate if the transfer is generated by software running on the processor
or by debugger connected to the processor.

3.3.2 Data phase signals
There are several AHB data phase signals. For signals from bus masters to bus slaves:

Table 3.16: Additional AHB data phase signals from bus masters to bus slaves.

Table 3.17: Additional AHB data phase signals from bus slaves to bus masters.

HRDATA and HWDATA
Data buses on AHB systems are usually 32-bit or 64-bit. For Cortex-M processors with AHB interface,
the data connections on the AHB are 32-bit only. Aside from word transfers, AHB also allows transfers
of byte and half-word data. The position of the data on the bus depends on the transfer size as well as
the address. For example, for byte transfers, the data position on the bus is:

Figure 3.10: Data position in HWDATA/HRDATA during byte transfers.

Signals Descriptions

HWDATA[n-1:0] Write data. Data bus width “n” is typically 32, but can also be 64-bit.

HWUSER[x-1:0] This is a user-defined data phase signal introduced in AHB5 connecting from the bus master to bus slaves.
Potentially this can be used for: Parity bits for write data.

Signals Descriptions

HRDATA[n-1:0] Read data. Data bus width “n” is typically 32, but can also be 64-bit

HRUSER[x-1:0] This is a user-defined data phase signal introduced in AHB5 connect from bus slaves to bus masters.
Potentially this can be used for:
- Parity bits for read data.

HRESP / HRESP[1:0] Bus response type. In AHB Lite and AHB5, this signal is single bit. In AMBA 2 AHB, this is two bits

HREADY / HREADYOUT HREADYOUT signals are generated from bus slaves. After the AHB slave multiplexer merges the responses
from bus slaves, the result HREADY is returned to all the bus slaves in the same AHB segment to indicate
the end of the current bus phase.

HEXOKAY Exclusive access is okay. This was introduced in AHB5. If the bus transfer is indicated as exclusive access.

Address [31:24] [23:16] [15:8] [7:0]

HRDATA / HWDATA

0x00000004
0x00000005
0x00000006
0x00000007

0x00000000
0x00000001
0x00000002
0x00000003

Data

Data

Data

Data

Data

Data

Data

Data

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

52

Similarly, if the transfer is in half-word size, the data appears on the data bus as:

Figure 3.11: Data position in HWDATA/HRDATA during halfword transfers.

For word transfers, the whole 32-bit is used.

AMBA 2 AHB, AHB LITE and AHB 5 support aligned transfers only. Unaligned transfers are not
supported (except for the ARM1136 processor, which has extra sideband signals to support unaligned
transfers). Aligned transfers have address values which are a multiple of the transfer size. For example,
word transfer addresses have address values that are multiples of 4, and half-word transfers have
address values that are multiples of 2. Byte transfers are always aligned.

HRESP
The HRESP signals are responses from the AHB slaves. In AHB for AMBA 2, these can be OKAY,
ERROR, RETRY, or SPLIT. Hence the HRESP is two-bit wide. For AHB LITE and AHB5, they can only
be OKAY or ERROR and are one bit wide.

When an AHB slave receives a transfer, it should carry out the transfer as requested by the AHB
master. If needed, it can insert wait states during the data phase. In normal circumstances, an AHB
slave should generate an OKAY response status, indicated by zeros in HRESP[1:0].

Table 3.18: HRESP encoding.

The OKAY response can be a single-cycle (no wait state is needed), but other responses are two
cycles, with the possibility of additional wait states before the response is asserted. For a simple case
of an AHB slave read, followed by a write, and then idle, it can look like:

Address [31:24] [23:16] [15:8] [7:0]

HRDATA / HWDATA

0x00000004
0x00000006

0x00000000
0x00000002

Data

Data

Data

Data

0x0000000C
0x0000000E

0x00000008
0x0000000A

Data

Data

Data

Data

HRESP[1:0] Response Description

00 OKAY Transfer carried out successfully

01 ERROR An error occurred

10 RETRY The AHB slave cannot carry out the transfer immediately. The AHB master should retry the transfer.

11 SPLIT The AHB slave cannot carry out the transfer immediately. The AHB master can drop bus ownership,
and when the AHB slave is ready, it can request bus ownership to complete the transfer.

53

Figure 3.12: AHB Slave interface – a read with 2 wait states, followed by a write with 1 wait state.

Note that the AHB slave should not start to process a transfer on the AHB until it sees that HREADY is
high. In the Figure 3.12, the AHB slave does not start to process the transfer request of a second transfer
until HREADY is high (fourth cycle), and starts the data phase of the second transfer from the fifth cycle.

In case the slave cannot handle the transfer due to an error condition, it can respond with ERROR on
the HRESP signal. The error response must be two cycles wide. Using the previous example, if both
transfers reply with error response, the waveform will look like:

Figure 3.13: AHB Slave interface – a read with 2 wait states with error response, followed by a write with 1 wait state and error response.

HCLK

HADDR

HSEL

HTRANS

HREADY

HWRITE

HSIZE

Other address
phase controls

Address phase Read data phase

Address phase Write data phase

Transfer #1

Transfer #2

HWDATA

HRESP

HRDATA

Address #1 Address #2

NSEQ NSEQ IDLE IDLE

Size #1 Size #2

Write data #2

Read data #1 will not be used

ERROR ERROR

Controls #1 Controls #2

OKAY

Master
to slave

Slave to
master OKAY

HCLK

HADDR

HSEL

HTRANS

HREADY

HWRITE

HSIZE

Other address
phase controls

Address phase Read data phase

Address phase Write data phase

Transfer #1

Transfer #2

HWDATA

HRESP

HRDATA

Address #1 Address #2

NSEQ NSEQ IDLE IDLE

Size #1 Size #2

Write data #2

Read data #1

OKAY OKAY

Controls #1 Controls #2

OKAY

Master
to slave

Slave to
master

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

54

An error response must be two cycles, but additional wait states with OKAY responses can be added
before the error response. The minimum data phase for an error response is two cycles. Having a
single-cycle error response is illegal.

Upon receiving the first cycle of the error responses (when HREADY is still low), the bus master can
choose to continue the announced transfer in the next cycle, or cancel the announced transfer by
putting HTRANS as IDLE. The behavior might depend on which processor you are using.

An AHB slave must respond OKAY in the next cycle with no wait state if the HTRANS is IDLE or
BUSY, or if HSEL is not active.

RETRY and SPLIT responses have the same waveform as an ERROR response. However, they are
used when the AHB slave is not ready to complete the transfer in a short time. They ask the bus
master to drop the current transfer and retry it later. By doing this, and if the system contains multiple
bus masters, they provide a chance for other bus masters to take ownership of the bus to prevent
bandwidth from being wasted.

On the bus master side, RETRY and SPLIT are handled differently. When a bus master receives the
first cycle RETRY response, it will cancel the current announced transfer by replacing it with an IDLE
transfer, and then retry the transfer that the slave could not process from the last attempt.

On the other hand, when a bus master receives the first cycle of a SPLIT response, it cancels the
currently announced transfer by replacing it with an IDLE transfer, at the same time dropping the
HBUSREQ to bus arbiter to allow the bus ownership to be switched over. When the AHB slave is
ready to receive the transfer, it uses a separate sideband signal called HSPLIT to alert the arbiter to
restore bus ownership to the bus master, which can then issue the transfer again.

Due to the complexity of the operation, SPLIT response and HSPLIT signals are rarely used. Starting from
2001, the multi-layer AHB approach was developed and effectively made SPLIT and RETRY mechanisms
obsolete because the new solution is easier to use and can prevent a single transfer from slowing down
the rest of the system, while at the same time allowing a higher system bandwidth to be achieved.

Some Cortex-M processors like Cortex-M3 and Cortex-M4 have two-bits wide HRESP but are designed
for AHB Lite. This is because the processor was released before the AHB Lite specification was
officialized. When the AHB LITE system is connected to such a bus master, for example, the Cortex-M3
processor, it is possible that the HRESP from the AHB slave is only 1-bit wide (the HRESP[1] signal is
not implemented). In this case, only the HRESP[0] needs to be connected, and HRESP[1] can be tied 0
since HRESP[1] should never be asserted in an AHB LITE system.

HEXOKAY
HEXOKAY is designed to support exclusive access operations. It was introduced in AMBA 5 AHB
and is generated by a global exclusive access monitor in the bus system. Exclusive access sequences
contain an exclusive load and an exclusive store of the same data. The exclusive access monitor
detects if the same data might have been modified by another bus master between the load and store.
If there is a potential access conflict, the monitor blocks the store operation and returns an exclusive
fail status using HEXOKAY.

55

When an exclusive store occurs, HEXOKAY is asserted at the same cycle as HREADY if the global
exclusive access monitor does not detect an access conflict. Otherwise, the HEXOKAY remains low
(an exclusive access conflict might result if the bus slave does not support exclusive accesses).

HEXOKAY must not be asserted in the same cycle as HRESP is asserted (i.e., ERROR response).
More information on exclusive accesses is contained in Section 3.4.

3.3.3 Legacy arbiter handshake signals
If using AMBA 2 AHB with multiple AHB masters, you might need to deal with the legacy arbiter
handshaking signals. (In general, multi-layer AHB is preferred for performance reasons and can be
used with AHB bus masters with AMBA 2 AHB interface).

The bus arbiter solution requires each bus master to have a HBUSREQ (Bus Request) output and a
HGRANT (Bus Granted) signal. Optionally the bus masters can also provide a HLOCK signal to indicate
they need to carry out a locked transfer. All these signals are connected to the bus arbiter.

Figure 3.14: Example of arbiter with two bus masters.

Basically, the arbitration phase is a step ahead of the address phase. If the address phase is multi-
cycled, the arbiter updates the arbitration continuously. At the end of a transfer phase, the arbitration
result is captured by the register and becomes the HMASTER signal, which indicates which bus master
is the current owner of the bus. Since the bus masters will know the arbitration result one cycle earlier
based on HGRANT, they can prepare for the switching and start outputting their transfers on the AHB
as soon as HMASTER switch to route the bus master’s outputs to the AHB slaves.

Bus master #1 Bus master #2

Arbiter

HWDATA

Multiplexer

HBUSREQHBUSREQ

HLOCK HLOCK

HGRANTHGRANT

Register

Multiplexer

Register

Mux control

en

enAddress phase
control

Arbitration
phase

Address phase

Address phase
control

Address phase
control

Data phase

AHB slaves

HREADY

HMASTER

Address phase
control

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

56

Figure 3.15: Example waveform of bus ownership switching.

In the example in Figure 3.15, two bus masters share one AHB. In the waveform, bus master #A
continuously requests bus accesses, and during transfer accesses from master A, master B requests
the bus as well. In this example, bus master B has higher priority, so the arbiter switches the bus grant
signal to allow bus master B to gain access to the bus when the current transfer phase is completed.
When HREADY goes high, and HGRANT #B is high, this indicates that the current transfer phase has
been completed and the bus master is given bus ownership; bus master B can then output its transfer
control signals to the bus in the next cycle.

The control signals generated from the bus masters can be multiplexed to AHB slaves using the
HMASTER signal. The only signal that must be handled differently is the HWDATA. This is a data phase
signal; as a result, a further registration of HMASTER is needed to control the multiplexing of HWDATA.

Various arbitration schemes can be used for the arbiter. The most common arrangements are ‘fix
priority’ or ‘round robin.’ More complex arrangements which support a mixture of multiple schemes
can also be found. The arbitration process should usually also consider the type of transfer currently
being applied to the AHB slave. If a burst transfer is taking place, the arbiter should wait until the
burst is completed before switching the bus ownership. In addition, if one of the bus masters supports
locked transfers (e.g., the ARM7TDMI processor generates lock transfers when a SWAP instruction
is executed), the bus arbiter must also support the HLOCK signals from the bus master and must not
switch the bus ownership if the processor is generating a locked transfer.

With bus arbiter solutions, if a bus slave needs a longer time to process a transfer, the bandwidth of
the system can be badly impacted if the bus slave generates a long wait state. To solve this problem,
the AHB slave can generate a RETRY response. When the bus master receives such response, it will
retry the same transfer again. The retry process can repeat several times before the bus slave is finally
able to complete the transfer. During this process, if another bus master requires bus access, the bus
arbiter can switch the bus ownership so that the other transfer can be carried out.

HCLK

HBUSREQ#A

HGRANT#A

HBUSREQ#B

HGRANT#B

HREADY

HMASTER A A B A

HADDR A1 A2 B1 A

HWDATA A2A1 B1

HTRANS_B NSEQ

HTRANS_A NSEQ NSEQ IDLE NSEQ

IDLEIDLE IDLE

Bus Master B assert bus request
and is granted by arbiter

Bus Master B de-asserted bus
request and bus grant switch back

to bus master A

When current transfer phase is
completed, HMASTER is updated to

new value

57

The SPLIT response is very similar to the RETRY response, except that the bus master should drop the
bus request and wait until the AHB slave responds with another signal HSPLIT.

3.4 Exclusive access operations
3.4.1 Introduction to exclusive accesses
Exclusive accesses are important for OS semaphore operations because they can detect access conflicts
in the handling of read-modify-right (RMW) sequences. RMW access conflicts can happen when:

�� A processor system is running an OS, and a context switch happened at the middle of a RMW
sequence;

�� One of the processors in a multiple processor system executes the RMW sequence, and another
processor accesses the same memory location.

To handle exclusive accesses, several areas of support are needed:

1. Exclusive access instructions - In Cortex processors (except Armv6-M processors), exclusive access
instructions (e.g., LDREX, STREX) are available to support exclusive accesses.

2. Exclusive access signals on the bus interface – exclusive access signals are introduced in AHB5.
Previous Cortex-M processors (Cortex-M3/M4/M7) use non-standardized exclusive access
sideband signals to support exclusive accesses.

3. System-level – for multi-processor systems, a bus-level global exclusive access monitor is needed to
detect access conflicts between multiple bus masters. Potentially, multiple global exclusive access
monitors could be used to detect access conflicts for different address ranges.

First, let us look at the access conflicts issue. Semaphores are needed in resource management in OS,
for example, to ensure that different application threads/tasks won’t try to access the same hardware
resource (e.g., a DMA channel) at the same time. The OS uses data variables (e.g., a data variable can
be used to indicate if a resource is locked) in memory to keep track of resource allocation, and the
application thread can request the resource by calling APIs which have access to the semaphore data.

Take the case of semaphore data (P), which indicates that a DMA channel is allocated. An application
task X calls an API to set this data to 1:

�� Read P to see if the value is 0. If the value is 1, then the DMA channel is already allocated and
return with fail status;

�� Value of P is 0 (resource is free), write 1 to it to lock the resource ownership.

If the OS context switch happens between the read and the write operation, then another task Y can
execute the same RMW sequence to set P to 1, and when the OS returns to task X, it resumes the
RMW operation and writes 1 to the semaphore data. Now both task X and Y think that they have
allocated the DMA channel resource.

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

58

Figure 3.16: Semaphore access conflict with a simple read-modify-write sequence.

The same problem can happen between an application thread and an interrupt handler, or between
two different processors. In the case of two processors, the following sequence can occur:

�� Processor X read semaphore data P, got 0

�� Processor Y read semaphore data P, got 0

�� Processor X write 1 to P

�� Processor Y write 1 to P

Now both threads running on processor X and Y believe that they have secured the DMA channel resource.

To solve this problem, legacy processors like Arm7TDMI use locked transfers to ensure that bus
interconnect does not switch bus ownership in the middle of RMW. However, lock transfers cannot be
implemented in high-speed bus protocols that use separated read and write bus channels. As a result,
exclusive accesses were introduced in Armv6 architecture.

A simple exclusive access sequence is as follows:

�� Processor X read semaphore data P with an exclusive load instruction;

�� If the value of P is 0, Processor X write 1 to P with an exclusive store instruction;

�� The exclusive store instruction returns a success or fail status. If the status is success, then the
application task can continue the operation. If the status is fail, then it means there is a potential
access conflict, and it needs to restart the RMW sequence. The store operation is blocked if the
exclusive store returns fail status.

Read
semaphore

data

Write
semaphore

data

Hardware
resource

avaliable?

Yes

NoExit.
Retry
later

Between the read and
write operations, a

Context switch /
Interrupt / other bus

master updated
semaphore data during

RMW sequenceModify
semaphore

data

Change(s) made by other tasks /
other processor(s) is lost, and

the conflict is undetected

59

Figure 3.17: Concept of exclusive accesses.

To determine the return status, the system contains two exclusive access monitors:

�� Local exclusive access monitor – This hardware is inside the processor, and it triggers exclusive fail if
there has been a context switch (including exception entry/exit);

�� Global exclusive access monitor – This hardware is at the bus level, and it triggers exclusive fail if
another bus master has access to the address which is marked for exclusive access (when exclusive
load is made).

Figure 3.18: Local and global exclusive access monitors.

Processor #1 Processor #2

Bus interconnect

Global
exclusive

access monitor

SRAM
Semaphore data

Detect access conflicts
between multiple bus masters
using HMASTER, HADDR and

HEXCL. Returns exclusive
access status using HEXOKAY.

Local monitor
Detect context switches

(exception events)

Write
semaphore
data with

exclusive store

Hardware
resource

avaliable?

Yes

NoExit.
Retry
later

Between the read and
write operations, a

Context switch /
Interrupt / other bus

master updated
semaphore data during

RMW sequence

Read
semaphore
data with

exclusive read

Modify
semaphore

data

Exclusive store
succeed?

Yes

No

Exclusive store is blocked if
there has been a potential

access conflict. This is detected
either by local or global

exclusive access monitor

Software need to repeat the
RMW sequence if exclusive
store returns failed status

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

60

When the processor executes an exclusive store:

�� If the local exclusive access monitor returns fail status – the exclusive store is blocked before it gets
to the bus interface level, so it won’t be carried out.

�� If the global exclusive access monitor returns fail status - the exclusive store is blocked by the global
exclusive store monitor, so the memory won’t get updated.

�� If either local or global exclusive access monitor return fail status, the write operation will not be
carried out, and the processor should retry the RMW sequence.

3.4.2 AHB5 exclusive access support
To support exclusive access in AHB5, the following signals are needed by the global exclusive access
monitor in addition to standard AHB Lite signals:

�� HEXCL

�� HEXOKAY

�� HMASTER

To generate exclusive access responses, the global exclusive access monitor contains at least one Finite
State Machine (FSM) and one tag register (it can contain multiples of these components).

Figure 3.19: Global Exclusive Access Monitor.

The address tag in the monitor does not necessarily record all bits of the address value. Typically, the
monitor can drop the lowest bits of the address as the exclusive fail information can be speculative:

�� The data might be written with the same value.

�� Nearby data could have been accessed by a different bus master.

open state exclusive state

Read operation with
HEXCL asserted

HMASTER and partial
HADDR stored in

monitor

Reset
Write to same ERG

by other bus masters

Exclusive store (HEXCL==1) by same bus
master in same ERG, response with

HEXOKAY

Exclusive store
(HEXCL==1), response

with !HEXOKAY
(exclusive failed) and
block transfer from

reaching downstream
AHB

Exclusive load
(HEXCL==1), update

stored HMASTER and
HADDR

Global exclusive access
monitor state machine

61

There is no harm (except the cost of extra execution cycles and power) if the global exclusive access monitor
returns exclusive fail status in these cases as the software just needs to repeat the RMW sequence.

The minimum region that can be tagged for exclusive access is called the Exclusive Reservation
Granule (ERG). There can be different ERG sizes in different platforms, ranging from 8-bytes to
2048-bytes. It is common for Arm systems to use a 128 bytes ERG, it means bit 6 down to 0 are not
stored in the address tags in the global exclusive access monitors.

3.4.3 Mapping of Cortex-M3/M4/M7 exclusive access signals to AHB5
The Cortex-M3, Cortex-M4 and Cortex-M71 processors support exclusive access instructions but are
designed before AHB5 specification was available. As a result, these processors use a non-standard
exclusive access signal definition for exclusive access operations:

�� EXREQ – same as HEXCL, an address phase signal to indicate exclusive load/store accesses.

�� EXRESP – exclusive fail status in the data phase (assert at the end of the data phase - opposite
polarity compared to HEXOKAY).

To use Cortex-M3/M4/M7 processor with AHB5 system, simple glue logic is needed to convert
between EXRESP and HEXOKAY:

Figure 3.20: Glue logic for using Cortex-M3/M4/M7 processors exclusive access signals with AHB5.

Similarly, glue logic is needed when connecting Cortex-M23/M33 processors to bus slaves that use
EXREQ and EXRESP.

Figure 3.21: Glue logic for using bus slaves with legacy exclusive access signals in AHB5 systems.

1 Note: The Cortex-M7 processor uses AHB Lite for an optional peripheral AHB part of the peripheral region.

Cortex-M3/M4/M7

EXREQx HEXCL

D type
flip-flop

D Q

En

HREADY

EXRESPx HEXOKAY

HREADY

Cortex-M23/M33

HEXCL

HEXOKAY

EXREQ

D type
flip-flop

D Q

En

HREADYHREADY
EXRESP
HRESP

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

62

3.5 AHB5 TrustZone support
TrustZone support is one of the key new features of AMBA 5 AHB. The HNONSEC signal is an address
phase signal that indicates the security attribute of the transfer:

�� If HNONSEC is 1 (Non-secure), the bus interconnect must block the transfer if the address of the
transfer is pointing to a Secure location.

�� If HNONSEC is 0 (Secure), the bus master has Secure access privilege.

Please note that in Armv8-M, when a processor is in Secure state, access to Non-secure address is
indicated as Non-secure (HNONSEC==1).

A TrustZone capable Cortex-M23/M33 processor system should have:

�� Secure and Non-secure program spaces.

�� Secure and Non-secure RAM spaces.

�� Secure and Non-secure peripherals.

The definitions of Secure and Non-secure address ranges are handled by a Security Attribution Unit
(SAU) inside the processor and Implementation Defined Attribution Unit (IDAU) which is tightly
coupled to the processor(s). SAU is programmable, and IDAU is system-specific, in some cases, even
the IDAU could be programmable.

To enable a high level of flexibility, Arm Corstone foundation IP / CoreLink SDK-200 included several
bus components for TrustZone security management:

�� Memory Protection Controller (MPC): for the partitioning of a memory block into Secure and Non-
secure address spaces.

�� Peripheral Protection Controller (PPC): for assigning bus peripherals into Secure and Non-secure domains.

�� Master security controller: An AHB5 bus wrapper for legacy bus masters that do not support
TrustZone. This handles the blocking of Non-secure transfers to Secure addresses and generation of
correct HNONSEC signals.

The details of the TrustZone system design is beyond the scope of this book. To help system designers,
Arm provides a document called Trusted Based System Architecture for Armv8-M (TBSA-M) which
include guidelines on best practices, including many areas beyond bus system designs. This document
is a part of the Arm Platform Security Architecture (PSA). For more information, please visit: https://
developer.arm.com/products/architecture/platform-security-architecture

63

Please note that TrustZone support is optional on the Cortex-M23 and Cortex-M33 processors. So, it
is perfectly fine to use Cortex-M23 and Cortex-M33 on a system without TrustZone.

3.6 Overview of APB
3.6.1 Introduction to the APB bus system
APB is a simple bus mainly targeted for peripherals connections. It was introduced as part of the
AMBA 2 specification, and the functionalities have been extended in AMBA 3 and AMBA 4 to allow
wait states, error responses and additional transfer attributes (including TrustZone support). Most
APB systems are 32-bit. Although the bus protocol does not have a bus width limitation, the common
practice for Arm-based systems is to use a 32-bit peripheral bus.

Although it is possible to directly connect a peripheral to the AHB, separating peripheral connections
using APB has various advantages:

1. Many system-on-chip designs contain large numbers of peripherals. If they are connected to the
AHB system bus, they could reduce the maximum frequency of the system due to high signal fan
out and complex address decoding logic. Grouping peripheral connections in the APB can reduce
the performance impact on the AHB.

2. A peripheral subsystem can run at a different clock frequency, or be powered down without
affecting AHB.

3. APB interfaces use a simpler bus protocol, which simplifies the peripheral designs as well as
reducing the verification effort.

4. Most peripherals designed for traditional processors can be connected to APB easily as APB
transfers are not pipelined.

An APB system operates with a clock signal called PCLK. This signal is common to bus master (usually
an AHB to APB Bridge), bus slaves and the bus infrastructure blocks. All registers on the APB trigger
at rising edges of PCLK. There is also an active-low reset signal called PRESETn. When this signal is
low, it resets the APB system immediately (asynchronous reset). This allows a system to be reset even
if the clock is stopped. Like the reset signal in AHB (HRESETn), the PRESETn signal itself should be
synchronized to PCLK so that race conditions can be avoided.

In most simple systems with both AHB and APB, PCLK is from the same clock source as HCLK, and
PRESETn is from the same reset source as HRESETn. However, there are also systems that use separate
HCLK and PCLK frequencies. In that case, the AHB to APB bus bridge design will need to be able to
handle the data transfers across different clock frequencies or different clock domains.

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

64

3.6.2 APB signals and connection
For a typical APB system, you can find most of the following signals:

Table 3.19: Typical APB signals.

There are different versions of APB specification:

Table 3.20: Various versions of APB specification.

Normally, the APB only occupies a small part of the memory space. As a result, the address bus of
the APB system is normally less than 32-bit. There is no transfer size control on APB. All transfers are
assumed to be 32-bit, and usually, the two LSB (bit 1 and bit 0) of the PADDR are not used because
a word transfer on APB must be aligned.

In most cases, an APB system has a bus bridge as the bus master that connects the APB to the main
processor bus. In addition, an APB slave multiplexer and an address decoder are needed, which is
sometimes a combined unit.

AMBA version Document Features and enhancements

AMBA 2 AMBA Specification 2.0 32-bit read/write operations

AMBA 3 AMBA APB Protocol version 1.0 Added waitstate (PREADY) and error response (PSLVERR)

AMBA 4 AMBA APB Protocol version 2.0 Added Protection information (PPROT[2:0] and write byte strobe
(PSTRB)

Signals Direction Descriptions

PCLK Clock source g all APB blocks Common clock signal

PRESETn Reset source g all APB blocks Common active-low reset signal

PSEL Address decoder g Slave Device select

PADDR[n:0] Master g Slave Address bus (see text below regarding bus width)

PENABLE Master g Slave Transfer control

PWRITE Master g Slave Write control (1=Write, 0=Read)

PPROT[2:0] Master g Slave Transfer Protection control (AMBA 4)

PSTRB[n-1:0] Master g Slave Byte strobe for write operations (AMBA 4)

PWDATA[31:0] Master g Slave Write data

PRDATA[31:0] Master f Slave Read Data

PSLVERR Master f Slave Slave response (AMBA 3 and onwards)

PREADY Master f Slave Slave ready (transfer completed, AMBA 3 and onwards)

65

Figure 3.22: An example APB subsystem.

Unlike AHB, APB operations are not pipelined. In AMBA 2, APB transfers must be two cycles. For read
operations, the read data needs to be valid - at least at the end of the second clock cycle.

Figure 3.23: Simple APB read for AMBA 2.

PCLK

PSEL

Read transfer

PADDR Address

PENABLE

PWDATA

ValidPRDATA

PWRITE

AHB to APB
bridgeAHB

Address
Decoder

APB Slave
MUX

APB Slave
#1

APB Slave
#2

APB Slave
#3

AddressHSEL

PSEL (for each
slave)

Control signals & write data

Read data & optional
Response signals (AMBA

3.0 or later)

Read data & optional
Response signals

(AMBA 3.0 or later)

APB Master

Combined APB
salve MUX with
address decoder

PSEL

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

66

For write transfers in APB for AMBA 2, the write data from APB master must be valid for the two
clock cycles off the transfer.

Figure 3.24: Simple APB write for AMBA 2.

During a write transfer on APB, the actual write operation in the slave could happen either in the
first clock cycle or in the second cycle. This is implementation-defined. Therefore, the APB master
must ensure that the write data is valid for both clock cycles. There can be any number of clock cycles
between two transfers on APB.

With AMBA 3, each APB slave can extend a transfer by de-asserting the PREADY output signal or feedback
with an error response by the PSLVERR (Peripheral Slave Error) signal. For example, if an APB slave needs 4
clock cycles to complete a read transfer (3 wait states), the read operation waveform will be like:

Figure 3.25: APB read for AMBA 3 with 3 wait states.

The end of the read transfer is indicated by the assertion of PREADY. The minimum number of cycles
for the APB transfer is two cycles (same as AMBA 2), and the value of PREADY is ignored in the first

PCLK

PSEL

Read transfer

PADDR Address

PENABLE

PWDATA

ValidPRDATA

PWRITE

PREADY

PSLVERR

PCLK

PSEL

Write transfer

PADDR Address

PENABLE

PWDATA Valid

PRDATA

PWRITE

67

cycle of the transfer so that even if its value is logic 1, the transfer still takes at least two cycles. In
the previous example, the AHB slave responds with OKAY (indicated by logic zero on PSLVERR when
PREADY is one). If an APB slave response with an error response, the waveform would be:

Figure 3.26: APB read for AMBA 3 with 3 wait states and error response.

When an error response is generated, the read data from the AHB slave might not contain any useful
information and could be discarded. The value of PSLVERR is only valid when PREADY is high and not in
the first cycle of the transfer. For example, if PSLVERR and PREADY are both high in the first cycle of the
transfer, it is not considered as an error response as an APB transfer must be at least two clock cycles.

The waveform for APB writes in AMBA 3 are very similar. For write operations with an okay response,
the waveform would be like:

Figure 3.27: APB write for AMBA 3 with 3 wait states.

PCLK

PSEL

Read transfer

PADDR Address

PENABLE

PWDATA

PRDATA

PWRITE

PREADY

PSLVERR Error

PCLK

PSEL

Write transfer

PADDR Address

PENABLE

PWDATA

PRDATA

PWRITE

PREADY

PSLVERR

Valid

Chapter 3 | AMBA, AHB, and APB

System-on-Chip Design with Arm® Cortex®-M processors

68

And for write with error response, the waveform would be like:

Figure 3.28: APB write for AMBA 3 with 3 wait states and error response.

3.6.3 Additional signals in APB protocol v2.0
The APB v2 in AMBA 4 added the PPROT and PSTRB signals.

PPROT is similar to HPROT in AHB and is asserted throughout the whole transfer. However, it is only
3-bits wide.

Table 3.21: PPROT encoding.

Please note, unlike AHB5, the TrustZone security attribute is part of PPROT instead of a separate signal.

AMBA 4 APBv2 also introduces byte strobe signals for write operations. For a 32-bit APB, the PSTRB
signal is 4 bits – one bit per byte lane. It is also asserted for the whole transfer.

Figure 3.29: Byte lane mapping of PSTRB signal.

The PSTRB signal is active high and is used for write-operations only. During read operations, the
PSTRB signal is ignored by the bus slave, and the whole 32-bit word is read.

Signal Function When equal 0 When equal 1

PPROT[0] Privileged Non-privileged (user) Privileged

PPROT[1] Non-secure Secure access Non-secure access

PPROT[2] Data Data access Instruction access

PSTRB[0]PSTRB[1]PSTRB[2]PSTRB[3]
0781516232431

32-bit

PCLK

PSEL

Write transfer

PADDR Address

PENABLE

PWDATA

PRDATA

PWRITE

PREADY

PSLVERR

Valid

Error

69

3.6.4 Data values on APB
Most APB systems are 32-bit. Since the bus protocol does not include transfer size, all transfers
are assumed to be the maximum size (i.e., 32-bit) except when PSTRB signals are used during write
operations; even sometimes only a small part of the data bus is actually used (e.g., when accessing a
peripheral with 8-bit data port). The transfer address should also be aligned to word size boundaries.

During write transfers, an APB slave can sample and register the write data at any cycle within
the transfer. It is common for APB slaves to sample the write data at the last cycle of the transfer,
especially in APB devices for AMBA 2. However, it is also perfectly acceptable to sample the write
data at the first cycle of the write transfer because the APB master must provide valid write data to
APB slaves in even in the first clock cycle.

For read transfer, the APB master should only read the return read data value at the last cycle or (when
PREADY is 1). If an APB slave returns an error response, the bus master should discard the read data.

3.6.5 Mixing different versions of APB components
It is possible to connect APB slave designed for AMBA 2 to an APB master for AMBA 3. In this case,
the PREADY can be tied to one and PSLVERR tied to zero. However, if an APB slave is designed for
AMBA 3 and requires wait state or error response support, it cannot be used with an APB master
designed with the AMBA 2 specification.

If an AMBA 4 APB master (APBv2) is used, then the suitability of using AMBA 2/3 slaves is dependent
on application – if there is a need to support protection information or byte strobe, then AMBA 2/3
APB slaves must be modified to support AMBA 4 APB functionality.

An AMBA 2 APB master (e.g., an AHB to APB bridge) cannot support APB slaves designed for AMBA
3/4 as it cannot handle wait states.

An AMBA 3 APB master might be able to support an APB slave designed for AMBA 4 (APBv2),
providing that the bus slave only needs 32-bit write operations (no need to support byte strobe
signals). In this case, the PSTRB signals can be tied to PWRITE so that all byte strobes are asserted for
all write operations.

Chapter 3 | AMBA, AHB, and APB

Building simple bus
systems for Cortex-M
processors

CHAPTER
4

System-on-Chip Design with Arm® Cortex®-M processors

72

4.1 Introduction to the basics of bus design
In this chapter, we will look into the basics of bus system designs for the Cortex-M0, Cortex-M0+,
Cortex-M1, and Cortex-M3/M4 processors. The bus system links the processor to the rest of the
system design, and there are several general principles to be aware of:

�� For processors that support the Harvard bus architecture, design the bus system to enable
concurrent instruction and data accesses.

�� Use default slaves to detect access to invalid addresses – this enables bus error to be triggered, and
software to handle it when something has gone wrong.

�� In most of the earlier Cortex-M processor designs, the initial address for vector tables is fixed in
address 0x00000000. Therefore, the program image needs to be visible in this address at startup.

�� Minimize the number of wait states in the memories – in processors that don’t have caches, having
wait states in the memory system directly impacts the performance, energy efficiency, and interrupt
latency. In general, wait states in peripheral accesses are less of a problem as those accesses
happen less frequently.

�� Try to keep to a minimum the number of bus slaves on the main system bus.

Separating the peripheral bus from the system bus has a number of advantages:

�� A high number of bus slaves in the main system bus could reduce the maximum clock frequency
and can also increase the area and power of the bus interconnect. By separating peripheral
connections in different buses, address decoding and bus switching logic on the system bus can be
optimized for speed because most peripherals are grouped as one item via the bus bridge.

�� By using a bus bridge to separate the peripheral bus from the system bus, it is possible to provide
timing isolation between the two bus segments. This allows the peripherals to be operated
at different clock speeds, as well as providing a better chance to get a higher maximum clock
frequency on the system bus.

�� Bus protocol for the peripheral bus is simpler. This reduces the time for peripheral development and
testing, as well as reducing complexity and gate counts.

As a result, most of the peripherals that do not need low latency accesses (e.g., SPI, I2C, UART) can be
placed in separated peripheral buses. Some peripherals like GPIO can gain the benefit of lower access
latency, so some GPIO blocks are placed system AHB or single-cycle I/O port interface (available on
Cortex-M0+ and Cortex-M23 processors).

73

4.2 Building a simple Cortex-M0 system
The Cortex-M0 processor is one of the easiest-to-use Arm processors as it only has one AHB interface
for the whole memory system. Typically, a simple Cortex-M0 system design could look like this:

Figure 4.1: Example of Cortex-M0 system design.

In this example design, …

�� The “ROM” (could be embedded flash, or other NVM for holding program image) is placed in
address 0x00000000 as the initial vector table address is fixed to this location. For FPGA designs,
you can use on-chip SRAM with the initial image. Ideally, use zero wait state for “ROM.”

�� The RAM is normally synchronous static RAM with zero wait state to provide the best performance.
Usually, we put the RAM in address 0x20000000, the starting address of the SRAM region.

�� Some of the peripherals can be designed with an AHB interface to lower access latency (e.g., GPIO
could be designed as an AHB peripheral as some control applications can be I/O intensive).

�� General peripherals that do not need fast access can be designed with an APB interface and
connected via an AHB to APB bridge. Potentially, the peripheral bus can run at a lower clock
frequency.

�� The address ranges of AHB and APB peripherals are usually within 0x40000000 to 0x5FFFFFFF.
The exact arrangement is up to the system designers.

Cortex-M0

Cortex-M0 Integration /
Cortex-M0 DesignStart

Debug
interface
module

System bus (AHB Lite)

Program
ROM RAM Default

slave
AHB

peripheral(s)

AHB to
APB

bridge

Peripheral bus (APB)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

AHB
peripheral(s)

Clock and
reset

generationDebug interface
JTAG/Serial wire

debug
SYSRESETREQ

Interrupts

Interrupts

Interrupts

Clock and reset

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

74

�� The default slave is selected when the AHB transaction is targeting an invalid address.

�� For minimum requirements, the top-level of the FPGA/SoC design only needs to expose the clock
and reset connections, the peripheral interface, and the debug connection.

4.3 Building a simple Cortex-M0+ system
The design of a simple Cortex-M0+ system (Figure 4.2) can be very similar to the Cortex-M0 system.
However, there can be two major differences:

1. Optional single-cycle I/O port (IOP) interface for low latency peripheral register accesses;

2. Optional Micro Trace Buffer (MTB).

If a designer decided to use the single-cycle I/O port interface for a peripheral:

�� The peripheral might need to be modified to support the single-cycle I/O port interface;

�� The system would need to include a simple IOP address decoder to tell the processor which address
range should route to the IOP and which should not. This decoder contains simple combinatorial
logic that decodes the 32-bit address value, and feedback to the processor that the address belongs
to either the IOP or AHB interface.

The MTB feature is used to provide a low-cost instruction trace solution. The MTB is placed between
the AHB and SRAM, working as an AHB to SRAM bridge in normal operations. When used for
instruction trace, the debugger programs the MTB to allocate a small portion of the SRAM for storing
instruction trace information. The MTB has a trace interface to receive instruction trace information
from the processor and can also generate a debug event (halting request) to the processor.

Typically, the MTB would be configured in circular buffer mode so that only the recent history is kept.
While it doesn’t provide the full software execution history, it is still a useful feature in debugging
software issues like providing program flow details just before fault exceptions.

The 32-bit SRAM interface can work with most synchronous on-chip SRAM and FPGA block RAM.
Please note, it supports zero wait state SRAM only.

75

Figure 4.2: Example of the Cortex-M0+ system design.

Since the Cortex-M0+ processor supports the separation of privileged and unprivileged execution
levels, you should consider system-level security if this feature is used. To support the separation
of privileged and unprivileged levels, a designer should also consider adding the MPU (Memory
Protection Unit) option, which can prevent unprivileged codes from accessing privileged memories.

As a part of the security consideration:

�� Peripheral registers for system control (e.g., clock, power management, flash programming) should
be privileged access only.

�� If an AHB access is unprivileged and the address targets a privileged only device, then the address
decoder in the system can select the default slave instead of the targeted device to generate a fault
exception (bus error).

Similar to the Cortex-M0 processor, the initial vector table address is fixed at address 0x00000000.
Therefore, the ROM needs to be visible at the beginning of the memory map after reset.

Cortex-M0+

Cortex-M0+ Integration

Debug
interface
module

Program
ROM

RAM

Default
slave

AHB
peripheral(s)

AHB to
APB

bridge

Peripheral bus (APB)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

AHB
peripheral(s)

Clock and
reset

generation

Debug interface
JTAG/Serial wire

debug

SYSRESETREQ

Interrupts

Interrupts

Interrupts

Clock and reset

IOP
peripheral(s)

IOP address
decode

System bus (AHB Lite)

MTB trace
control

MTB

System bus
(AHB Lite)

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

76

4.4 Building a simple Cortex-M1 system
If you are using Cortex-M1 FPGA DesignStart, you might not need to study the detailed bus
arrangements as the FPGA design environment may be able to handle this for you. However, if you are
using Cortex-M1 in Verilog RTL source form, or just interested to know more details, then this section
could be useful.

In many aspects, the system-level integration for the Cortex-M1 system is similar to the Cortex-M0 system:

�� The processor does not have separation of privileged and unprivileged operations;

�� There is only one AHB interface.

However, there are also some differences:

�� The Cortex-M1 processor supports optional Instruction TCM (Tightly Coupled Memory) and Data TCM;

�� There is no sleep mode support on the current Cortex-M1 processor.

Use of Tightly Coupled Memory (TCM) is common in processor systems implemented in FPGA. If this
option is implemented, the Cortex-M1 processor provides two TCM interfaces, one for Instruction
memory (I-TCM) and the second one for Data (D-TCM). When TCMs are used, the Cortex-M1
processor can execute a program in its best performance. If executing a program from memory blocks
connected via AHB, the performance/MHz would be lowered because the AHB interface on the
Cortex-M1 has an additional pipeline stage to allow it to reach high clock frequency.

TCM can be implemented with RAM blocks inside the FPGA. The details of implementing RAM
blocks inside the FPGA depend on the FPGA type and the FPGA design tools you use. An example
is shown in Section 2.2, but you might need to refer to the FPGA vendor’s documentation and tools
documentation for the correct implementation of the TCMs.

Since the Program “ROM” (it is actually RAMs in the FPGA) and RAM can be connected via the TCM
interface, the system AHB connections can be simplified.

77

Figure 4.3: Example of Cortex-M1 system design.

The source code of the Cortex-M1 top-level files are available into two versions:

1. With debug interface;

2. Without debug interface.

When the debug features are included, the debug interface has a separate set of TCM interfaces
(using the block RAM as dual-port RAM). The reason for having a separated interface for the debugger
to access the TCM at maximum speed. In most modern FPGA architectures, the memory blocks can
be used as dual-port memory. Therefore, each TCM block can be simultaneously connected to the
processor core’s TCM interface and the debug TCM interface:

Figure 4.4: The Cortex-M1 TCM connections when the debug option is used.

Cortex-M1

Cortex-M1 Integration

Debug
interface
module

System bus (AHB Lite)

Program
ROM

RAM

Default
slave

AHB
peripheral(s)

AHB to
APB

bridge

Peripheral bus (APB)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

AHB
peripheral(s)

Clock and
reset

generation
Debug interface
JTAG/Serial wire

debug
SYSRESETREQ

Interrupts

Interrupts

Interrupts

Clock and reset

I-TCM

D-TCM

I-TCM Processor core
I-TCM interface

Processor core
D-TCM interface

Debug
I-TCM interface

Debug
D-TCM interface

Cortex-M1
Address,

control, write
data

Read data

Address, control,
write data

Read data

D-TCM

Address,
control, write

data

Read data

Address, control,
write data

Read data

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

78

In most of the modern FPGA architectures, dual-port RAMs are widely supported.

If the debug option is not used in your FPGA design, there is no debug TCM interfaces. Only one
interface per TCM is needed. In this case, it does not matter whether the FPGA memory supports
dual-port operation or not.

Where the SRAM memory on the FPGA is insufficient for your application, you can add an SRAM
interface on the System bus as an AHB bus slave and add external SRAM to extend the total
memory size of the system. You can also use SRAM connected to the AHB instead of using I-TCM
and D-TCM.

4.5 Building a simple Cortex-M3/Cortex-M4 system
Unlike the previous simple system described in this chapter, the Cortex-M3 and Cortex-M4 processors
use the Harvard bus architecture and have three AHB master interfaces and an APB based master
interface.

Table 4.1: Bus master interface on the Cortex-M3 and Cortex-M4 processors.

The multiple bus interface allows instruction fetches and data accesses to take place at the same time
(i.e., Harvard bus architecture) to get better performance. This requires that the program image and
data are on different buses.

In a typical Cortex-M3/M4 system design:

�� The program image is placed in the CODE region. Similar to the Cortex-M0 processor, the initial
vector table address is fixed at address 0x00000000. Therefore, the ROM (which contains the
vector table) needs to be visible in this address after a reset.

�� SRAM and peripherals are connected via the system bus. Normally in address 0x20000000 (for
SRAM) and address 0x40000000 (for peripherals). This arrangement allows software developers
to utilize the bit-band feature on SRAM and peripherals.

Bus Types of transfers Descriptions

I-CODE Instruction fetches and vector fetches for CODE region (0x00000000 to
0x1FFFFFFF)

Read transfers only

D-CODE Data and debug read/write for CODE region (0x00000000 to 0x1FFFFFFF)

System All accesses not targeting at CODE region, PPB or internal components
(SRAM, Peripheral, RAM Devices, and System/Vendor specific address range
excluding PPB)

Private Peripheral
Bus (PPB)

All accesses are in external PPB range (0xE0040000 to 0xE00FFFFF) excluding
internal components (e.g., ETM, TPIU, ROM table)

Privileged accesses only

79

Figure 4.5: Example of Cortex-M3 system design.

Since there are two main AHB bus segments, both having some invalid address ranges, we will need
default slaves on each of these buses.

The reason for separating I-CODE and D-CODE in the system is to add a literal data cache (on the
D-CODE bus) so that literal data can be read even if the instruction fetch is stalled due to a wait
state on flash memory. Typically, flash memories are quite slow (in the range of 30MHz to 50MHz)
in comparison to modern microcontrollers, which can run at over 100MHz. When the Cortex-M3
processor was designed, a common approach to overcoming flash performance issues was to use flash
memories with a wider bus (e.g., 128-bit) with a prefetch buffer so that sequential instructions could
be prefetched while the processor consumed the remaining instructions in the prefetch buffer.

Figure 4.6: Flash prefetching can help eliminate wait states in sequential flash accesses.

However, program operations contain many constant data reads, and these read operations would
result in non-sequential accesses, which would be stalled as the data are not available in the buffer.
To make matters worse, if the literal access occurred just after the prefetcher started a prefetch, the
flash interface needed to wait until the flash read is completed before reading the literal from flash
memory. For example, in Figure 4.7, the processor pipeline needs to stall after the literal data read
(address 0x1048) until the flash returns the data (end of read operation to 0x1040-0x104F).

Cortex-M3 / Cortex-M4

Cortex-M3 Integration /
Cortex-M4 Integration

Debug
interface
module

System bus (AHB Lite)

Program
ROM

RAM Default
slave

AHB
peripheral(s)

AHB to
APB

bridge

Peripheral bus (APB)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

AHB
peripheral(s)

Clock and
reset

generation
Debug interface
JTAG/Serial wire

debug

SYSRESETREQ

Interrupts

Interrupts

Interrupts

Clock and reset

Default
slave

System bus (AHB Lite)

Bus merging (e.g.
cm3_code_mux)

I-CODE D-CODE System

PP
B ETM

ROM
table

TPIU

Trace interface

0x1000
Processor’s

program accesses
at 100MHz

0x1004 0x1008

Flash memory
read (128-bit)
at 33.3MHz

0x1000 – 0x100F 0x1010 – 0x101F

0x100C

Wait states after a
branch 0x1010 0x1014

0x1020 – 0x102F

0x1018 0x101C 0x1020

0x1030 ...
Idle

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

80

Figure 4.7: Literal data access can reduce the performance of a system with prefetcher.

To help reduce the performance penalty, one solution is to separate the data accesses on a different
AHB and put a small literal data cache on it so that literal data used in small loops will not cause
latency after the first loop.

Figure 4.8: Separating I-CODE and D-CODE allows literal data cache to operate in parallel with the prefetcher buffer.

For many simple designs or systems that use system-level caches, there is no need to have such flash
access acceleration arrangements. System designers can simply merge the I-CODE and D-CODE
buses. The Cortex-M3 and Cortex-M4 product bundles provide two components for this purpose:

1. Code mux component:

This is a simple bus multiplexer with minimal gate count. To use this component, the DNOTITRANS
input of the Cortex-M3/Cortex-M4 must be set to 1. This prevents the processor I-CODE interface
from generating bus transfers at the same time when D-CODE is used.

0x1000
Processor’s

program accesses
at 100MHz

0x1004 0x1008

Flash memory
read (128-bit)
at 33.3MHz

0x1000 – 0x100F 0x1010 – 0x101F

0x100C

Wait states after a
branch

0x1040 – 0x104F
Idle

0x1048

Literal data read

Wait until current
fetch finished Flash read latency

Cortex-M3 / Cortex-M4

I-CODE D-CODE

Prefetch
buffer

Literal data
cache

Bus arbiter

Embedded flash

AHB interconnect AHB interconnect

Default
slave

Default
slave

81

Figure 4.9: Using code mux component to merge I-CODE and D-CODE.

2. Flash mux component:

This component has internal bus arbitration and a register slice to hold I-CODE transfers in a buffer
if both I-CODE and D-CODE are active. This can be useful if there are other bus slaves in the CODE
region that could be accessed at the same time as instruction fetches.

Figure 4.10: Using flash mux component to merge I-CODE and D-CODE.

Cortex-M3 / Cortex-M4

Program
ROM

Default
slave

Code bus (AHB Lite)

cm3_code_mux /
cm4_code_mux

I-CODE D-CODE System

DNOTITRAN1

Cortex-M3 / Cortex-M4

Program
ROM

Default
slave

Code bus (AHB Lite)

cm3_flash_mux /
cm4_flash_mux

I-CODE D-CODE System

DNOTITRAN0

System bus (AHB Lite)

Other slave

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

82

In newer microcontroller designs, the use of system-level cache for embedded flash is increasingly
common. Arm provides the AHB flash cache which can be used with various Cortex-M processors
with an AHB interface.

Figure 4.11: Using AHB flash cache in the Cortex-M3/M4 system design.

For such systems, the chance for both instruction accesses and literal data having a cache miss is
relatively low (except the first time the code sequence is executed of course), so separating the
CODE bus into I-CODE and D-CODE does not bring a lot of benefits. In newer Cortex-M processors
like Cortex-M33 and Cortex-M35P, the I-CODE and D-CODE have been merged to reduce system
integration complexity and to enable lower power.

Instead of having the cache module closely coupling to the processor, the AHB flash cache
arrangement has the following advantages:

�� The interface between the flash cache and flash interface can be designed as wide bus such as
a 128-bit AHB. This enables faster data transfers from flash to the cache, and next flash access
(e.g., if there is a cache miss) can start earlier.

�� If the code bus has another bus master, the flash cache can provide caching to the other bus master.

Please note:

�� For Cortex-M3 and Cortex-M4 processors, the internal bus interconnect has a registering stage
between the instruction fetch interface and the system bus. Therefore, the performance of the
system is reduced if the software image is executed from the system bus.

Cortex-M3 / Cortex-M4

Embedded
flash

Default
slave

Code bus (AHB Lite)

cm3_code_mux /
cm4_code_mux

I-CODE D-CODE System

DNOTITRAN1

AHB flash
cache

Flash
interface

83

�� Peripherals are expected to be connected via the System AHB (or on a peripheral APB via a bus
bridge) instead of the Private Peripheral Bus (PPB). The PPB intended for debug components has
some limitations; namely:

�� It is accessible in privileged mode only;

�� It is accessed in little-endian fashion irrespective of the processor’s data endianness setting;

�� Accesses behave as Strongly Ordered (no other data memory access can start until the current
data access finished);

�� No bit-band function is available;

�� Unaligned accesses have unpredictable results;

�� Only 32-bit data accesses are supported;

�� It is accessible from the Debug Port and the local processor, but not from any other agent
(processor) in the system.

(Source: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14334.html)

If needed, it is possible to have an SRAM shared between code and SRAM regions by having bus
accesses from both code and system buses (i.e., memory address aliasing). This allows the software
to use a single SRAM block and execute code from SRAM without performance loss:

Figure 4.12: Placing a single SRAM into both CODE and SRAM region.

Cortex-M3 / Cortex-M4

Default
slave

Code bus (AHB Lite)

cm3_code_mux /
cm4_code_mux

I-CODE D-CODE System

DNOTITRAN1

System bus (AHB Lite)

ROM
Flash_mux

SRAM

Default
slave

Other
slaves

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

84

However, from a security point of view, this needs to be handled carefully to prevent vulnerabilities. For
example, if a memory region is privileged access only, then the access permission needs to be privileged
for both address locations (Alternatively, you can make the RAM visible on only one bus at a time).

4.6 Handling multiple bus masters
In many microcontroller systems, you can find multiple bus masters such as:

�� Direct Memory Access (DMA) controllers;

�� Peripherals that need high data bandwidth; for example, USB controllers, ethernet interfaces.

In both cases, these units have bus master interfaces to initiate transfers, as well as bus slave interfaces
for configuration. To enable multiple bus masters to access the AHB bus system, Arm provides:

�� Simple AHB master multiplexers to support two or three bus masters accessing a single AHB bus
segment (shared bandwidth);

�� Configurable AHB Bus Matrix components (allowing concurrent accesses).

The concepts of these components were covered in Chapter 3. For a simple Cortex-M0 based system
with a DMA controller, the system design can look like this (Figure 4.13):

Figure 4.13: Simple Cortex-M0 system design with DMA controller and AHB master multiplexer.

Cortex-M0

Cortex-M0 Integration /
Cortex-M0 DesignStart

Debug
interface
module

System bus (AHB Lite)

Program
ROM RAM Default

slave
AHB

peripheral(s)

AHB to
APB

bridge

Peripheral bus (APB)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

APB
peripheral(s)

AHB
peripheral(s)

Clock and
reset

generation
Debug interface
JTAG/Serial wire

debug
SYSRESETREQ

Interrupts

Interrupts

Interrupts

Clock and reset

DMA controller

APB slave
interface

AHB master
interface

DMA
interrupt(s)

AHB master
multiplexer

85

Both the processor and the DMA controller can have a full view of the memory system. The design is
simple to create, but the bus bandwidth is shared. As a result, the number of bus masters supported
by the AHB master multiplexer component is often limited to 2 or 3. In such systems, it is common to
give the DMA controller higher priority as the processor can access the bus very frequently (due to
both instruction-fetches and data accesses).

For systems with higher performance needs, the AHB bus matrix component is generally used. In
addition, you would also often need multiple banks of SRAM to enable processor and other bus
masters to access different banks of SRAM at the same time. Otherwise, the bandwidth of SRAM
accesses could become the bottleneck.

Figure 4.14: A simplified Cortex-M3/Cortex-M4 processor system design with an AHB bus matrix.

In addition, to provide higher total data bandwidth, having multiple banks of SRAM can also allow some
banks of SRAM to be powered down when not in use, resulting in lower power consumption in some
situations. However, when all banks of SRAM are used, the maximum system power is higher than a single
SRAM bank. Of course, the use of multiple SRAM banks has the advantage of higher data bandwidth,
which might mean the overall system-level energy efficiency is still better than one SRAM bank.

AHB bus matrix designs have a concept called sparse connectivity, which means some of the AHB bus
masters connected to the bus matrix do not need to have access to all of the downstream AHB bus
segments. For example:

�� A USB controller does not need to access to flash program area and peripherals;

�� The I-CODE and D-CODE bus of the Cortex-M3/Cortex-M4 do not need to access SRAM and
peripherals because transfers on these buses are limited to the CODE region (unless the SRAM
is mapped into CODE region).

The configurable AHB bus matrix from Arm supports sparse connectivity, which reduces the bus
matrix area and potentially helps to improve timing and speed.

I-CODE
D-CODE
System
DMA
USB

Embedded
flash

(program
image)

SRAM
bank 0

SRAM
bank 1

SRAM
bank 2

SRAM
bank 3

AHB
peripherals

AHB to
APB

bridge

APB
peripherals

Cortex-M3 /
Cortex-M4 DMA controller USB controller

Flash cache

AHB Bus Matrix

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

86

Another supported feature in Arm’s AHB bus matrix is the internal default slave. Since the AHB bus
matrix has an internal address decoder to select which downstream AHB bus segment should be used,
it can also detect accesses to invalid address ranges and route them to internal bus matrix, which
means that there is no need to add another system-level default slave.

The AHB bus matrix is highly flexible and can bring many advantages to system designs. However,
please note that it can also introduce latency cycles when switching a bus segment from one master
to another. It is possible to optimize a bus matrix to reduce the chance of unnecessary bus arbiter
switching by customizing the logic that defines the default selected bus or forcing the address of the
bus to a specific value when the bus is idle.

When designing systems with multiple bus masters, from a security point of view, it is common to
make the configuration interface of the bus masters (e.g., DMA controllers) privileged access only.
Otherwise, if an unprivileged software component can program a DMA controller, it can use the DMA
controller to access privileged-only memories, which means bypassing the memory protection.

4.7 Exclusive access support
Exclusive accesses are supported in Armv7-M and Armv8-M processors. To support exclusive accesses
on multiple processor systems, system designers should add global exclusive access monitors to
the system. The monitors should be placed downstream of the AHB bus matrix or AHB master
multiplexer, which will merge transfers from different bus masters. The bus interconnect must also
provide HMASTER signals to allow the global exclusive access monitor to know which bus master the
transfer is generated from.

Figure 4.15: Correct location for placing global exclusive access monitors.

In Figure 4.15, there are two banks of SRAM, and each of them needs a global exclusive access
monitor because they are on separate AHB bus segments. In system-level designs, you need a global
exclusive access monitor for each AHB segment after bus arbitration if:

SRAM

Default
slave

AHB bus matrix

Other
slaves

Global Exclusive
Access Monitor

Processor Processor Other bus
master(s)

SRAM

Global Exclusive
Access MonitorProgram

ROM

87

1. The bus slaves connected to the bus segment can contain semaphore data, and

2. The bus slaves connected to the bus segment can be accessed by more than one bus master that
generates access to semaphore data.

Bus segments that only contain general peripherals or flash memories (or other types of NVM) do not
require an exclusive access monitor as there is no semaphore data in these buses.

In single-processor systems, it is possible to omit the global exclusive access monitor because even
with other bus masters present (e.g., DMA controller, USB controller), the software can ensure that
these other bus masters do not access the semaphore data. Therefore, normally, global exclusive
access monitors are present only on multi-processor systems.

In single-core systems with Cortex-M3, Cortex-M4 and Cortex-M7 processors, which use proprietary
exclusive access handshaking signals (EXREQ and EXRESP), if an AHB bus segment does not have an
exclusive access monitor:

�� Where the bus contains SRAM, you can tie EXRESP low (do not tie EXRESP high as OS semaphore
functions using exclusive accesses will always fail).

�� Where the bus segment only contains NVM or peripherals that do not contain semaphore data, it is
valid to tie EXRESP high to indicate exclusive access to such address range is not supported.

In single-core systems with Cortex-M23, Cortex-M33 and Cortex-M35P processors, which use AHB5
bus protocol with exclusive access support (HEXCL and HEXOKAY):

�� If the bus contains SRAM, you can use a simple glue logic to assert HEXOKAY in data phases of
exclusive accesses (do not tie HEXOKAY high as AHB5 protocol requires that HEXOKAY is asserted
only when HREADY is asserted and must not be high when HRESP is high).

�� If the bus segment only contains NVM or peripherals which do not contain semaphore data, it is
valid to tie HEXOKAY low to indicate exclusive access to such address ranges is not supported.

Additional information related to exclusive access support on Cortex-M3 and Cortex-M4 processor
can be found in this knowledge base article:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16180.html

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

88

4.8 Address remap
Address remap is a common system design technique used in Cortex-M microcontrollers that needs to
support multiple boot stages or multiple-boot modes. For example, in a Cortex-M0 design that needs
to support a boot loader (which executes before the program in embedded flash is executed), address
remap allows the memory map to place the boot loader ROM into address 0x00000000 for startup,
and then later maps the embedded flash to 0x00000000 for execution of programs in flash.

To use the address remap function, the system design needs to include a program register to control
the behavior of the address decoder. For the use case, we mentioned, this control register only needs
1-bit to switch between two memory maps. However, some other devices support multiple boot
arrangements, and this register might have multiple bits.

An example of an address map design with remap is shown in Figure 4.16 below:

Figure 4.16: An example address map of address remap to support boot loader.

With the arrangement shown in Figure 4.16, the vector table in the boot loader is used for booting
up the system. The execution of the boot loader is based on its real address 0x001000000. However,
during this period, the vector table in the boot loader alias is still being used. After the boot loader
has finished its work, it switches the REMAP off so that the vector table of the program image in
embedded flash is used. It can then read the vector table of the application, set up the MSP value,
and branch into the reset handler.

Please note the embedded flash might also have an alias address range to allow the boot loader to
handle flash programming. Otherwise, the beginning of the embedded flash address range will not be
visible as the bootloader alias is placed there during start-up.

Boot loader
alias

Boot loader

Embedded flash

Address

0x00000000

0x00100000

Embedded flash
alias

0x00080000

Boot at startup,
REMAP active

Vector table in
boot loader used

for startup

Reset handler in
boot loader

@0x00100100

0x00100101
0x20001000

Vector
table

Reset vector points
to boot loader’s

reset handler

After boot loader
execution, just before

starting program in
embedded flash,

REMAP is disabled
Boot loader

Embedded flash

Address

0x00000000

0x00100000

Embedded flash
alias

0x00080000

Start of application
in embedded flash,

REMAP disabled

Vector table in
embedded flash

is in effect

89

In the design of the remap control register, there are several considerations:

�� In many system designs, the remap control register needs to be privileged access only for security
reasons.

�� In some systems, it is desirable to make the remap control register reset by power-on reset so
that the bootloader only executes once, and does not get executed again during debugging (the
debugger normally resets the target using a system reset, with SYSRESETREQ field in AIRCR).

�� In some systems, the remap control register could be designed to only be switched off but cannot
be switched back on by software. This arrangement is used by some secure boot systems where the
information associated with the security checks are hidden inside the boot loader and are masked
out (non-accessible) after REMAP is switched off.

In addition to bootloader use cases, a remap arrangement is also used to allow part of the SRAM to
be used as a vector table in systems with Cortex-M0 processors because Cortex-M0 does not have a
programmable Vector Table Offset Register (VTOR). In such usage scenarios, a REMAP control register
bit is needed and defaults to off (no REMAP). When set to 1, a portion of system SRAM is aliased to
the first 192 bytes (maximum vector table size in Cortex-M0) of system memory. Before setting the
REMAP control register, software should copy the original vector table to the SRAM that will then be
remapped so that exceptions can still work afterward.

The remap feature is supported by the AHB bus matrix designed by Arm. However, for processors
with VTOR, there is no need to use REMAP to allow runtime updates of vector tables because
you can program VTOR to point to the SRAM area. In newer Cortex-M processors like Cortex-M7,
Cortex-M23, Cortex-M33, and Cortex-M35P, the initial address of the vector table for boot-up is
configurable and, therefore, there is no need to use REMAP to enable multiple boot options.

4.9 AHB-based memory connection versus TCM
Some embedded processors support Tightly-Coupled Memory (TCM). In some cases, the availability
of a TCM interface makes memory integration easier. However, memories like SRAM can also
be connected to AHB using AHB SRAM wrappers, such as the one bundled in Cortex-M0/M3
DesignStart (cmsdk_ahb_to_sram.v).

In terms of performance, at the interface level, TCM and AHB provide the same read access latency.
Write access timings are different, but at the processor pipeline level, the write could still be a single-
cycle, even when using an AHB interface (e.g., when the processor has a write buffer, or when the
AHB pipeline is mapped into two stages of the processor’s pipeline).

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

90

Figure 4.17: Timing characteristics comparison between TCM interface and AHB interface.

Some designers suggest that a dedicated TCM interface could be beneficial if the bus is often
occupied by other transactions from other bus masters. In that situation, access to TCM will not
be delayed by other bus traffic. However, if using a multi-layer AHB approach, processor access to
memories can still be carried out immediately providing that the bus slave segment accessed is not
being used by another bus master. Even if a processor supports TCM unless its bus interface supports
multiple outstanding transfers, it is impossible to start a new data access while the current memory
read/write is on-going.

While having TCM reduces the complexity at the system-level interconnect, the merging of read data
from the system bus and TCMs is placed inside the processor, so there is no area saving. Potentially,
the TCM design might restrict the address range and size of the memories while connecting memories
on the AHB instead could be more flexible, as designers can customize address ranges and memory
sizes based on application needs. It is also possible to optimize the AHB bus structure to minimize
timing delays between the processor and the memory blocks.

Figure 4.18: AHB path optimized to minimize timing delay between processor and memories.

Cortex-M

AHB slave multiplexer
1st level of bus mux with few AHB

slave ports to minimum logic delay

Address
decoder #1

ROM SRAM

AHB slave multiplexer

2nd level of bus mux for
other AHB slaves

Address
decoder #2

Default
slave

AHB to
APB

bridge

Other
AHB

slaves

Clock

Address
Read address

TCM
Read data

Read data

Write data
Write data

Write address

Address
Read address

AHB
Read data

Read data

Write data
Write data

Write address

Same 1-cycle read
access latency

Different write data
timing

91

In some processor designs, the use of TCM is required to allow deterministic interrupt responses.
For example, in the Cortex-M7 processor, access to memories on the AXI bus system can have non-
deterministic timing due to cache hit/miss scenarios. Having TCM enables interrupt services to be
carried out quickly in deterministic manners. But in small processors like Cortex-M0 to Cortex-M33,
the omission of a TCM feature is not a real issue.

4.10 Handling of embedded flash memories
4.10.1 IP requirements
Embedded flash memories are widely used in microcontrollers. They are process node-specific, so if you
want to use embedded flash in your design, you need to license it from the foundry of your choice (or
their partners that offer embedded flash macros that are compatible with the process node).

In addition to the embedded flash memories, you need an embedded flash memory controller IP
that links the embedded flash to AMBA buses, and potentially system cache IP. The flash memory
controller IP can be flash technology-specific; however, in 2018, Arm announced the Generic Flash
Bus (GFB) standard, making it possible to create generic embedded flash controllers and allow
embedded flash macros to be connected to those controllers via simple glue logic, which is process
technology-specific. Arm also offers embedded flash controllers based on GFB interface. Information
about AMBA GFB can be found here: https://developer.arm.com/products/architecture/system-
architectures/amba/amba-gfb

Embedded flash memories are usually quite slow (e.g., 30MHz to 50MHz access speed for most of
the low-power embedded flash macros). Typically, caches in some form are needed to enable the
processor system to run at higher clock speeds. Having caches also enables better energy efficiency
by reducing the memory accesses on the embedded flash (which could be relatively power-hungry).

Such cache components are available from Arm and other IP suppliers. For example, the AHB flash
cache is part of the Arm Corstone-100 foundation IP (https://developer.arm.com/products/system-
design/corstone-foundation-ip/corstone-100).

4.10.2 Flash programming
Normally, embedded flash memories partition the memory spaces into pages. To update flash
memories, the update process has to be done on a page-by-page basis; i.e., you cannot update just
a few bytes / words of the flash. The flash programming and erase operations are supported by the
embedded flash controllers mentioned earlier. For security reasons, the programming interface of the
embedded flash controller should be privileged access only. If TrustZone security extensions are used,
then it needs to be restricted to secure privileged access only to enable secure firmware updates.

When doing flash programming, instead of using the debug connection to access the flash controller
directly, the common approach is to:

�� Download a small piece of code to SRAM called a flash programming algorithm, and

�� Download a block of data for a flash page to be programmed to SRAM, then

Chapter 4 | Building simple bus systems for Cortex-M processors

System-on-Chip Design with Arm® Cortex®-M processors

92

�� Download additional configuration information and set the PC (program counter) to the flash
programming algorithm, before executing the code to program the flash page.

Each time a flash page is programmed, optionally, the flash programming algorithm can verify the
contents of the page. The debug host can then download another page of data and repeat the process
until all the pages are programmed.

If a device contains TrustZone security extensions and the on-chip secure firmware is already loaded
to the device, the flash programming algorithm might already be present within the on-chip firmware.
In such cases, the flash programming sequence only needs to load the new flash contents and
configurations before triggering the flash programming steps.

4.10.3 Bringing up a new device without a valid program image
One of the common questions from new Cortex-M designers is: How can you bring up a
microcontroller device first time without any valid program in the embedded flash? The actual
sequence is no different from normal flash programming:

�� When the device starts up for the first time, since the flash does not contain a valid program image,
it will quickly enter fault exception and eventually go into LOCKUP state.

�� Even if the device is in LOCKUP state, the debugger can still establish a debug connection via
JTAG/Serial Wire.

�� The debugger can then enable a reset vector catch (a debug feature in the Cortex-M processors),
and use System Reset Request (by programming Application Interrupt and Reset Control Register,
AIRCR) to reset the system. When the processor comes out from system reset, it enters halt state
immediately because the reset vector catch is enabled.

�� The debugger can download the flash programming algorithm and pages of program image into
SRAM and set the PC (program counter) to launch the flash programming algorithm.

�� When all the required flash pages are programmed, it can reset the system again to start the
application or to debug it.

The same concept can also be applied to devices that run code from external flash (e.g., QSPI flash).

93

Chapter 4 | Building simple bus systems for Cortex-M processors

Debug integration
with Cortex-M
processor systems

CHAPTER
5

System-on-Chip Design with Arm® Cortex®-M processors

96

5.1 Overview of debug and trace features
In the majority of Cortex-M based systems, the designs need to support debug and trace features.
These interfaces are not only needed for software development and troubleshooting, but they are also
used for flash programming and the collection of diagnostic data in the field when required.

Debug and trace features are configurable in most of the Cortex-M processors (except DesignStart
Eval versions, which provide the processor designs with fixed configurations). In general, the debug
features include the following:

�� Access to the memory space (including download of program code into SRAM for the FPGA
platform. Flash programming is a bit more complex and will be explained later). Memory access can
be carried out while the processor is running.

�� Breakpoint events can be used to halt the processor, or if using a software debug agent (i.e., using
the debug monitor in Armv7-M or Armv8-M Mainline), then the debug monitor exception
is triggered. There are two types of breakpoint mechanisms:

�� Hardware breakpoints that use hardware comparators to compare the program counter with
breakpoint addresses. The number of breakpoint comparators is limited. For example, the
Cortex-M0 processor has only up to 4 breakpoint comparators.

�� Software breakpoints that use the BKPT (breakpoint) instruction to trigger breakpoint event.
There is no limit on the number of breakpoints. It is suitable for creating breakpoints during
software development on devices with reprogrammable memory.

�� Watchpoints are debug events that are triggered when a specific data address is accessed. They
use hardware comparators to compare data read/write addresses with specific values and emit
watchpoint events when a match is detected. When a watchpoint event is triggered, the processor
can be halted, or a debug monitor exception can be triggered (Armv7-M or Armv8-M Mainline).

�� Halt / Resume – software developers can send a command to halt the processor when it is running,
and when debug operations are done, they can also send a command to resume the operations.

�� Access to processor’s registers – registers in the processor’s register banks and special registers can
be accessed and modified when the processor is halted. Memory-mapped registers can be accessed
at any time.

�� Reset – debugger can request a reset of the target board, typically a system reset through the
SYSRESETREQ feature. It is also possible to have a debugger to trigger the whole device reset
if a separated reset connection is provided and the debug probe can support this.

97

�� Debug authentication – from an IP protection and system security point of view, there is a need
to disable debug and trace in some parts of the product life cycle. Cortex-M processors provide
interface signals for debug authentication hardware so that debug and trace features can be
disabled. For Armv8-M processors, the interface can also restrict debug and trace visibility to Non-
secure side only.

�� Multi-code debug and trace – the debug and trace systems in Arm Cortex processors are based on
an architecture developed by Arm called CoreSight Debug Architecture. This debug architecture
supports multi-core debug and allows multiple processors to be connected to the debugger with
a single debug connection. In addition, debug events (e.g., breakpoint, watchpoint) can propagate
between various cores to allow the whole system to halt or resume at the same time. The trace
interface also allows trace information from multiple processors to be merged and collected by a
single debug probe with a single connection, and then be decoded and separated back into multiple
trace streams on the debug host.

The trace features on the Cortex-M processors include:

�� Micro Trace Buffer (MTB) – a low-cost instruction trace solution that enables the system to allocate
a small part of system SRAM for instruction trace. The trace result can be collected through the
debug connection.

�� Embedded Trace Macrocell (ETM) – a real-time instruction trace solution that streams instruction
execution information to debug host via a trace connection.

�� Event trace – Real-time trace of exception events generated by the DWT (Data Watchpoint and
Trace unit).

�� Profiling trace – trace generation for system performance analysis generated by the DWT.

�� Selective data trace – a real-time trace of a small selection of data generated by the DWT. The
comparators for data watchpoints are used to detect accesses to the specific address location,
and if a transfer to such a monitored location is made, information about it can be exported on the
trace interface.

�� Full data trace – the ETM on Cortex-M7 processors has an implementation option to support full
data trace to provide maximum visibility of the program’s operations. However, this requires a much
higher trace bandwidth and hardware cost, and is therefore only used in specialized SoC designs.

�� Instrumentation trace – a real-time trace that is generated by the software to provide debug messages
and OS awareness support. For example, it is possible to direct printf(“Hello World”) messages to the
Instrumentation Trace Macrocell (ITM) to display the message on a debug console on the debug host.

�� Timestamp support – most trace sources (except MTB) support timestamp and that allows the
debug host to reconstruct the timing of various events.

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

98

Due to area and power constraints, not all of the Cortex-M processors support all these features. Table
5.1 lists the debug and trace features supported by current Cortex-M processors.

Table 5.1: Debug and trace features support in the Cortex-M processors.

Since most of the debug features are optional, system designers might need to define the options
optimized for their requirements (except when using Cortex-M0/Cortex-M3 DesignStart Eval with
fixed configurations).

5.2 CoreSight Debug Architecture
5.2.1 Introduction to Arm CoreSight
The debug systems on the Cortex-M processors are based on the Arm CoreSight Debug Architecture.
This architecture covers:

�� The infrastructure to connect the debug interface to the debug components;

�� The infrastructure to connect trace sources to the trace interface;

�� High-level mechanisms for debug power management;

�� Mechanisms for debug component discovery (ROM table);

�� Control interface for debug authentication.

Based on this architecture, the debug system is scalable and is consistent with debug systems on
other ARM Cortex processors, making it easy for tools developers to adapt their tools to the various
Cortex-M products.

Breakpoint
comparators

Watchpoint
comparators

MTB ETM DWT’s
selective
data trace

ITM

Cortex-M0 Up to 4 Up to 2

Cortex-M1 Up to 4 Up to 2

Cortex-M0+ Up to 4 Up to 2 Y

Cortex-M3 Up to 6
(instruction) + 2(literal)

Up to 4 Y Y Y

Cortex-M4 Up to 6
(instruction) + 2(literal)

Up to 4 Y Y Y

Cortex-M7 Up to 8 Up to 4 Y Y Y
Cortex-M23 Up to 4 Up to 4 Y Y

Cortex-M33 Up to 8 Up to 4 Y Y Y Y
Cortex-M35P Up to 8 Up to 4 Y Y Y Y

99

The full CoreSight debug architecture specification document is available on the Arm website. The
Cortex-M processors listed in Table 5.1 were developed with CoreSight Architecture version 2.0.
Please note: The Cortex-M processors utilize a subset of the features in CoreSight.

5.2.2 Debug connection protocols
In order to allow the debug host to connect to the processor, we need debug communication
protocol(s). Currently, two debug connection protocols are used:

1. JTAG protocol, created by Joint Test Action Group and originally used for various chip level and PCB
level testing. This protocol uses 4 or 5 pins for the debug connection: TDI (test data in), TDO (test
data out), TCK (test clock), TMS (test mode select), and optional TRST (test reset).

2. Serial Wire Debug (SWD) protocol, created by Arm, uses only two pins: SWDIO (Serial Wire Data
I/O, bidirectional), and SWCLK (Serial Wire Clock).

Since the SWD protocol only needs two pins, it is very popular in microcontrollers. JTAG and SWD can
co-exist in a microcontroller device and share the same pins: TMS shares a pin with SWDIO, and TCK
and SWCLK share the same pin.

Table 5.2: Pin sharing arrangement between JTAG and Serial Wire Debug.

Please note that there are two releases of SWD protocol:

�� SWD v1 is supported by Cortex-M3, Cortex-M4, Cortex-M0, optional in Cortex-M0+, Cortex-M23,
and Cortex-M7.

�� SWD v2 is supported as an optional feature (when multi-drop SWD is selected) in Cortex-M0+,
Cortex-M23, and Cortex-M7. It is always used in Cortex-M33 and Cortex-M35P processors when
SWD protocol is selected.

SWDv2 supports an optional feature called multi-drop serial wire debug. When this feature is enabled,
it allows multiple multi-drop SWD devices to share an SWD connection in parallel. Not all devices
implementing SWDv2 support multi-drop features.

If a debug interface supports both protocols, in most case the device would support dynamic protocol
switching, which uses a special sequence of bit patterns on SWDTMS to switch between JTAG

Signal JTAG Mode SWD Mode

SWCLKTCK TCK (Test clock) SW Clock

SWDTMS TMS (Test mode select) SW Data

TDI TDI (Test Data In) - (not used)

TDO TDO (Test Data Out) - (not used / shared with
SWO trace output)

nTRST nTRST (Test Reset, active-low) - (not used)

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

100

and SWD modes. The details of the sequence are documented in the Arm Debug Interface (ADI)
specification, which is available on the Arm website. Existing Cortex-M designs are based on ADIv5.

Please note that there are standardized connector arrangements. More details can be found here:
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debug_connectors.pdf

or CoreSight Architecture specification: http://infocenter.arm.com/help/topic/com.arm.doc.ihi0029e/
coresight_v3_0_architecture_specification_IHI0029E.pdf

Some of the debug connectors also support trace connections.

5.2.3 Debug connection concept - Debug Access Port (DAP)
In order to make the debug system scalable, the debug interface in CoreSight architecture decouples
the debug protocol interface hardware and debug components. In a generic CoreSight system, a
configurable DAP (Debug Access Port) block provides the debug protocol interface and a number of
bus interface ports to support various debug components in multiple processor subsystems (Figure 5.1).

Figure 5.1: Concept of a generic Debug Access Port (DAP).

In a SoC design with a single Cortex-A processor, potentially the DAP can contain two Access Port
modules: one for accessing the debug components and one for accessing the memory space. A bus
multiplexer is needed if some of the debug components require software accesses.

Figure 5.2: Concept of a Debug Access Port (DAP) arrangement for a single-core Cortex-A processor system.

Debug Port
(e.g. JTAG/
Serial Wire

Debug)

Debug
connection

protocol (e.g.
JTAG / Serial
Wire Debug)

Access Port
(e.g. APB-AP)

APB

Access Port
(e.g. AXI-AP) AXI

Debug
components

Main
memory

Internal debug bus
(APB like)

Asynchronous clock
domain boundary Asynchronous clock

domain boundary

Debug Access Port

Optional power
request control

Bus
multiplexer

Software
access

Debug Port
(e.g. JTAG/
Serial Wire

Debug)

Debug
connection

protocol (e.g.
JTAG / Serial
Wire Debug)

Access Port
(e.g. AHB-AP) AHB

Access Port
(e.g. APB-AP) APB

Debug
components /

Memory

Debug
components /

Memory

Access Port
(e.g. XXX-AP) XXX

Debug
components /

Memory

Internal debug bus (APB
like) supports up to 256
AP modules, select using

bit[31:24] of address

Asynchronous clock
domain boundary

Optional asynchronous
clock domain boundaryDebug Access Port

Optional power
request control

101

With Cortex-M processors, the debug components are part of the memory map. As a result, the debug
connection can be simplified significantly to enable lower power and area. The Cortex-M processor’s
internal bus interconnect routes the debug accesses to the debug components and memory interfaces,
so there is no need to have the bus multiplexer in the DAP.

Figure 5.3: Concept of a Debug Access Port (DAP) arrangement for a single-core Cortex-M processor system.

To further reduce silicon area and power consumption, the structure of the DAP can be reduced by
removing the optional asynchronous clock domain crossing in the AHB-AP and simplifying the internal
debug bus. The result is a very small area in the optimized debug interface design, but the Cortex-M
processors can still be connected to a full CoreSight debug system if they are used in a complex
SoC design.

5.2.4 Various arrangements of debug interface structure
Over the years, there have been different choices of debug hardware structures used on the Cortex-M
processors:

Early Cortex-M processors including Cortex-M3, Cortex-M4, and Cortex-M1, provide an APB-like
debug bus interface, and a module called SWJ-DP (Debug Port) that is connected to this bus interface
to provide the JTAG or Serial interface. Inside the processor, there is another hardware module called
AHB-AP (Access Port) to convert the transfer commands into AHB transactions.

Figure 5.4: Debug connection arrangement in Cortex-M3/M4/M1.

Cortex-M3 / Cortex-M4 / Cortex-M1 integration
Cortex-M3 DesignStart

Cortex-M3 / Cortex-M4 /
Cortex-M1

SWJ-DP
JTAG/Serial Wire

Debug connection
Debug

APB

Internal bus
interconnect

Memory system

Core logic Debug
blocks

AHB-AP

Debug Port
(e.g. JTAG/
Serial Wire

Debug)

Debug
connection

protocol (e.g.
JTAG / Serial
Wire Debug)

Access Port
(e.g. AHB-AP)

AHB

Main
memoryInternal debug bus

(APB like)

Asynchronous clock
domain boundary

Optional Asynchronous
clock domain boundary

Debug Access Port

Optional power
request control Cortex-M

processor
Debug

components
Debug AHB
(bus slave)

AHB/AXI (bus
master)

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

102

Recent Cortex-M processors deliver a Debug Access Port (DAP) module that is optimized for a smaller
silicon area, which combines the functionalities of the Debug Port and Access Port. The processor
exposes a debug AHB interface that allows AHB transactions to be routed into the processor’s
memory system directly.

Figure 5.5: Debug connection arrangement in Cortex-M0/M0+.

To simplify integration, in the Cortex-M0 and Cortex-M3 DesignStart Eval versions, the debug
interface module is pre-integrated, exposing only the JTAG/SWD interface but not the internal debug
buses. However, the designs still support the power request control interface to enable low-power
designs.

5.2.5 Trace connection concept
The CoreSight debug architecture also defines a way to support multiple trace sources with a single
trace port interface. Each of the trace sources outputs the trace through an Advanced Trace Bus (ATB)
interface. The ATB protocol supports an ID value (7-bit) that identifies the trace source, and this ID
propagates alongside with the trace data.

Figure 5.6: Trace system concept.

Trace source

Trace source

Trace source

Optional ATB
bridge/

converters

ATB

ATB

ATB Optional ATB
bridge/

converters

ATB Trace
Funnel

Trace Port
Interface

Unit (TPIU)

Optional
Trace
bufferOptional

trace
replicator

APB for debug components

Accesses from DAP

Trace port
interface

Cortex-M0 / Cortex-M0+ integration /
Cortex-M0 DesignStart

Cortex-M0 / Cortex-M0+

JTAG/Serial Wire
Debug connection Internal bus

interconnect

Memory system

Core logic Debug
blocks

Mini-
DAP

103

With various trace bus infrastructure components in CoreSight SoC products, trace sources can be
merged, converted between different bus widths, and transferred across different clock / power
domains. Most of the trace components are configurable and need to be set up by the debug host
through a debug connection (via the DAP that we have already introduced).

Trace data can then be formatted and exported to the trace port interface via a Trace Port Interface
Unit (TPIU). The trace port interface (trace data + trace clock) needs to be available at the top-level of
the chip (it can be multiplexed with function pins and hidden when trace is not used). The software
developer can collect the trace data using a debug probe that supports trace.

In Cortex-A and Cortex-R systems, the trace bandwidth requirements are usually higher (mostly due to
the higher clock speed, but potentially with more trace sources when multiple processors are present)
so the trace port could have up to 16-bit or 32-bit trace data (plus clock). In some cases, for example,
when the trace port does not have sufficient bandwidth, trace data can be stored in a trace buffer
instead of streaming out to the trace port immediately.

In most Cortex-M systems, the TPIU included in the IP bundle can support a parallel trace port of up
to 4 trace data bits (plus clock), or use an asynchronous single pin trace protocol called SWO (Serial
Wire Output) for a low-cost trace arrangement, but with a much lower trace bandwidth. The TPIU
used in Cortex-M systems also further reduces the area by merging ATB trace funnel functionality into
it, so it can accept trace from the processor (trace generated by DWT and ITM)) as well as from the
optional ETM simultaneously.

If needed, the trace buses from a Cortex-M processor can be connected to other CoreSight trace bus
infrastructure components and CoreSight TPIU. This is common for complex SoC designs where
a number of processors are present including Cortex-A and the Cortex-M processors.

Figure 5.7: Trace system in Cortex-M3/Cortex-M4 processors.

Please note that the MTB instruction trace solutions in Cortex-M0+, Cortex-M23, Cortex-M33,
and Cortex-M35P do not use ATB at all. With MTB, trace information is directly stored in SRAM
connected to the MTB unit and therefore trace information cannot be collected in real-time. Instead,
the debugger can use a standard debug connection to extract trace results when the content of the
SRAM is in the memory map. This enables a very low-cost trace solution as software developers do
not need to use an expensive trace probe to collect instruction trace information.

ETM
(optional)

ATB (8-bit)

Cortex-M3 /
Cortex-M4

ATB (8-bit)

Trace Port
Interface

Unit (TPIU)

Trace port
interface (4-bit

trace data + clock)

SWO (Serial
Wire Output,

1-pin)

ETM trace
interface

Private Peripheral Bus (PPB)

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

104

5.2.6 Timestamp
In order to allow the debug host to reconstruct event timing from trace data, many trace components
support a global timestamp mechanism. To ensure various trace units have the same timestamp
source, in small processor systems a single timestamp generator is used. This unit can be a simple
binary counter, with the counter value connected to various trace sources. Using this information,
trace components can output timestamp packets periodically to provide timing information.

In Cortex-M3 and Cortex-M4 processors, the timestamp interface is 48-bit (input signal). In
Cortex-M7 and Armv8-M processors, a 64-bit timestamp interface is used. You can use a simple
binary up counter to generate timestamp and enable this counter only when the TRCENA output
signal (Trace Enable) from the Cortex-M processor is set.

The timestamp interface also contains an input signal call TSCLKCHANGE. The intention of this signal
is to help trace reconstruction software to be aware of clock frequency changes. Since processor
systems can switch between different clock sources, and this can affect the timing reconstruction,
TSCLKCHANGE was introduced with the intention that it could be pulsed when clock/frequency
changes were made. This was to enable the trace components to output new timestamp packets
immediately to resynchronize timing information. However, it was found that in some system designs
that it was difficult to implement this feature accurately. TSCLKCHANGE has now been removed from
the ETMv4.0 specification and can be tied low in system designs if needed. More information on this
topic can be found in https://developer.arm.com/docs/300818048/latest/what-is-tsclkchange

5.2.7 Debug components discovery (ROM table and component IDs)
CoreSight architecture has a lookup table mechanism to allow debug components to be discovered
automatically by a debug host. Inside each of the bus system connected to the Access Port module,
there can be one or more look-up table(s) called ROM table(s) to provide the address information of
the debug components, and with ID registers in each of the debug components, the debug host can
then detect the debug components connected to each Access Port.

To get the component discovery process working, the AHB-AP component contains a register BASE
(address offset 0xF8) that listed the base address – the address of the top-level ROM table component
in the AHB memory map. The ROM tables are 4KB in size, and the end address range has ID values
that indicate that it is a ROM table.

Figure 5.8: Concept of ROM table lookup.

AHB-AP

BASEADDR

Top level ROM table
IDs ID values for ROM tables

Entries for debug
components or

secondary ROM table(s)

IDs

Subsystem ROM table (optional)

105

The ROM table entries contain address offsets of the debug components/additional ROM tables.
There can be multiple ROM tables in a system, which are arranged in a hierarchical way. The addresses
used as table entries are relative - in this way a subsystem can contain its ROM table and does not
need to know the absolute address of the debug component inside.

SoC designers should consider customizing the system-level ROM table. The ID values of the ROM
table contains a JEP106 Identity Code, and this represents the company’s identification. You can
register for a JEP106 from www.jedec.org. For more information on this topic, please see: https://
developer.arm.com/docs/103489663/latest/peripheralid-values-for-the-coresight-rom-table, and
https://www.jedec.org/standards-documents/id-codes-order-form

If additional debug components are added/removed, the ROM table entries need to be updated. Each
entry is 32-bit with the following format:

Figure 5.9: ROM table entry format.

The power domain ID field is optional. For most single Cortex-M systems with a single power domain,
it is perfectly fine to set power domain ID and power domain ID valid to 0.

The last entry in the ROM table must have the value of 0x00000000, and subsequent locations are
also read as zero.

There is an additional read-only register in the ROM table called MEMTYPE, which is in address
0xFCC of the ROM table. If bit 0 (SYSMEM) of this register is 1, it means the system memory is visible
on the bus that the ROM table is connected. Otherwise, the bus is for debug components only. For
Cortex-M systems, the MEMTYPE of ROM tables is set to 1.

For more information on the ROM table format, please refer to CoreSight Architecture Specification v2.0
section D5: https://static.docs.arm.com/ihi0029/d/IHI0029D_coresight_architecture_spec_v2_0.pdf

Since the current Cortex-M processors listed in Table 5.1 are based on CoreSight architecture
specification v2.0, the designs use class 0x1 ROM tables.

Address offset

31 12

-

1 0

Format: always 1 (32-bit), 0 indicates 8-bit and
this not used in Cortex-M systems

Entry present: 1=present, 0=not present

Power domain ID (only if Power domain ID
valid is 1, otherwise this is read-as-zero)

2

Power domain ID valid – if 1, a power domain ID
is available in bit[8:4]

8 4

-

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

106

5.2.8 Debug authentication
CoreSight debug architecture supports a number of control signals (input of processor or debug/trace
components):

Table 5.3: CoreSight debug authentication signals.

In simplified terms, DBGEN and NIDEN control the Non-secure debug and trace permissions, while
SPIDEN and SPNIDEN control the Secure debug and trace permissions. Not all combinations of these
signals are valid – if a debug action is allowed for Secure state, it must also be allowed for Non-secure
state (i.e., you cannot have SPIDEN set to 1 while DBGEN set to 0, or SPNIDEN set to 1 and NIDEN
set to 0).

There is another enable control signal on AHB-AP component which will enable/disable memory
accesses of AHB-AP (when disabled, the debugger can still access the AHB-AP registers, but cannot
initiate an AHB transfer).

�� In Cortex-M3/Cortex-M4, this is named as DAPEN (DAPCLK domain).

�� In newer Cortex-M DAP, this is named DEVICEEN (not available in Cortex-M0 DesignStart Eval as it
is obfuscated within the module).

In simple systems that do not need debug authentication support, these signals can be tied high. This
enables all the debug functionalities.

In systems that need debug authentication support, the CoreSight debug authentication signals
are connected to a debug authentication control unit (not a part of the Cortex-M processor) that
authenticates debug connections. The authentication process typically based on the product’s life
cycle state and user’s input such as debug certificate or password. Based on guidelines from Platform
Security Architecture (PSA), generally certificated based debug authentication is preferred over
password-based authentication for products that can contain sensitive information.

Please note that:

�� The behavior of debug access control has changed between different versions of Armv7-M
architectures. In older Arm Cortex-M processors like Cortex-M3 and Cortex-M4, and Armv6-M
processors, the AHB-AP can access to the memory space when DBGEN and NIDEN are 0. Since
Cortex-M7 processor (from version E of Armv7-M architecture), DBGEN and NIDEN signals affect
the debug access permission.

Signal Description

DBGEN Invasive debug enable

NIDEN Non-invasive debug enable (for trace components)

SPIDEN Secure Invasive debug enable (available for systems with TrustZone)

SPNIDEN Secure Non-invasive debug enable (for trace components, available for systems with TrustZone)

107

�� Although Cortex-M3 and Cortex-M4 have internal trace sources (ITM, DWT), it does not have
a NIDEN signal. It is still possible to disable trace output by disabling the ATB path from the
processor’s ATB to TPIU, but the masking control has to be a static control signal and cannot be
changed during trace operations.

�� For all Armv8-M processors, permission for debug to access the memory system depends on the
debug authentication status, as describes in the Armv8-M Architecture Reference Manual.

5.2.9 Debug power request
The DAP modules contain simple handshaking for power management. These signals are in SWDCLK
or TCK clock domains and must be synchronized before being used for power control or clock gating.

Table 5.4: CoreSight DAP power request signals.

Some of the DAP modules only have the debug power up handshaking.

The handshaking interface is used at the beginning of a debug connection – the debug host requests
the debug system to be powered up and wait for the acknowledgment before proceeding to access
debug and system components.

In simple FPGA designs, you can handle these signals with a loopback via a double D flip-flop
synchronizer. The synchronized version of the signals could be used for clock gating control.

Figure 5.10: DAP power management for simple FPGA designs.

In ASIC designs where multiple power domains are used, the acknowledge signals need to be handled
by the power management logic to ensure that the acknowledge is sent only after the power domain
is up and running.

A knowledge base article on these signals are available on Arm website:
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka14237.html

Signal Direction Description

CDBGPWRUPREQ Output from DAP Power up request for debug

CDBGPWRUPACK Input to DAP Acknowledge debug is powered up

CSYSPWRUPREQ Output from DAP Power-up request for the system (optional)

CSYSPWRUPACK Input to DAP Acknowledge system is powered up (optional)

DAP / SWJ-DP

JTAG / SWD
connection

DFF DFF
CDBGPWRUPREQ

CDBGPWRUPACK
DFF DFF

CSYSPWRUPREQ

CSYSPWRUPACK

Processor’s clock domain

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

108

5.2.10 Debug reset request
Similar to the debug power request handshaking, some of the DAP designs also support an optional
debug reset request handshaking signal that allows the debug host to request a reset to the debug
and trace system in case the debug/trace system has become unresponsive. Normally this should
reset only the debug and trace system, but not the functional logic.

Table 5.5: CoreSight debug request handshake signals.

In a few cases, such debug reset also resets functional logic if there is no easy way to isolate the reset.
If that is the case, chip designers should document this clearly to avoid confusing tool vendors.

5.2.11 Cross Trigger Interface
The Cross Trigger Interface (CTI) is an optional feature in Cortex-M0+, Cortex-M7 and Armv8-M
processors. This unit is useful for multi-processor systems where debug events can distribute to
multiple processors to allow multiple processor cores to halt and resume at the same time during
a debug session. For designers using Cortex-M3, Cortex-M4 and Cortex-M0 processors, processor
wrappers and a separate CTI component are available in CoreSight SoC products.

For single-processor systems, CTI option can be removed, and its signals can be tied off (for inputs) or
unused (for outputs).

Signal Direction Description

CDBGRSTREQ Output from DAP Debug reset request (optional)

CDBGRSTACK Input to DAP Acknowledge debug reset has been carried out (optional)

109

5.3 Debug integration
5.3.1 JTAG / Serial Wire Debug connections
Since the Cortex-M processors are designed as generic IP, tristate buffers are not used in the design
and system designers need to add them (and optionally pin multiplexers) to the top-level design when
integrating JTAG or Serial Wire debug connection.

The top debug connections for JTAG / SWD is summarised in Figure 5.11.

Figure 5.11: Top-level signal handling in for JTAG/SWD debug connection.

Many parts of the logic in Figure 5.11 are optional. For example,

�� Some of the JTAG signals like nTRST, TDI, and TDO are not needed if the processor system is
configured to support Serial Wire Debug (SWD) only.

�� Multiplexing of debug pins and other functional pins this optional – be careful when multiplexing
debug pins with functional pins as this could lock out debug connections.

SWDIOTMS

Optional pin multiplexers

TDI

nTRST

SWCLKTCK

SWDITMS

SWDO

SWDOEN

SWCLKTCK

nTRST

TDI

TDO/SWO

I/O pads and buffers

TDO

nTDOEN

SWO (SWV)

Tie to 1 or SWOACTIVE

JTAGNSW

1

1
0

0

(alternate function, optional)

(alternate function, optional)

(alternate function, optional)

(alternate function, optional)

Pin multiplexers for SWO support

tristate
buffer

tristate
buffer

enable

enable

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

110

�� The use of nTDOEN is optional. Potentially disabling the TDO tristate buffer when it is not used can
save power.

�� For Armv7-M or Armv8-M Mainline Cortex-M systems that support trace, one integration task
required is to multiplex TDO (JTAG’s test data out) with SWO (Serial Wire Output). This enables
debug tools to support low bandwidth trace operations. Using this arrangement, the SWO is
available only when using SWD debug protocol.

�� SWO/SWV is not available on Cortex-M0, Cortex-M0+, Cortex-M1, or Cortex-M23, and the
associated pin function multiplexers can be removed in those cases.

�� When using the SWO/SWV feature, instead of always enabling the output tristate buffer, using
SWOACTIVE from the Cortex-M TPIU is also a suitable arrangement. Note: SWOACTIVE signal is
not available in Cortex-M3 DesignStart Eval.

In low-power designs, if we need to allow debug connections to be established when the processor
is sleeping, the debug interface block (either DAP or SWJ-DP), and the associated logic (including I/O
pads and pin multiplexer) should not be powered down.

In addition, the debug power request signals need to be connected as covered in Section 5.2.9 and do not
forget to set up the clock and reset timing constraints for JTAG/SWD’s signals including clock and reset.

5.3.2 Trace port connections
The trace connections for a common Cortex-M based system might contain:

�� SWO (or SWV in Cortex-M3/M4) – already covered in 5.3.1 as it is normally multiplexed with TDO pin;

�� TRACEDATA and TRACECLK.

Please note that MTB instruction trace does not require top-level pins because the trace data is
extracted via debug connection.

In single-core Cortex-M systems that support trace, the Cortex-M TPIU bundled supports up to 4-bit
trace data and a trace clock (all of them are output signals). Optionally, you can multiplex the trace
pins with functional inputs/outputs, and use the TRCENA (trace enable) output from the processor
and optionally ETMPWRUP (ETM power-up) from the ETM to switch the pins to trace function
when trace system is enabled. Note: If using Cortex-M3 DesignStart Eval, SWOACTIVE signal is not
available and therefore SWO cannot be multiplexed with TRACEDATA[0]. However, you can still
multiplex SWO with TDO as explained in section 5.3.1.

111

Figure 5.12: Top-level signal handling for trace port connections.

Using TRACENA for pin multiplexing control is easy as it is always set when any of the trace
components are enabled, and ETMPWRUP can be used to indicate TPIU need to operate in trace port
mode in order to provide enough bandwidth to output ETM trace. Alternatively, it is also possible to
use a programmable control register to enable the trace pin functions. This allows software developers
to use just SWO trace without forcing other trace pins to trace functions. If you are doing this, you
will need debug tools to program this register before using ETM. In most tools, you can set up a debug
script to enable this action to take place before the debug session started.

5.3.3 Clocks for the debug and trace system
For the Cortex-M3 and Cortex-M4 processor systems, there can be up to four asynchronous clock
domains:

Figure 5.13: Asynchronous clock boundaries in Cortex-M3 and Cortex-M4 processor systems.

TRACEDATA[0]

TRACEDATA[1]

TRACEDATA[2]

TRACEDATA[3]

I/O pads and buffersOptional pin multiplexers

TRACECLK

1

1

1

1

1
TRACECLK

TRACEDATA[3]

TRACEDATA[2]

TRACEDATA[0]

TRACEDATA[1]

TRCENA and
ETMPWRUP / other

programmable
control register

pin mux control

SWO (SWV)

SWOACTIVE
(from TPIU)

SWJ-DP AHB-AP

CM3TPIU /
CM4TPIU

System clock frequencyDAPCLK frequencyJTAG / SWD clock

Debug bus

ATB

ETM

ATB

Trace
outputs

TRACECLKINFCLK, HCLKDAPCLK

JTAG/SWD

SWCLKTCK

Trace port clock

Cortex-M3 /
Cortex-M4

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

112

Most of the newer Cortex-M processors do not have internal asynchronous clock boundaries apart
from the DAP interface modules:

Figure 5.14: Asynchronous clock boundaries in newer Cortex-M systems.

In the case of single-core Cortex-M3 / Cortex-M4 systems, system designers can use the system clock
to generate the DAPCLK, with clock gating controlled by synchronized CDBGPWRUPREQ. For multi-
core systems, the DAPCLK needs to be the same as the debug APB of the DAP (Debug Access Port).

While technically TRCECLKIN for the TPIU can be completely asynchronous to system clocks, there
are some additional considerations when designing the clock systems for TRACECLKIN. From the
debug tools point of view, when using SWO (Serial Wire Output), the debug probe expects the data
rate to be constant during a debug session.

In an MCU debug use case, potentially you can connect TRACECLKIN to the processor’s clock. You
can also clock gate TRACECLKIN using TRCENA from the processor. (Please note: the trace system
can be enabled using software without a debug connection). For designs using Cortex-M23 and
Cortex-M33 processors, the clock gate control should be TRCENA|TPIU_PSEL (clock enabled when
either TRCENA or TPIU’s PSEL is set).

Considering Serial Wire Output/Serial Wire Viewer user cases, although the processor clock’s
frequency might change at boot time (as it switches from crystal to PLL), the software trace (i.e., printf
via the ITM) normally does not happen until after entering main(), so that will be okay. However, if the
application switches clock frequency speed during operations, then connecting TRACECLKIN to the
processor’s clock would be problematic as the debug probe does not know what the current clock
frequency is and therefore cannot extract the serial data.

When using Trace port mode (4-bit data + clock), even if the clock speed changed, the debug probe
could recover the data as the reference trace clock is available. Therefore, clock frequency change is
not an issue normally. However, for a high-speed trace (if your chip is going to run at >100MHz), some
trace probes use PLL/DLL to handle clock recovery and clock frequency changes can cause the PLL/
DLL in the debug probe to lose synchronization for a short time.

At the same time, if using a constant but low-frequency clock (e.g., direct from a low-frequency
crystal), it might not have sufficient data bandwidth to output an ETM trace when the processor

Cortex-M DAP

Cortex-M
TPIU

System clock frequencyJTAG / SWD clock

Debug AHB

ATB

ETM

ATB

Trace
outputs

TRACECLKINSCLK, HCLK

JTAG/SWD

SWCLKTCK

Trace port clock

Cortex-M

DCLK
(synchronous to
system clocks)

113

switches to its high-speed clock from PLL. Therefore, in designing of TRACECLKIN source, ideally, use
a constant high-speed clock if one is available, providing that it is slower than the frequency limitations
of the I/O pins for trace outputs. (Note: this can be completely asynchronous to the processor’s clock).
In generic MCU designs, it could be desirable to have multiple options (controlled by a programmable
register and set up by means of debug configuration script in the debugger). The default setup could
use the processor’s clock and be changed to other clock sources if needed.

Modern commercial debug and trace probes for Cortex-M support debug connections of maximum
20MHz to 50MHz, and trace port operations at up to 200 to 300MHz. Obviously, connecting debug
and trace at lower frequencies is allowed. Please note, the TPIU has an internal programmable
pre-scaler to allow the clock speed of SWO to be reduced if needed. The maximum speed of debug
and TPIU operations also depends on:

�� Characteristics of the I/O pads;

�� PCB designs;

�� Cable connection between the board and the debug & trace probes;

�� Stability of the voltage sources and noises in the environment.

Many debug and trace probes might also have their own specific requirements for signal voltage
levels. If the debug and trace connection is unstable, it worth trying to reduce the frequency in the
connection settings to see if this helps.

5.3.4 Multi-drop serial wire support
Serial Wire Debug protocol v2 optionally supports multi-drop Serial Wire Debug. This feature is
optional in the DAP in newer Cortex-M processors and is not available in the SWJ-DP for Cortex-M3
and Cortex-M4 processors, or the DAP module for the Cortex-M0 processor. Even if you are using
a more recent processor, support for this feature is optional and therefore might not be included.

Figure 5.15: Multi-drop Serial Wire Debug.

Cortex-M processorSWD
DAP

SWCLK

SWDIO

Cortex-M processorSWD
DAP

SWCLK

SWDIO

TARGET
ID

INSTANCE
ID

TARGET
ID

INSTANCE
ID

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

114

If using multi-drop SWD, the system designer must provide a target ID and instance ID to the DAP.
These ID values are device-specific, where Target ID is unique to a device. Instance ID is needed if a
circuit board contains multiple identical devices; in that case, their instance ID needs to be unique.

The use of multi-drop serial wire debug is uncommon in microcontrollers because there is a need to
set up target ID and instance ID to ensure that the ID values are unique, and the debug tools know
which DAP, is which. Multi-drop Serial Wire is more popular for complex SoC designs that are end-
product-specific, as all the target and instance IDs of the end-products can be controlled (e.g., by the
OEM). Please also note that some microcontroller debug tools do not have support for multi-drop
operations.

5.3.5 Debug authentication
For minimum, a simple debug authentication needs to control the debug authentication signals (see
Section 5.2.8), and in the case of Cortex-M0, Cortex-M0+, Cortex-M3, and Cortex-M4 processors,
the debug authentication also requires bus level access filtering logic to restrict debug accesses to
memories.

To be secure, typically a debug authentication system requires Non-Volatile Memory (NVM) for
storage of life cycle state information, secure information for decryption of debug certificates, a
communication interface for the authentication process, and, potentially, a crypto accelerator for
decryption of the certificates. Often, the debug authentication mechanism is software controlled and
integrated into the firmware of the device.

Figure 5.16: Debug authentication system concept.

Cortex-M processor

DAP

Firmware

Debug
authentication

software

Communication
interface

Interconnect

Transfer of debug
authentication

information (e.g.
certificate)

Crypto
accelerator

Bu
s

tra
ns

ac
tio

n
fil

te
r

Control
registers

NVM

115

Note: The bus filtering arrangement in Figure 5.16 cannot be used for Cortex-M3 and Cortex-M4
- in the case of Cortex-M3 and Cortex-M4 processors, the bus connection between AHB-AP and
the processor’s internal interconnect is not exposed. So, the DAPEN of the AHB-AP (input of
Cortex-M3/Cortex-M4 processor) could be used to block all debug accesses until debug connection
is authenticated.

The Arm document TBSA-M (Trusted Base System Architecture for Cortex-M) provides
comprehensive requirements information about debug authentication. However, occasionally system
designers would like to use some simpler designs; for example, by having a passcode mechanism to
protect the system, and to allow a full hardware-based approach (since the firmware is not ready).
While this is possible, a brute force approach could be used to obtain the passcode, or a replay
mechanism employed to reverse engineer the passcode if the attacker has gained access to a working
debug session. Unless a system is developed only as a prototype (not for commercial deployment),
then a simple passcode approach is not recommended.

If a very simple debug authentication approach is needed, a possible arrangement is to use e-fuse
or emulated e-fuse in embedded flash to store debug authentication control information. The
information might contain several pieces of information; namely:

�� A NVM location to indicate if the debug authentication feature is enabled;

�� One or more NVM locations to hold passcode(s) – this information must not be readable from
software or debugger. If there is a need for multiple levels of debug authentication controls,
multiple NVM passcodes could be used.

A separate passcode register (which can be implemented as a memory-mapped register) is needed to allow
software development tools to program the passcode, and the value is compared against the passwords
stored in NVM by hardware. If using Cortex-M3 or Cortex-M4, this can be implemented as a mirror of the
AHB-AP and activates the comparison if the debug tool is writing to a specific address (needed to test the
condition of TAR (Target Address Register) and CSW (Control and Status Word) registers):

Figure 5.17: Simple debug authentication passcode mechanism for Cortex-M3/Cortex-M4 processor systems (not recommended for general product
development).

SWJ-DP

JTAG/SWD
connection

Debug APB
AHB-AP

CSW
TAR
DRW

Mirrored AHB-AP

CSW
TAR
DRW Comparator

Compare
conditioning

Stored passcode in NVM

latch

Cortex-M3/Cortex-M4

Chapter 5 | Debug integration with Cortex-M processor systems

System-on-Chip Design with Arm® Cortex®-M processors

116

For other Cortex-M processors, the connection between the DAP and the processor exposes the
debug accesses, and therefore, the passcode registers can be memory-mapped registers placed on the
debug AHB there.

Please note that such an example scheme only provides limited protection. For stronger protection,
debug authentication solutions such as CryptoCell/CryptoIsland could be used. These solutions also
offer other security features such as cryptographic accelerators and life cycle state management.

5.4 Other related topics
5.4.1 Other signal connections
HALTED – the HALTED signal is an output status from the processor and can be used for certain
peripherals that need to be stopped when the processor is halted and won’t be able to serve its
interrupt services.

EDBGRQ – external debug request is usually used for systems with multiple processors, to allow the
processor to enter halt if there is a debug event in another processor. In single-processor systems, or if
multiple core debug events are transferred by built-in CTI, this signal can be tied low.

DBGRESTART and DBGRESTARTED – this is used for systems with multiple processors, to allow
multiple processors to be taken out from halted state at the same time. In single-processor systems, or
if multi-core debug events are transferred by built-in CTI, the DBGRESTART signal can be tied low and
DBGRESTARTED can be left unused.

FIXMASTERTYPE – this signal is available in the Cortex-M3 and Cortex-M4 processors. When this
signal is low, it allows the debugger to generate a debug access with the same bus master information
(HMASTER) as transfers generated from software running on the processor (this behavior is
programmable in the AHB-AP). When this pin is high, an HMASTER signal always indicates the true
source of the transfer. This pin should be set to 1 if there are firmware protection mechanisms in the
system that needs to know the true generation source of bus transfers. In other Cortex-M processors,
the DAP interface does not allow the HMASTER value of debug accesses to be controlled by debug
host software and so do not need this pin.

5.4.2 Daisy chain of JTAG connection
In theory, if using the JTAG protocol, it is possible to daisy chain the JTAG connections with another
JTAG device. However, some debug tools do not support such arrangements. In addition, daisy-
chaining JTAG TAP controllers for device testing and TAP controller for software debug might lead to
unexpected conflicts and therefore should be avoided.

117

Chapter 5 | Debug integration with Cortex-M processor systems

Low-power support

CHAPTER
6

System-on-Chip Design with Arm® Cortex®-M processors

120

6.1 Overview of low-power Cortex-M features
Today’s microcontroller designs can be extremely energy efficient. In addition to low-power use during
operations, the sleep mode current and additional low-power capabilities (e.g., retention SRAM) can
be very impressive. Today, many low-power Cortex-M based microcontrollers can operate at below
50uA/MHz. Together with the ability to run with a lower supply voltage, the battery life of embedded
products can be much longer than those designed 10-15 years ago when the Cortex-M processors
were just entering the microcontroller market. And with high code density and higher processing
performance, the energy efficiencies of Cortex-M based systems are often much better than 8-bit and
16-bit solutions.

To enable low-power capabilities, most of the Cortex-M processors provide various low-power
features, including:

�� Architecture defined sleep modes: sleep and deep sleep;

�� Multiple clock signals for block-level clock gating, and optional support for sub-block level clock
gating (sometimes referred to as architectural clock gating);

�� State retention power gating (SRPG) support;

�� Optional Wake-up Interrupt Controller (WIC);

�� Sleep-on-exit – allows interrupt driven applications to enter sleep mode automatically when no
interrupt requests are pending.

Newer Cortex-M processors also support multi-power domains and additional pipeline optimizations
to enable ultra-low-power designs.

In addition to dedicated low-power features, some of the characteristics of the Cortex-M processors
are also helpful for enabling low-power designs:

�� High code density – allows applications to fit into smaller program memories;

�� Small area – Cortex-M0, Cortex-M0+, and Cortex-M23 processors are designed to meet the power
constraints of the most demanding low-power applications;

�� High performance – processing tasks can be completed faster, reducing overall energy
consumption;

�� Low interrupt latency and interrupt handling optimizations – reduce the overhead of interrupt handling.

Additional low-power optimizations can be done at the system-level. For example, in Chapter 4, Figure
4.14, we mentioned the approach of having multiple banks of SRAM. In this chapter, we will also cover
some other methods to reduce system-level power.

121

6.2 Low-power design basics
Clock gating is one of the most basic techniques for lowering power consumptions in digital systems.
Typically, a register can have an enable input to reduce unnecessary internal signal toggling. Synthesis
tools can transform the logic to gate off the clock to the register using the same enable signal to
reduce dynamic power (Figure 6.1) further.

Figure 6.1: Clock gating.

Since all the Cortex-M processors are written in generic Verilog RTL, synthesis tools can handle the
clock gating insertion easily.

Another level of clock gating is done inside the processor design where a number of functional units
contain instantiations of clock gating cell wrappers (which can be modified to process node-specific
clock gating cells). These clock gating wrappers are placed in optimum locations to enable more
aggressive clock gating where synthesis tools cannot determine the clock gating opportunities. This
technique is referred to as architectural clock gating (ACG) and is optional (enable/disable by a Verilog
parameter, usually called ACG).

Figure 6.2: Architectural clock gating.

Many Cortex-M processors also have multiple top-level clock signals that enable system designers
to place additional clock gating at the clock domain level (Figure 6.3). In some newer processors, this
arrangement is handled internally to the processor design.

CLK

D

EN

Q

CLK

D

EN

Q

CG
Clock gating cell

CLK

Hardware
sub-block

Clock gating cell
wrapper

CG

Sub-block
enable signal

Functional unit

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

122

Figure 6.3: Separated clock domains.

In Chapter 5, we have already covered the debug power control signals CDBGPWRUPREQ and
CDBGPWRUPACK, which can be used for clock gate control for the debug clock domain. For system
clock domain, some of the Cortex-M processors have GATEHCLK signal which can serve the purpose
of gating the system clock on/off.

In many cases, just clock gating is not enough, and so power gating is needed. Simple power gating
requires power switch transistors and also additional special cells for signal isolation and clamping.

Figure 6.4: Simple power gating.

The most significant disadvantage of simple power gating is that the logic state would be lost and
would need to be reset. A newer form of power gating technology is called State Retention Power
Gating (SRPG), which introduces state retention elements inside registers and uses separate power
rails for state retention. Since the rest of the logic can be powered down, it is still a significant saving
for sleep modes. However, the area of state retention registers and their dynamic power are higher
than for the standard registers, so such a mechanism is not optimized for systems that are active most
of the time.

Figure 6.5: State retention power gating.

Logic

FET
Vdd

GND

Vddret

CLK

D Q

Vdd

GND

Vddret

State

Debug domain
Debug

CLK CG

System domain
System

CLK CG

System clock
gating control

Debug clock
gating control

Cortex-M processor

Logic

FET
Vdd

GND

123

In addition to digital logic, there are also low-power features in memories (e.g., many SRAM macros
support a range of low-power states). A range of peripheral components like ADC (Analog to Digital
Converters) can also have their own low-power features.

6.3 Cortex-M low-power interfaces
6.3.1 Sleep status and GATEHCLK output
Most of the Cortex-M processors have the following status output signals:

Table 6.1: Sleep interface.

Architecturally, the processor supports two sleep modes: sleep and deep sleep. The mechanisms for
entering these sleep modes are the same.

�� Execution of WFI or WFE will enter sleep mode conditionally;

�� The sleep-on-exit feature is enabled, and the processor is returning from an exception handler to
thread level.

The selection of entering sleep and deep sleep is defined by SLEEPDEEP bit in the System Control
Register (SCR). Inside the processor, there is not much difference between the two types of sleep.
System designers can make use of the SLEEPING and SLEEPDEEP signals to define power-saving
measures on the chip level, and optionally extend the sleep modes with device-specific programmable
registers if preferred.

(Please note in Armv7-M and Armv8-M Mainline processors, the WIC is used only in deep sleep).

When the processor is sleeping, it is still possible to have bus transactions on the AHB interface of the
processor due to debug accesses. Therefore, an extra signal GATEHCLK is provided to indicate that
the processor is sleeping, and there are no on-going bus transactions like debug accesses.

How these signals can be used is device-specific. For example, bus clocks can be gated off, SRAM can
enter a lower power state, and some peripherals could be stopped if GATEHCLK is high.

Signal name Description

SLEEPING When it is 1, it indicates the processor is in a sleep state

SLEEPDEEP When it is 1, it indicates the processor is in a sleep state, and the SLEEPDEEP bit (bit 2) in the System
Control Register (SCR) is set

GATEHCLK When this is 1, it means it is safe to gate off the HCLK signal. (Processor is sleeping, and there are no
debug accesses)

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

124

6.3.2 Q-channel low-power interface (Applicable to Cortex-M23, Cortex-M33,
Cortex-M35P)
Newer Cortex-M processors (Cortex-M23, Cortex-M33, and Cortex-M35P) support Q-channel, one of
the handshaking protocols defined in AMBA 4 Low-power Interface Specification. The specification of
this interface protocol can be downloaded from Arm’s website:

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0068c/index.html

The new interface protocol enables system designers to create reusable IP for power management.
This Low-power Interface Specification describes both Q-channel and P-channel protocols. The use of
Q-channels in the Cortex-M processors only started recently with the introduction of Cortex-M23 and
Cortex-M33 processors. P-channels are used on recent Cortex-A processors for most complex power
control scenarios.

The Q-channel connects between a design unit (e.g., a processor) and a power management unit
(device-specific). The interface operates with 4 signals, as shown in Table 6.2. The polarity of these
signals must be chosen so that if the interface signals get clamped to 0 in a low-power state, it will not
affect the signal levels

Table 6.2: Q-channel signals.

A processor can have multiple Q-channels for different power domains, and there can be separated
Q-channels for clock gating and power-down operations. In simple designs, the system-level power
management hardware can use a Q-channel to control a power domain of a processor.

Figure 6.6: A simple example of a Q-channel setup.

Signal Description

QACTIVE Indicates the design unit has an outstanding action to perform

QREQn Active-low signal to request the low-power state

QACCEPTn Active-low signal to acknowledge that the low-power request is accepted

QDENY Active high signal to indicate that the low-power request is denied

Power management unit (PMU) Processor

QACTIVE

QREQn

QACCEPTn

QDENY

QACTIVE

QREQn

QACCEPTn

QDENY

Power
gating

Power gating control

Power

Sleep mode status
(not a part of Q

channel)

125

The following example shows a power management scenario for a processor’s system power domain.
At the starting stage of the power-up sequence, the power gating control applies power to the
processor. In this scenario, both the QACTIVE and QREQn signals are high before the processor starts
(Figure 6.7).

Figure 6.7: Example Q-channel activity for system domain when a processor boots up.

When the processor enters sleep mode, the power management unit detects the sleep operation and
then requests to change the processor to low-power state (e.g., SRPG) by asserting QREQn to 0. The
processor can then drive QACCEPTn low to indicate that the low-power state request is accepted.
After the processor accepts the low-power mode request, it then puts the processor in the targeted
low-power state (i.e., SRPG), as shown in Figure 6.8.

Figure 6.8: Example of Q-channel activity for the system domain when a processor enters a sleep mode that uses state retention power gating.

QACTIVE

QREQn

QACCEPTn

QDENY

Power on
(power gating)

SLEEPING
(processor status)

Processor exit from
reset and start
executing code

Reset_n

QACTIVE

QREQn

QACCEPTn

QDENY

Power on
(power gating)

Reset_n

SLEEPING
(processor

status)

Processor entered
sleep

Processor entered a sleep mode that
triggered SRPG operation

QACTIVE de-asserted
to indicate that the

processor is idle

PMU requested
low-power state

Processor accepted
low-power state

Processor entered state
retention power gating

Interrupt
event

PMU received a
wake-up request

from WIC and
restored power to

the processor

Low-power state
request removed

Processor exited sleep mode
and started execute ISR

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

126

Assuming that the processor system has a Wakeup Interrupt Controller (WIC) in an always-on
power domain or similar hardware features, then a peripheral activity triggering an interrupt request
can wake up the system via a separate connection between the WIC and the power management
controller. In this scenario, the power management controller can restore the power and clock signal
activity to the processor system, and then the Q-channel can complete its handshaking sequence
(right-hand side of Figure 6.8).

If an interrupt request arrives just after the processor has entered sleep mode, then it is possible for the
processor to reject the low-power state request using the QDENY signal. In such cases, the PMU must
not power down the processor in order to allow it to continue its operations, as shown in Figure 6.9.

Figure 6.9: Example Q-channel activity for system domain when a processor rejects a low-power state request.

It is possible that some power domains of a processor can start up in a low-power state. For example,
the debug power domain of a processor can be in an OFF state when the system starts and turned on
only when a debugger is connected. In such cases, the QACTIVE and QREQn signals will have a start-
up level of zero instead of one.

In addition to processor systems, the Q-channel can also be used in other system components. Since
the handshake protocol is fairly simple and is very generic, it can be deployed for many components of
a low-power microcontroller or system-on-chip design.

6.3.3 Sleep hold interface
The sleep hold interface is used to delay the resume of program execution when the processor wakes
up from a sleep mode. There would be various reasons for using this interface: one example is that
a memory block might need some clock cycles to get itself out of low-power states. Please note,
this feature is less likely to be used when the Wake-up Interrupt Controller (WIC) is used because
it is possible to hold the processor in sleep mode by gating off all clocks while interrupt detection is
handled by the WIC.

QACTIVE

QREQn

QACCEPTn

QDENY

Power on
(power gating)

Reset_n

SLEEPING
(processor status)

Processor
entered

sleep

Processor entered a sleep mode that
triggered SRPG operation

QACTIVE de-asserted
to indicate that the

processor is idle

PMU requested low
power state

Processor rejected
low power state

Interrupt
request arrived

QACTIVE re-asserted to
indicate that the
processor is busy

Processor started ISR
execution

Processor exited sleep
mode due to interrupt

127

The sleep hold interface contains two signals:

Table 6.3: Sleep hold request acknowledge interface.

These two signals are active-low and interface with a power management unit (PMU) or the system
controller developed by silicon vendors.

The operation of the sleep hold interface is very simple: When the PMU or System Controller detects
that the processor core has entered sleep (SLEEPING or SLEEPDEEP signals), it can then assert
the SLEEPHOLDREQn signal to the processor. If the processor core responds with the assertion of
SLEEPHOLDACKn (pulled low), then the PMU or system controller can then reduce the power by
turning off the flash memories, peripherals, PLL, etc. If the processor core does not respond with
SLEEPHOLDACKn, then it means the processor core might have received an interrupt or a debug
request, so it is going to wake up. In this case, the PMU or system controller should not carry out
any further action and de-assert SLEEPHOLDREQn when sleep signals (SLEEPING or SLEEPDEEP)
is de-asserted.

If the sleep hold request has been accepted after the system has entered sleep, and an interrupt arrives,
the processor core will de-assert the sleep signals. However, the processor core will not resume program
execution until SLEEPHOLDREQn from the PMU or system controller is de-asserted (pulled high).
When the flash memory voltage supply is resumed, and all the logic is ready, the SLEEPHOLDREQn can
be de-asserted, and the execution of the interrupt service routine can be started.

Figure 6.10: Waveform of the sleep hold interface operations.

During the extended sleep, it is possible to stop the HCLK if GATEHCLK is high.

If the sleep hold feature is not needed, the SLEEPHOLDREQn input signal can be tied high.

Signal name Description

SLEEPHOLDREQn Input of processor. When using this feature, set this signal to 1 after entering sleep mode

SLEEPHOLDACKn Output from processor to indicate sleep hold request is accepted

SLEEPING

SLEEPHOLDREQn
(from PMU or system

controller)

SLEEPHOLDACKn
(from Cortex-M)

1) Processor enters
sleep mode after

executing WFI/WFE

2) System controller
asserts

SLEEPHOLDREQ to
keep the core asleep

3) Cortex-M responds by
asserting SLEEPHOLDACKn
to indicate now core is held in

sleep mode

4) An IRQ
arrives

5) Processor deasserts
SLEEPING, indicating it

wants to wakeup

7)
SLEEPHOLDACKn is

deasserted,
indicating processor

starts running

IRQ 6) System controller
deassert

SLEEPHOLDREQn to
allow core to run

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

128

6.3.4 Wakeup Interrupt Controller (WIC)
If a Cortex-M processor has all of its clock signals gated off or has been put into a state retention
power down state, then its NVIC will not be able to detect incoming interrupts or other wake-up
events. To solve this problem, the WIC feature was introduced.

The WIC is an optional block that is in a separated always on the power domain that will take the role
of interrupt and wake up event detection when the NVIC is stopped or powered down. The exact
interface and integration details can be processor-specific. In general, the interface between the WIC
and the processor contains:

Table 6.4: Interface between NVIC and WIC.

The WIC has the following outputs to the system:

Table 6.5: WIC’s output.

Finally, there can be an additional interface on the Cortex-M processor to enable/disable the WIC
operation, which we will cover later in this section.

The WIC delivered in the Cortex-M product bundle is an example of this small interrupt detection
logic, and it is modifiable. In some cases, designers have modified the WIC to enable a latch-based
operation so that wake-up events can be detected and captured without any active clocks.
An overview of the WIC operations is as follows:

�� When entering sleep mode, the wakeup event mask is transferred from NVIC to WIC using
a dedicated hardware interface (WICMASK[] and WICLOAD).

�� When a wake-up event is detected, the WIC sends a wake-up request to the system power
management control.

Signal name Direction Description

WICMASKxxx[n:0] Processor to WIC Wakeup event mask. Contain mask status for NMI, RXEV, EDBGRQ (for
Armv7-M, Armv8-M Mainline) and IRQ signals. The signal width is configurable.

WICLOAD Processor to WIC Indicate to WIC that the WICMASK is valid and needs to be captured

WICCLEAR Processor to WIC Clear the wake-up event mask inside WIC

Signal name Direction Description

WICINT[n:0] / IRQ +
other wakeup events

Input Wakeup events: NMI, RXEV, EDBGRQ (for Armv7-M, Armv8-M Mainline) and
IRQ signals. The signal width is configurable.

WAKEUP Output Wakeup request to the system controller to indicate that the processor needs
to be woken up to serve an interrupt request or other event.

WICPENDxxx[n:0] Output Latched version of an interrupt request. Since the incoming interrupt event
could be single-cycle, the WIC holds the request status until the processor is
back operating and WICCLEAR is asserted. This can be fed to NVIC’s interrupt
inputs via an OR logic.

129

�� The power management control then restores the power to the processor and resumes clocking.
The processor can pick up the interrupt request (or other wakeup events) and resume operation.

�� The wake-up masking information and pending wake-up event held inside the WIC is cleared by
hardware automatically when the processor wakes up from sleep mode (WICCLEAR).

Figure 6.11: Simplified wakeup interrupt controller operations.

In Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7 and Cortex-M23 processors, the
WIC is external to the processor. In Cortex-M33 and Cortex-M35P, the WIC is integrated inside the
processor. In different Cortex-M processors, the handling of wakeup event routing is slightly different:
In Cortex-M3 and Cortex-M4, the merging of a pending wake-up event with the original source is
outside of the WIC. This is merged into the WIC in newer Cortex-M processor designs.

Figure 6.12: Routing of wake-up event signals in different Cortex-M processors.

Processor
clock

SLEEPING/
SLEEPDEEP

GATEHCLK

WICMASK[]

WICLOAD

WICCLEAR

WAKEUP

WICINT[]

Clock stopped

WICPEND[]

(powered down)

(powered down)

(powered down)

(powered down)

(powered down)

Wake-up
event

Sy
ste

m
 ca

n
en

te
r s

ta
te

 re
te

nt
io

n
po

w
er

 d
ow

n

Sy
ste

m
 w

ak
in

g
up

Clock resumed

Requesting
wake-up

WIC

Cortex-M3 /
Cortex-M4

IRQ, NMI,
RXEV,

EDBGRQ

WICPEND[]WICINT[]

Cortex-M0/
Cortex-M0+/
Cortex-M7/
Cortex-M23

IRQ, NMI,
RXEV,

EDBGRQ WIC

(“OR” logic integrated inside WIC)

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

130

In Armv7-M or Armv8-M Mainline processor systems, the EDBGRQ signal (external debug request)
is included as one of the wake-up events that the WIC monitors. This is because the external debug
request can trigger a Debug Monitor exception if it is enabled. In Armv6-M or Armv8-M baseline
systems (i.e., Cortex-M23 processor system), the EDBGRQ is not considered to be a wake-up event
as the Debug Monitor exception is not available.

The WIC feature can be enabled or disabled with a handshaking signal interface. In the Cortex-M3
and Cortex-M4, this interface involves a pair of handshaking signals between the processor and the
WIC, and another pair of handshaking signals between the WIC and the system-level control registers
(device-specific).

Figure 6.13: The WIC enables handshaking in Cortex-M3 and Cortex-M4.

At the start of the application, the software can write to a register in the system power management
unit (outside of the processor, device-specific) to enable the WIC feature. This enables the power
management unit that handles state retention power gating. The WIC is then enabled with the
following handshaking sequence:

Figure 6.14: The WIC enables handshaking waveform in Cortex-M3 and Cortex-M4.

In later Cortex-M processor designs, the WIC enable/disable interface is simplified so that it only
needs the WICENREQ and WICENACK signals. There is no need for additional handshaking between
the WIC and the processor.

WIC Cortex-M3 /
Cortex-M4

WICENREQ

WICENACK

WICDSREQn

WICDSACKn

WICDSREQn

WICDSACKn

WICENREQ

WICENACK

1) PMU request to WIC
that DEEPSLEEP imply

WIC mode

2) WIC request to NVIC
that DEEPSLEEP imply

WIC mode
3) NVIC acknowledge to WIC

that DEEPSLEEP will imply
WIC mode

4) WIC acknowledge to
PMU that DEEPSLEEP will

imply WIC mode

131

When using State Retention Power Gating (SRPG), the system designer will need to handle a number
of control signals. The control sequences of these signals are process node-specific. In a simple
example, you might see the following signals:

Table 6.6: SRPG support control signals.

System designers need to create a state machine to control the sequence for entering the power-
down state and exiting from the power-down state. To support these operations, the power
management design also needs to include a status signal to indicate if the power-up has been done
(let us assume that this signal is called PWRUPREADY in the following state machine diagrams). When
in the power-down state, the WAKEUP signal from the WIC is used to switch the state machine into
the wake-up sequence. A simple state transition diagram is shown in Figure 6.15.

Figure 6.15: Simple state machine for SRPG sequence control.

Silicon vendors might choose different approaches to develop their power control FSM. For example,
the FSM can optionally allow the power down sequence to be canceled if the WAKEUP signal is
asserted before being powered down to reduce the interrupt latency (Figure 6.16).

Signal Description

ISOLATEn Use to isolate the power domain

RETAINn Use to control, retain and restore state retention logic cells

POWERDOWN Power down control for power gating

Powered up

Establish sleep
hold req/ack

WIC operation is
enabled, and

SLEEPDEEP is high

Clock
off

SLEEPDEEP = 0
(interrupt taken place)

Isolate Retain Powering
down

Powered down

Powering
up

PWRUPREADY = 0

Clock on and sleep
hold req removed

Remove
Isolation Restore

WAKEUP = 1
(from WIC)

ISOLATEn=0 RETAINn=0 POWERDOWN=1

POWERDOWN=0RETAINn=1ISOLATEn=1

(for controlling
isolation between
power domains)

(for controlling
state retention in
state retention

flip-flops)

(for controlling
power gating in
state retention

logic)

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

132

Figure 6.16: State machine for SRPG sequence control that allows the power-down sequence to be canceled.

The design of the FSM is also heavily dependent on other system-level factors (e.g., power control for
memories).

6.3.5 SRPG’s impact on software
The SRPG feature can greatly reduce the power consumption of sleep modes. However, there are
a few areas that application developers must be aware of:

1. The SYSTICK timer will be stopped during power down. As the processor is powered down, the
SYSTICK timer inside the processor would be stopped. Embedded applications that use OS will
need to use a timer external to the processor core to wake it up for task and event scheduling.
Sleep modes that still allow free running processor clocks should not be affected – embedded
application programmers should check the sleep mode details from chip manufacturers.

2. The interrupt latency is increased when WIC or SRPG is used. Since it will take a certain duration
to power-up the processor, memories, and get the system ready, the interrupt latency can be
increased substantially. Please check the datasheet from the silicon vendor for details.

3. Power down is normally disabled when a debugger is attached. This is because debuggers require
access to the processor even when the processor core is in sleep modes. In many such cases, the
power down FSM is automatically disabled by the WIC interface inside the processor. As a result,
testing of deep sleep can show a different set of behaviors and interrupt latency when a debugger
is connected.

6.3.6 Software power-saving approach
One of the considerations in software development is to decide whether to:

�� Run fast and enter sleep mode as much as possible, or,

�� Run slow to reduce dynamic power.

Unfortunately, there is no golden rule. If the oscillators use large amounts of power, running them
slowly might be a good way to reduce power consumption. However, this also has the effect of
increasing interrupt latency and overall leakage current.

Powered up

Establish sleep
hold req/ack

Clock
off

SLEEPDEEP = 0
(interrupt taken place)

Isolate Retain Powering
down

Powered down

Powering
up

PWRUPREADY = 0

Clock on and sleep
hold req removed

Remove
Isolation Restore

WAKEUP = 1WAKEUP = 1

ISOLATEn=0 RETAINn=0 POWERDOWN=1

POWERDOWN=0RETAINn=1ISOLATEn=1

WAKEUP = 1

WIC operation is
enabled, and

SLEEPDEEP is high

WAKEUP = 1
(from WIC)

133

On the other hand, if the flash memories have a high leakage current, run fast and sleep (while also
turning off the flash memory), this could be a good way to reduce overall energy consumption.
However, it means that the peak power will be higher.

In addition to that, the peripheral control requirement can also affect the whole picture. Software
developers might need to run a number of trials to determine what is the best approach for them.

6.4 Cortex-M processor characteristics that enable low-power designs
6.4.1 High code density
Since the Cortex-M series of processors uses a mixture of 16-bit and 32-bit instructions in its
instruction set, it enables high code density, which means an application could fit into a smaller
program ROM/flash size.

Figure 6.17: Thumb instruction set enables high code density for microcontrollers.

High code density can have various advantages. In addition to opportunities to reduce power by using
a smaller program ROM/flash, it can also help to:

�� Reduce cost;

�� Enable small chip packages.

6.4.2 Short pipeline
Most of the Cortex-M processors (except Cortex-M7) have a fairly short pipeline (2 to 3 stages). In these
processor designs, the short pipeline nature enables the processor to have a low branch penalty without
having to include branch prediction logic. The shorter pipeline also reduces branch shadows which are
instructions after a branch that are fetched by the processor but are discarded if the branch is taken. For
example, in the Cortex-M0+ and Cortex-M23 processors, as the pipeline is only 2 stages long, the branch
shadow is reduced to just one word. Branch shadows are bad for energy efficiency as they mean that the
memory system has used energy to fetch the instructions, but those instructions are not needed.

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

134

Figure 6.18: Branch shadow in the Cortex-M0+ and Cortex-M23 processors.

6.4.3 Instruction fetch optimizations
While some of the instructions are 16-bit, the Cortex-M processor fetches instructions as 32-bit most
of the time (or 64-bit for Cortex-M7 when using 64-bit I-TCM or AXI interface). It means for each
instruction fetch, it could obtain up to 2 instructions, and the instruction fetch interface can be idle
some of the time to reduce power spent on program memory access.

Figure 6.19: 32-bit instruction fetches enable memory access to be reduced.

The Cortex-M0+ and Cortex-M23 processors also support halfword instruction fetches if a branch
target is not word-aligned (bit 1 of address is 1). It means half of the byte lanes for that access can be
inactive and could save quite a bit of power in short loops.

Figure 6.20: Half-word instruction-fetch in non-word-aligned branch target accesses (Cortex-M0+ and Cortex-M23 only).

135

6.5 System-level design considerations
6.5.1 Low-power designs overview
Low-power design is a very large topic. In addition to utilizing different sleep modes of the processors
or extending that to extra sleep modes, all parts of the chip can have an impact on low-power capability
and energy efficiency. Typically, clock gating is used in many parts of a microcontroller’s design, and if
possible, some of the peripherals can also be powered down when they are not being used.

6.5.2 Clock sources
A low-power clock source is one of the key items. Many designs need to have a 32KHz clock that is
always on (for real-time clock and power management), and if this clock source is power-hungry, it
would have a big impact. Ideally, the 32kHz clock source needs to be ultra-low-power, accurate, and
capable of working with wide voltage ranges.

Selection of crystal operation range is also important. While a microcontroller product might be
designed to run at 100MHz, having a 100MHz crystal in the design means the product will have
a 100MHz clock running all the time and can burn a lot of power. Therefore, it is common to use
a relatively slow crystal (4 to 12MHz) and use PLL to generate higher clock frequencies only if they
are needed.

6.5.3 Low-power memories
Many memory macros have various sleep/retention modes and a range of ‘hooks’ to allow system
designers to link the memory low-power states to the system’s sleep modes. Please note that there
are trade-offs between sleep mode power and wake up latency.

For embedded flash, it is also possible to power down the flash completely during sleep as there is
no issue of data loss. However, when doing this, be aware of the in-rush current (current spike) when
the flash macro is turned on, which potentially can cause a voltage drop in power rails and result in
problems affecting other parts of the chip.

Some devices might allow the software to write to flash before brown-out so that crucial data in
SRAM can be restored later. This operation might also be needed when the battery of the product is
being replaced. If a design needs to support such features, the minimum flash programming voltage
and flash power during programming can become a critical issue.

6.5.4 Caches
While adding a cache unit can increase the silicon area and the leakage current, and hence increase
the power requirement of a system, sometimes it can help reduce the overall energy efficiency
because it reduces the access to the main memories, especially embedded flash, which can be power-
hungry. It also has the benefit of enabling higher performance because flash memories are often quite
slow (e.g., 30MHz to 50MHz). The AHB flash cache from Arm (in CoreLink SDK-100/101) is available
in Cortex-M3 DesignStart Pro, and additional system cache designs are available in other system
design kit products (licensable IP).

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

136

6.5.5 Low-power analog components
A range of analog components might need to stay on during sleep modes. These include a 32kHz
oscillator, real-time clock, brown-out detector, some of the I/O pads (e.g., when an input is used for
external interrupt detection), etc.

Many I/O pads have configurable power modes that can reduce power by adjusting drive
strengths and skew rates. System designers can make these options programmable by introducing
programmable registers to control these configuration signals.

6.5.6 Maximizing clock gating opportunities
In many system designs, it is possible to place clock gating in a range of locations to reduce dynamic
power. This includes peripherals and buses. For example, the AHB to APB bridge provided in Arm
in the Corstone Foundation IP / Cortex-M System Design Kit provides a clock gating control signal
(APBACTIVE) to allow the downstream APB peripheral bus to be clock gated when there is no bus
transaction going through.

Figure 6.21: AHB to APB bridge in CMSDK has a clock gating control output.

To take advantage of this feature, a peripheral might need to be modified so that it has separate clock
signals for the bus interface and peripheral operations.

In some cases, the peripheral buses might be clock gated and software introduced to enable the clock
on the peripheral buses before accessing the bus slaves on it.

AHB to
APB

bridge
AHB

APBACTIVE

Clock
gating Peripheral

Bus
interface

Peripheral

Bus
interface

Peripheral

Bus
interface

APB

PCLK

I/O I/O I/O

PCLKG (Gated bus interface clock)

AHB

Time

HCLK, PCLK
(not gated)

APB Address + data

Address phase
Data phase

APBACTIVE

PCLKG (gated)

137

6.5.7 Sleep mode that completely powers down the processor
It is possible to completely power down the Cortex-M processor and still be able to wake up the
system on certain hardware events. However, in such cases:

�� The processor states will be lost. Hence, software using this power down arrangement must save
critical information to state retention SRAM beforehand.

�� The system design needs to have additional hardware logic to handle the hardware wake-up event
detection.

If using such an approach, system designers need to add a custom-defined wake-up unit to detect
wakeup events, which then:

�� Signals to power management hardware to restore power to the processor system;

�� Resets the processor system (without resetting the state retention memories and registers);

�� Releases resets and the processor can then boot-up and execute software.

In such a system, the design will need a few extra components:

Figure 6.22: Additional hardware needed for sleep mode with full power-down.

�� Power ctrl (control) – allows the software to select which sleep mode is used (e.g., whether to enter
power down when in deep sleep).

�� Reset info register – allows the software to decide if it is a cold boot or wakeup after a power-down
‘sleep.’

�� State retention SRAM (optional) for holding various program state information.

Cortex-M

ROM RAM Peripherals

Power
domain
isolation
bridge State retention

SRAM

Reset
Info

register

Wakeup event
detection

(programmable)

Wakeup
events

Always on
power

domain

Debug access port
(DAP)

JTAG / serial
wire debug

Power
management

Clamp
cells

Clamp
cells

Interrupts

Debug APB

Power up
requests

Power
ctrl

Chapter 6 | Low-power support

System-on-Chip Design with Arm® Cortex®-M processors

138

�� Wakeup event detection – enables the generation of wake-up events from peripherals or I/O. This
is likely to be programmable to allow the software to decide if this is enabled or not.

Also, since the wake-up process is going to take time, the design must also hold the wakeup event
information so that software can have time to enable NVIC.

Debug access port (DAP) – You might optionally move the SWJ-DP to the always-on power domain to
allow the debugger to wake up the system with a debug connection. An alternative solution is to use
another hardware mechanism to wake up the system so that debugger can connect to the processor
to start the debug sessions.

The downside of this approach is that the processor must boot-up first and will, as a result, take
longer time to service the interrupt. It is possible to reduce the boot time by storing most of the key
processor’s state into retention SRAM before powering down and restoring this after waking up. Using
this approach, the C runtime startup could be skipped, and hence, the time needed to setup NVIC
could be reduced.

If using this method, the sleep procedure should be handled in privileged thread mode, and if
TrustZone is implemented, the sleep procedure should be in Secure privileged thread mode so that all
the register states can be accessed easily.

The information that might need to be stored includes:

�� NVIC settings;

�� MPU settings;

�� Potentially SysTick settings;

�� Banked SP (both MSP and PSP might be needed), and if TrustZone is implemented, all four stack
pointers and corresponding stack limit registers should be stored;

�� Special registers (PRIMASK, FAULTMASK, BASEPRI, etc.), - and beware that if TrustZone is present,
these registers are banked and both versions will need to be saved;

�� FPU settings if FPU is present, and optionally FPU registers if the FPU was used and active;

Note: Depending on the handling of resuming execution, some registers in the register banks might
not need to be restored.

Another thing to bear in mind is that if TrustZone is implemented, the security management of
retention SRAM is important as Secure information is stored in it when using this power down
approach.

139

Chapter 6 | Low-power support

Design of
bus infrastructure
components

CHAPTER
7

System-on-Chip Design with Arm® Cortex®-M processors

142

7.1 Overview
In this chapter, we will go through the basic steps needed to develop a simple AMBA system with a
Cortex-M3 processor using the AMBA 5 AHB (AHB5) and APB (AMBA 3) architectures. While the
Cortex-M3 processor was designed using the AHB Lite version of AHB protocols in AMBA, here
in the featured examples, AHB5 protocol is used because it is the latest protocol and more future
proof. However, TrustZone security management with AHB5 is not going to be covered here as the
Cortex-M3 processor does not support TrustZone, and it is too complex a topic for beginners. You can
use AHB Lite bus masters with AHB5 interconnect, but additional bus wrappers might be needed, for
example, to convert exclusive access signals in Cortex-M3/Cortex-M4 to AHB5 equivalents.

For peripheral connections, APB is used in the example, and the APB bus segment is connected via an
AHB to APB bridge. As explained in Section 4.5, if you are using Cortex-M3/Cortex-M4/Cortex-M7/
Cortex-M33 processors, the PPB (Private Peripheral Bus) interface is primarily for debug components
and should not be used for general peripherals.

The example system that we are going to build contains a behavioral model of two memory blocks
(Program ROM and RAM) and a number of simple peripherals on the APB including two parallel I/O
interface ports, a UART and two simple timers. In addition, a number of basic AMBA infrastructure
blocks including an AHB bus bridge to APB and bus slave multiplexers will also be created.

Figure 7.1: A simple Cortex-M3 processor system.

This example system has the following characteristics:

�� Two default slaves are needed as there are two AHB bus segments, each of them containing invalid
address ranges.

Cortex-M3

cm3_code_mux

I-CODE D-CODE

AHB 5 wrapper

AHB slave
multiplexer

ROM Default Slave

AHB 5 wrapper

AHB slave
multiplexer

RAM Default Slave

System

AHB to APB bridge (combined
with APB slave multiplexer)

PPB (Private
Peripheral Bus)

ETM
(optional) TPIU

ROM table

APB slave multiplexer

Address
Decoder

Address
Decoder

HSEL HSEL

HADDR HADDR

Address
Decoder

PSELPADDR

TimerParallel I/OUART

PPB infrastructure inside Cortex-M3
integration layerCortecx-M3

integration layer
SWJ-DAPJTAG /

SWD

APB

AHB5AHB5

DNOTITRAN

1 (use code
mux)

143

�� DNOTITRAN input (applicable for Cortex-M3 and Cortex-M4 processors only) is set to 1 because
we are using a code mux module to merge I-CODE bus and D-CODE.

�� In this design, the APB slave multiplexer and AHB to APB bridge are combined. It is also absolutely
fine to separate the two functions into two modules.

�� The PPB bus connections are handled inside the integration layer, and there is no need for them to
be handled at a higher level.

�� There is no need to do any work on the memory space for NVIC and debug components within the
Cortex-M processors. Transfers accessing these components will be routed internally inside the
processor and will not be visible from the bus system.

One of the important parts of designing an AMBA system is the determination of the required memory
map. In this example, the memory map is based on the one supported in the Cortex-M3 processor, with
64kB for program ROM and data memory, and 64kB of memory space allocated to the APB.

Figure 7.2: Memory map of the simple example Cortex-M system.

Each peripheral block in this example takes 4kB of memory space. Since the transfer size on the APB is
limited to word size, we can have up to 1024 hardware registers for each peripheral. However, in normal
applications, the required number of registers for each peripheral is likely to be far less than that.

The use of 4kB memory size for peripherals is a common practice, which allows us to create a simple
APB slave multiplexer which multiplexes responses using bit fields of PADDR (e.g., bit[15:12] for 16
APB slaves). However, it is fine to use other memory sizes for APB peripherals, although potentially
these will require a slightly more complex APB slave multiplexer.

For designs using the Cortex-M3 or Cortex-M4 processors, in cases where the bit-band feature is to
be used, then the allocation of an address in the memory map must avoid conflict with the bit-band
alias regions.

64k ROM
0x00000000

0x0000FFFF

64k RAM
0x20000000

0x2000FFFF

Unused
(Default Slave)

Unused
(Default Slave)

32KB peripheral region
(APB)0x40000000

0x40007FFF

Unused
(Default Slave)

Parallel I/O

Timer

Unused

0x40000000

0x40000FFF

0x40001000

0x40001FFF

0x40007FFF

APB memory space

AHB memory space

UART

0x40002000

0x40002FFF

Parallel I/O

Timer
0x40003000

0x40003FFF

0x40004000

0x40004FFF

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

144

7.2 Typical AHB slave design rules
Before we start the design process, it is useful to go through some of the rules in AHB operations.
In this book, we will only cover the rules for AHB slave operations for AHB LITE, and AHB5 as most
FPGA designers will only need to develop AHB slave designs and not AHB masters.

1. An AHB slave must respond with OKAY without a wait state for IDLE or BUSY transfers: When
HTRANS is IDLE (0x0) or BUSY (0x01), HSEL is 1 and HREADY (or HREADYIN) is 1, in the next
clock cycle HREADYOUT must be 1 and HRESP must be OKAY (0x0).

2. An AHB slave must respond with OKAY without wait state if it is not selected: When HSEL is 0 and
HREADY (HREADYIN) is 1, in the next clock cycle HREADYOUT must be 1 and HRESP must be
OKAY (0x0).

3. At reset, HREADY output from AHB slaves must be 1 (ready), and HRESP must be OKAY (0x0). This
is needed to ensure the AHB system is reset correctly.

4. There should not be any combinatorial path from inputs of the AHB interface to the output of the
AHB interface on an AHB slave. The inputs and outputs must be pipelined (separated by register
stage) to prevent combinatorial loops.

5. Error signals on HRESP must be two cycles, with HREADY output (HREADYOUT) low in the first
cycle and high in the second cycle. An additional wait state(s) before the error response is allowed.
Multiple back-to-back transfers can result in multiple back to back error responses, but each of the
error responses must still contain the two-cycle waveform.

6. Although the HRESP input in Cortex-M3 and Cortex-M4 is 2-bit wide, the Cortex-M processors
and the AHB infrastructure components that we are designing here do not support RETRY and
SPLIT responses; therefore, the AHB slaves must not generate these two responses. SPLIT and
RETRY responses are not supported in AHB Lite and AHB5.

7. Ideally, the AHB slave should only be able to insert a limited number of wait states to ensure that
it will not lock up the whole system. The common recommendation for the maximum number of
wait states for a transfer is 16 cycles - but system designers can increase the limit if necessary. Note
that this is only a recommendation. In some cases, it is unavoidable to have longer wait states in
AHB transfers if the AHB interconnect components or slave has to deal with data transfer across
asynchronous clock domains.

8. The minimum memory size of an AHB slave for an ARM system should be 1k bytes. Even if the
slave does not need this amount of memory, the remaining memory space should not be used
for another AHB slave. Not only does it reduce the complexity of AHB decoder design, but it can
also prevent a burst transfer from going across two AHB slaves, which can cause an AHB protocol
violation. The starting address of the AHB slave should be aligned to its memory size in order to
reduce the complexity of the AHB decoder design.

145

9. HEXOKAY can only be asserted in the data phase of an exclusive transfer if there is no error
response. If a bus slave does not support exclusive transfer, HEXOKAY can be tied low.

With these AHB design rules defined, most AHB slaves can be designed with a simple pipeline logic
block, as shown here:

Figure 7.3: Simple AHB slave bus interface design.

In the simplest AHB slaves, the Finite State Machine (FSM) can be implemented as a simple register
stage if no wait state is required. If multiple cycles are required, the FSM can be implemented as shown:

Figure 7.4: Simple Finite State Machine (FSM) for AHB slaves with wait-states.

Additional states will be needed if the device supports error responses on the AHB. The AHB to APB
bridge that we will cover in the later chapter of this book is an example of such a design.

HSEL

HTRANS[1]
HREADY

(HREADYIN)

HWRITE

Write
request

Read
request

Finite
State

Machine (FSM)

Address phase Data phase

Register sliceHADDR

enable
Data path

HSIZE

Address

Size

HWDATA
Write data

HRDATA

R/W
controls

Read data

HREADYOUT

HRESP

Idle / reset

1st Cycle

Read request or
write request

Last cycle

No new read
request or write

request

Another read or write
request

No read request or
write request

More cycles

Set HREADYOUT to 1 to
indicate end of transfer

HREADYOUT = 1

Set HREADYOUT to 0
for wait state

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

146

7.3 Typical AHB infrastructure components
After familiarizing ourselves with the AHB slave design rules, we can start looking into the
development of the AHB system, starting from a few commonly used AHB infrastructure blocks:

7.3.1 AHB Decoders
AHB decoders generate HSEL signals for each AHB slave by decoding the HADDR address signal. The
designs of the AHB decoders are system-specific. For the example AMBA system that we are going
to develop, the decoders generate the HSEL outputs for the ROM, RAM, APB Bridge, and the default
slaves. Two AHB decoders are needed for the example Cortex-M3 system because the AHB bus
segment for the I-CODE/D-CODE and the system bus are separated.

Figure 7.5: AHB decoders for the example Cortex-M3 system.

The default slave is an AHB slave that is selected when the address is invalid (i.e., no valid slave is
selected). This subject will be covered in the next section of this chapter. The outputs of the address
decoder are combinatorial outputs generated using the address value.

Based on the memory map that we defined earlier, the AHB decoders can be designed as shown here:

Figure 7.6: Design of the AHB decoders for the example Cortex-M3 system.

AHB Decoder
(System bus)

HADDR HSEL_RAM

HSEL_APB

HSEL_DefSlave

AHB Decoder
(CODE bus)

HADDR

HSEL_ROM

HSEL_DefSlave

HADDR[31:16] =
16'h0000HADDR HSEL_ROM

HSEL_DefSlave

HADDR HADDR[31:16] =
16'h2000 HSEL_RAM

(HADDR[31:16] =
16'h4000) &
~HADDR[15]

HSEL_APB

HSEL_DefSlave

147

In some situations, an AHB decoder might also take an HSEL input to enable the decode operation if
the decoder is only for an AHB subsystem, which is part of a larger AHB system. In the case where an
optional HSEL input is implemented, the HSEL outputs would be AND together with the HSEL input,
so that the output can only be high if the HSEL input is high. This is required in more complex systems
where multiple AHB subsystems are developed, and the address decoder of each AHB subsystem
requires a HSEL input from a global address decoder.

7.3.2 Default slave
In an AHB system, if the processor tries to access a memory location that is not assigned or not used,
the normal practice is to return an error response to generate a fault exception. This mechanism allows
the program to detect that something has gone wrong as an unused address range that should not have
been accessed. To generate this response, a very simple AHB slave called the Default Slave is used.

Figure 7.7: AHB Default slave.

The default slave is selected by the AHB address decoder when an invalid address range is output
from the processor. If the default slave is selected and the processor (or bus master) issues an active
transfer (HTRANS equals NSEQ or SEQ), then the default slave sends out an error response in the
data phase of the transfer.

This behavior is different from most 8-bit or 16-bit microcontrollers. In these products, accesses to
an invalid address will not normally cause any fault exception. The advantage of using a default slave
to respond to invalid accesses is that the processor can remedy this if an error is detected, and thus
increase the robustness of the system.

In some designs, the default slave is combined with the AHB slave multiplexer. In this example, we
will design it as a separate unit. A simple finite state machine is used to generate the 2-cycle error
response as required by the AHB protocol. Since we generate an error response for every transfer with
invalid accesses, we do not need to worry about the HWRITE control, HSIZE signals, and data values.

Figure 7.8: Design of an AHB Default slave.

HSEL

HTRANS[1]

HREADY

Address phase Data phase

Finite
State

Machine

HREADYOUT

HRESP

AHB Default Slave

HSEL

HTRANS

HREADYOUT

HRESP
HREADY

HCLK

HRESETn

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

148

The Verilog RTL of the default slave is as follows:

module ahb_defslave (
 input wire HCLK, // Clock
 input wire HRESETn, // Reset
 input wire HSEL, // connect to HSEL_DefSlave from AHB decoder
 input wire [1:0] HTRANS, // Transfer command
 input wire HREADY, // System-wide HREADY
 output wire HREADYOUT, // Slave ready output
 output wire HRESP // Slave response output
);

// Internal signals
wire TransReq; // Transfer Request
reg [1:0] RespState; // FSM for two cycle error response
wire [1:0] NextState; // next state for RespState

// Start of main code
assign TransReq = HSEL & HTRANS[1] & HREADY; // a transfer is issued
 // to default slave because address is invalid

// Generate next state for the FSM
// Encoding : 01 - Idle (bit 0 is HREADYOUT, bit 1 is RESP[0])
// 10 - 1st cycle of error response
// 11 - 2nd cycle of error response
assign NextState = {(TransReq | (~RespState[0])),(~TransReq)};

// Registering FSM state
always @(posedge HCLK or negedge HRESETn)
begin
 if (~HRESETn)
 RespState <= 2’b01; // bit 0 is reset to 1, ensuring HREADYOUT is 1
 else // at reset
 RespState <= NextState;
end

// Connect to output
assign HREADYOUT = RespState[0];
assign HRESP = RespState[1];

endmodule

The default slave does not generate any read data and exclusive responses. When connecting the
default slave to an AHB system, the unused HRDATA[31:0] signal and HEXOKAY signal (available in
AHB5) can be connected to zero.

149

7.3.3 AHB Slave multiplexer
The AHB slave multiplexer is needed to connect multiple AHB slaves to an AHB master. In this
example, the AHB slave multiplexer connects up to four AHB slaves.

Figure 7.9: Simple AHB5 slave multiplexer with up to four AHB slave connection.

The AHB slave multiplexer takes outputs from each of the AHB slaves, as well as the HSEL outputs
from the AHB decoder. Using the multiplexed HREADY signal and the HSEL inputs, the AHB decoder
internally generates the pipelined multiplexer control to select the correct data phase output. The
design for the four-port AHB Slave multiplexer can be implemented as shown here:

Figure 7.10: Design of a simple AHB5 slave multiplexer with up to four AHB slave connection.

HSEL to MUX
control

mapping

HSEL0

HSEL1

HSEL2

HSEL3

register

enable
HREADYOUT0

HREADYOUT1

HREADYOUT2

HREADYOUT3

HRESP0

HRESP1

HRESP2

HRESP3

Data phase MUX
control

Address phase
HSEL signals

HREADY

HRESP

HEXOKAY0

HEXOKAY
HEXOKAY1

HEXOKAY2

HEXOKAY3

HRDATA0

HRDATA1

HRDATA2

HRDATA3

HRDATA

HSEL0

HREADYOUT0

HCLK

HRESETn

AHB5 Slave Multiplexer

HRESP0

HRDATA0[31:0]

HSEL1

HREADYOUT1

HRESP1

HRDATA1[31:0]

HSEL2

HREADYOUT2

HRESP2

HRDATA2[31:0]

HSEL3

HREADYOUT3

HRESP3

HRDATA3[31:0]

HREADY

HRESP

HRDATA[31:0]

HEXOKAY0

HEXOKAY1

HEXOKAY2

HEXOKAY3

HEXOKAY

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

150

The Verilog RTL code for the slave multiplexer is as follows:

module ahb_slavemux (
 input wire HCLK, // Clock
 input wire HRESETn, // Reset
 input wire HREADY, // Bus system level HREADY
 input wire HSEL0, // HSEL for AHB Slave #0
 input wire HREADYOUT0, // HREADY for Slave connection #0
 input wire HRESP0, // HRESP for slave connection #0
 input wire [31:0] HRDATA0, // HRDATA for slave connection #0
 input wire HEXOKAY0, // HEXOKAY for slave connection#0
 input wire HSEL1, // HSEL for AHB Slave #1
 input wire HREADYOUT1, // HREADY for Slave connection #1
 input wire HRESP1, // HRESP for slave connection #1
 input wire [31:0] HRDATA1, // HRDATA for slave connection #1
 input wire HEXOKAY1, // HEXOKAY for slave connection#1
 input wire HSEL2, // HSEL for AHB Slave #2
 input wire HREADYOUT2, // HREADY for Slave connection #2
 input wire HRESP2, // HRESP for slave connection #2
 input wire [31:0] HRDATA2, // HRDATA for slave connection #2
 input wire HEXOKAY2, // HEXOKAY for slave connection#2
 input wire HSEL3, // HSEL for AHB Slave #3
 input wire HREADYOUT3, // HREADY for Slave connection #3
 input wire HRESP3, // HRESP for slave connection #3
 input wire [31:0] HRDATA3, // HRDATA for slave connection #3
 input wire HEXOKAY3, // HEXOKAY for slave connection#3
 output wire HREADYOUT, // HREADY output to AHB master and AHB slaves
 output wire HRESP, // HRESP to AHB master
 output wire [31:0] HRDATA, // Read data to AHB master
 output wire HEXOKAY // Exclusive okay
);

 // Internal signals
 reg [3:0] SampledHselReg;

 // Registering select
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 SampledHselReg <= {4{1’b0}};
 else if (HREADY) // advance pipeline if multiplexed HREADY is 1
 SampledHselReg <= {HSEL3, HSEL2, HSEL1, HSEL0};
 end

 assign HREADYOUT =
 (SampledHselReg[0] & HREADYOUT0)|
 (SampledHselReg[1] & HREADYOUT1)|
 (SampledHselReg[2] & HREADYOUT2)|
 (SampledHselReg[3] & HREADYOUT3)|
 (SampledHselReg ==4’b0000);

 assign HRDATA =
 ({32{SampledHselReg[0]}} & HRDATA0)|
 ({32{SampledHselReg[1]}} & HRDATA1)|
 ({32{SampledHselReg[2]}} & HRDATA2)|
 ({32{SampledHselReg[3]}} & HRDATA3);

 assign HRESP =
 (SampledHselReg[0] & HRESP0)|
 (SampledHselReg[1] & HRESP1)|
 (SampledHselReg[2] & HRESP2)|
 (SampledHselReg[3] & HRESP3);

151

 assign HEXOKAY =
 (SampledHselReg[0] & HEXOKAY0)|
 (SampledHselReg[1] & HEXOKAY1)|
 (SampledHselReg[2] & HEXOKAY2)|
 (SampledHselReg[3] & HEXOKAY3);

endmodule

7.3.4 ROM and RAM with AHB interface
A Cortex-M processor system cannot work without memories for program code and data. In this
section, we cover the simulation models of simple ROM and RAM memories with AHB5 interfaces for
illustration. Please note that, if you are using Cortex-M1 processor, the ROM and RAM are likely to
be connected as Tightly Coupled Memories (TCMs) rather than AHB, and the configuration of these
memory blocks could be handled by the FPGA design tools.

Two memory models are being developed: a ROM model for program memory and a RAM model for
the data memory. Normally, the ROM model is used for program memory, and RAM is used for data
memory; however, the RAM model can also be used for program memory if memory initialization is
carried out. In this way, we can allow the program to be self-modified or allow an external debugger
to change the program code during debugging.

The ROM model that we have illustrated here is a read-only simulation memory model. One of the
requirements for this program memory simulation model is that it must allow us to define the program
data inside when the simulation starts. Inside the Verilog code of the ROM model, we use the Verilog
system function “$readmemh” to initialize the program data array with data from a file called “image.
dat”. This file contains the hexadecimal values of a compiled binary image for the Cortex-M processor.
The RAM model, however, will only initialize the data array to zero values. It is possible to add the
“$readmemh” function to initialize the RAM content to other values if it is to be used as program memory.

Figure 7.11: Simple memory simulation models with the AHB interface.

In order to simplify the design, the memory models do not insert a wait state and treat burst transfers
just like single transfers. Also, these example models only support little-endian.

ahb_rom

HSEL

HTRANS

HREADY

HCLK

HRESETn

HADDR

HSIZE HREADYOUT

HRESP

HRDATA

image.dat

ahb_ram

HSEL

HTRANS

HREADY

HCLK

HRESETn

HADDR

HSIZE HREADYOUT

HRESP

HRDATA

HWRITE

HWDATA

HEXOKAY

HEXCL

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

152

There are different ways to develop the required AHB memory simulation models. Since the AHB
protocol is pipelined, a registering stage is needed inside the memory. For illustration purposes, we will
design the ROM model with a registering stage for the data output, while for the RAM, we will use the
registering stage for control signal processing.

Figure 7.12: Example AHB ROM design for simulation purposes.

For the ROM design, we assumed that all accesses to the ROM are always read transfers. Therefore
the HWRITE signal was not used. In the ROM design, we masked the unused read data output for
half-word and byte transfers. Note: This is not required in real systems. ARM processors like the
Cortex-M3 just ignore the unused data. However, masking the unused data bytes can make the bus
activities easier to see during debugging.

The Verilog RTL code of the AHB ROM is as follows:

// Simple 64kb ROM with AHB interface
module ahb_rom (
 input wire HCLK, // Clock
 input wire HRESETn, // Reset
 input wire HSEL, // Device select
 input wire [15:0] HADDR, // Address
 input wire [1:0] HTRANS, // Transfer control
 input wire [2:0] HSIZE, // Transfer size
 input wire HREADY, // Transfer phase done
 output wire HREADYOUT, // Device ready
 output wire [31:0] HRDATA, // Read data output
 output wire HRESP, // Device response (always OKAY)
 output wire HEXOKAY // Exclusive okay (not used)
);

 // Internal signals
 reg [7:0] RomData[0:65535]; // 64k byte of ROM data
 integer i; // Loop counter for ROM initialization
 wire ReadValid; // Address phase read valid
 wire [15:0] WordAddr; // Word aligned address(addr phase)
 reg [3:0] ReadEnable; // Read enable for each byte(addr phase)
 reg [7:0] RDataOut0; // Read Data Output byte#0(data phase)

ReadValid
HSEL

HTRANS[1]

HREADY

ReadEnable

HSIZE

HADDR[1:0]

4

HADDR

Byte strobe
generation

Masking

Memory Byte 3

Byte 2

Byte 1

Byte 0

Registered
output

HRDATA
(Read Data)

HCLK

image.dat

153

 reg [7:0] RDataOut1; // Read Data Output byte#1
 reg [7:0] RDataOut2; // Read Data Output byte#2
 reg [7:0] RDataOut3; // Read Data Output byte#3

 // Start of main code
 // Initialize ROM
 initial
 begin
 for (i=0;i<65536;i=i+1)
 begin
 RomData[i] = 8’h00; //Initialize all data to 0
 end
 $readmemh(“image.dat”, RomData); // Then read in program code
 end

 // Generate read control (address phase)
 assign ReadValid = HSEL & HREADY & HTRANS[1];
 // Read enable for each byte (address phase)
 always @(ReadValid or HADDR or HSIZE)
 begin
 if (ReadValid)
 begin
 case (HSIZE)
 0 : // Byte
 begin
 case (HADDR[1:0])
 0: ReadEnable = 4’b0001; // Byte 0
 1: ReadEnable = 4’b0010; // Byte 1
 2: ReadEnable = 4’b0100; // Byte 2
 3: ReadEnable = 4’b1000; // Byte 3
 default:ReadEnable = 4’b0000; // Address not valid
 endcase
 end
 1 : // Halfword
 begin
 if (HADDR[1])
 ReadEnable = 4’b1100; // Upper halfword
 else
 ReadEnable = 4’b0011; // Lower halfword
 end
 default : // Word
 ReadEnable = 4’b1111; // Whole word
 endcase
 end
 else
 ReadEnable = 4’b0000; // Not reading
 end

 // Read operation
 assign WordAddr = {HADDR[15:2], 2’b00}; // Get word aligned address
 // Registered read
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 begin
 RDataOut0 <= 8’h00;
 RDataOut1 <= 8’h00;
 RDataOut2 <= 8’h00;
 RDataOut3 <= 8’h00;
 end
 else
 begin // Read when read enable is high
 RDataOut0 <= (ReadEnable[0]) ? RomData[WordAddr] : 8’h00;
 RDataOut1 <= (ReadEnable[1]) ? RomData[WordAddr+1] : 8’h00;

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

154

 RDataOut2 <= (ReadEnable[2]) ? RomData[WordAddr+2] : 8’h00;
 RDataOut3 <= (ReadEnable[3]) ? RomData[WordAddr+3] : 8’h00;
 end
 end
 // Connect to top level
 assign HREADYOUT = 1’b1; // Always ready (no waitstate)
 assign HRESP = 1’b0;// Always response with OKAY
 assign HEXOKAY = 1’b0;// Exclusive accesses not supported in ROM
 // Read data output
 assign HRDATA = {RDataOut3, RDataOut2, RDataOut1,RDataOut0};

endmodule

Unlike the AHB ROM, the pipeline stage of the AHB RAM design takes place at the time of control signal
generation. All the actual read and write operations take place during the data phase of the AHB transfer.
This ensures that if the data written are read out in the next clock cycle, the updated value will be used
for output.

To make it even more interesting, the AHB SRAM example design also adds support for exclusive
accesses by having exclusive response generation logic and tag registers (for address and bus master
ID) for the exclusive access sequence. Semaphore data are normally placed in SRAM, and if another
bus master writes to the same address location during semaphore read-modify-write operations, the
access conflict can be detected by the logic added in this model.

Figure 7.13: Example AHB RAM design for simulation purposes.

ReadValid

HSEL

HTRANS[1]

HREADY

NextByteLane

HSIZE

HADDR[1:0]

4

Address

Byte strobe
generation

RAM Byte 3

Byte 2

Byte 1

Byte 0
HRDATA

WriteValid

HWRITE

HADDR

HCLK

Registering
stage

HCLK

Masking
HWDATA

ReadEnable

ByteLane

4

WriteEnable

Exclusive
response

generation
logic

HEXOKAY

Address
Tag

Master ID
tagHMASTER

HCLK

155

The Verilog RTL code of the AHB SRAM (for simulation) is as follows:

// Simple 64kb RAM with AHB interface
//
module ahb_ram (
 input wire HCLK, // Clock
 input wire HRESETn, // Reset
 input wire HSEL, // Device select
 input wire [3:0] HMASTER, // Master identification
 input wire [15:0] HADDR, // Address
 input wire [1:0] HTRANS, // Transfer control
 input wire [2:0] HSIZE, // Transfer size
 input wire HWRITE, // Write control
 input wire [31:0] HWDATA, // Write data
 input wire HEXCL, // Exclusive transfer
 input wire HREADY, // Transfer phase done
 output wire HREADYOUT, // Device ready
 output wire [31:0] HRDATA, // Read data output
 output wire HRESP, // Device response (always OKAY)
 output wire HEXOKAY // Exclusve okay
);

 // Internal signals
 reg [7:0] RamData[0:65535]; // 64k byte of RAM data
 integer i; // Loop counter for zero initialization
 wire ReadValid; // Address phase read valid
 wire WriteValid; // Address phase write valid
 reg ReadEnable; // Data phase read enable
 reg WriteEnable; // Data phase write enable
 reg [3:0] RegByteLane; // Data phase byte lane
 reg [3:0] NextByteLane; // Next state of RegByteLane

 wire [7:0] RDataOut0; // Read Data Output byte#0
 wire [7:0] RDataOut1; // Read Data Output byte#1
 wire [7:0] RDataOut2; // Read Data Output byte#2
 wire [7:0] RDataOut3; // Read Data Output byte#3
 reg [15:0] WordAddr; // Word aligned address

 reg [15:4] Excl_Tag_Addr; // Exclusive access address
 reg [3:0] Excl_Tag_MID; // Exclusive access master ID
 reg Excl_State; // Exclusive state
 reg ExclOkay; // Exclusive Okay status (data phase)
 reg ExclStoreFail; // Exclusive Failed state (data phase)

 // Start of main code
 // Initialize ROM
 initial
 begin
 for (i=0;i<65536;i=i+1)
 begin
 RamData[i] = 8’h00; //Initialize all data to 0 to avoid X propagation
 end
 //$readmemh(“image.dat”, RamData); // Then read in program code
 end

 // Generate read control (address phase)
 assign ReadValid = HSEL & HREADY & HTRANS[1] & ~HWRITE;
 // Generate write control (address phase)
 assign WriteValid = HSEL & HREADY & HTRANS[1] & HWRITE;

 // Read enable for each byte (address phase)
 always @(ReadValid or WriteValid or HADDR or HSIZE)
 begin

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

156

 if (ReadValid | WriteValid)
 begin
 case (HSIZE)
 0 : // Byte
 begin
 case (HADDR[1:0])
 0: NextByteLane = 4’b0001; // Byte 0
 1: NextByteLane = 4’b0010; // Byte 1
 2: NextByteLane = 4’b0100; // Byte 2
 3: NextByteLane = 4’b1000; // Byte 3
 default:NextByteLane = 4’b0000; // Address not valid
 endcase
 end
 1 : // Halfword
 begin
 if (HADDR[1])
 NextByteLane = 4’b1100; // Upper halfword
 else
 NextByteLane = 4’b0011; // Lower halfword
 end
 default : // Word
 NextByteLane = 4’b1111; // Whole word
 endcase
 end
 else
 NextByteLane = 4’b0000; // Not reading
 end

 // Registering control signals to data phase
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 begin
 RegByteLane <= 4’b0000;
 ReadEnable <= 1’b0;
 WriteEnable <= 1’b0;
 WordAddr <= {16{1’b0}};
 end
 else if (HREADY)
 begin
 RegByteLane <= NextByteLane;
 ReadEnable <= ReadValid;
 WriteEnable <= WriteValid;
 WordAddr <= {HADDR[15:2], 2’b00};
 end
 end

 // Read operation
 assign RDataOut0 = (ReadEnable & RegByteLane[0]) ? RamData[WordAddr] : 8’h00;
 assign RDataOut1 = (ReadEnable & RegByteLane[1]) ? RamData[WordAddr+1] : 8’h00;
 assign RDataOut2 = (ReadEnable & RegByteLane[2]) ? RamData[WordAddr+2] : 8’h00;
 assign RDataOut3 = (ReadEnable & RegByteLane[3]) ? RamData[WordAddr+3] : 8’h00;

 // Registered write
 always @(posedge HCLK)
 begin
 if (WriteEnable & RegByteLane[0] & ~ExclStoreFail)
 begin
 RamData[WordAddr] = HWDATA[7: 0];
 end
 if (WriteEnable & RegByteLane[1] & ~ExclStoreFail)
 begin
 RamData[WordAddr+1] = HWDATA[15: 8];
 end

157

 if (WriteEnable & RegByteLane[2] & ~ExclStoreFail)
 begin
 RamData[WordAddr+2] = HWDATA[23:16];
 end
 if (WriteEnable & RegByteLane[3] & ~ExclStoreFail)
 begin
 RamData[WordAddr+3] = HWDATA[31:24];
 end
 end

 // Exclusive accesses tags - single monitor example
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 begin
 Excl_Tag_Addr <= {12{1’b0}}; // Address
 Excl_Tag_MID <= {4{1’b0}}; // Master ID
 end
 else if (ReadValid & HEXCL) // Exclusive reads
 begin
 Excl_Tag_Addr <= HADDR[15:4];
 Excl_Tag_MID <= HMASTER[3:0];
 end
 end

 // Exclusive state
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 Excl_State <= 1’b0;
 else
 if (ReadValid & HEXCL) // Exclusive read
 Excl_State <= 1’b1;
 else if (WriteValid & (HMASTER!=Excl_Tag_MID[3:0]) & (HADDR[15:4]==Excl_Tag_
Addr[15:4]))
 Excl_State <= 1’b0; // Another bus master write to same location
 else if (WriteValid & HEXCL) // Another bus master performed an exclusive write
 Excl_State <= 1’b0;
 end

 // Generate exclusive access response controls
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 begin
 ExclOkay <= 1’b0;
 ExclStoreFail <= 1’b0;
 end
 else if (HREADY)
 if (ReadValid & HEXCL)
 begin
 ExclOkay <= 1’b1;
 ExclStoreFail <= 1’b0;
 end
 else if (WriteValid & HEXCL) // Exclusive store
 if ((HMASTER==Excl_Tag_MID[3:0]) & (HADDR[15:4]==Excl_Tag_Addr[15:4]) & Excl_State)
// exclusive Okay
 begin
 ExclOkay <= 1’b1;
 ExclStoreFail <= 1’b0;
 end
 else // Exclusive failed - either exclusive state is not set, or bus master ID
doesn’t match
 begin

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

158

 ExclOkay <= 1’b0;
 ExclStoreFail <= 1’b1; // Block write
 end
 else
 begin
 ExclOkay <= 1’b0; // Not exclusive accesses
 ExclStoreFail <= 1’b0;
 end
 end

 // Connect to top level
 assign HREADYOUT = 1’b1; // Always ready (no waitstate)
 assign HRESP = 1’b0; // Always response with OKAY
 assign HEXOKAY = ExclOkay & HREADYOUT;
 // Read data output
 assign HRDATA = {RDataOut3, RDataOut2, RDataOut1,RDataOut0};

endmodule

For FPGA designs, instead of using the behavioral model for ROM and RAM, the memory will be
replaced by either:

�� Memory blocks within the FPGA device, or

�� External memory devices.

�� In cases where the memories are to be implemented inside the FPGA, the design flow can involve:

�� Using the memory generator in your FPGA development tool to generate the required memory
block design file, or

�� Instantiating the required memory component directly in the FPGA design library.

If the synthesis tool supports the synthesis of memory models, we can create a synthesizable memory
model and synthesize the design together with other Verilog files.

In all cases, the implementation details depend on the FPGA product that you are using as well as the
development tools. You will need to refer to the documentation or application notes of your FPGA
development tool to determine which is the best arrangement for your project.

For example, for users of Synplify, they can choose to synthesize a behavior model of memory, with
the possibility of using a standard Verilog function like “$readmemh” to specify the initial content of
the memory. The tools will then create the memory from memory blocks in the FPGA. A similar feature
is also available from various FPGA tools from different vendors.

For ASIC/SoC designs, the ROM and RAM are normally created using vendor-specific memory
compilers and with AHB bus wrappers. An example of an SRAM bus wrapper for AHB Lite can be
found in the Cortex-M0 and Cortex-M3 DesignStart bundle called cmsdk_ahb_to_sram.v. This block
provides essential write buffering to enable typical SRAM blocks generated from memory compilers

159

to be connected to AHB Lite bus without any wait states. While there is no exclusive monitor
functionality in this block, bus level exclusive access monitoring is not normally required in single-
processor systems, as described in Section 4.7.

7.3.5 AHB to APB Bridge
The AHB to APB Bridge is needed when connecting peripherals with an APB interface to an Arm
processor that has an AHB interface. In this section, we will cover the design of this bus bridge for
AHB5 and APBv2 in AMBA 4 (with wait states, error response, and byte strobe support). This bridge
can also be used for APB peripherals designed for AMBA 2 and AMBA 3. In such cases, the unused
input signals on the bridge such as PREADY input signal can be tied to 1, and the PSLVERR input
signal can be tied low.

In AHB, the address value and control information are output from the bus master during the address
phase. Since the duration of the address phase is not fixed and the write data is not available until data
phase, the bus bridge registers the address and read/write control signal at the end of the address
phase and outputs them to the APB during the data phase. In order to generate the required PSEL
and PENABLE signals, the bus bridge contains a simple Finite State Machine (FSM) to handle the
APB control signals, as well as generating an error response on the AHB when an APB slave error
(PSLVERR) is asserted.

The example design also includes an APB slave multiplexer and eight interface ports to APB slaves.
The selection of which slave to access is determined by bit-14 to bit-12 of the address value
(HADDR[14:12]). It is possible to design the APB Bridge and the APB slave multiplexer as two
separated units. However, in this example, they have been designed as a single unit to simplify
integration of the AMBA system.

Figure 7.14: AHB5 to APBv2 bus bridge with 8 APB slave interface ports.

The example bus bridge design assumes that HCLK is the same as PCLK. If the AHB system and APB
system have different clock frequencies, or if the clock signals are asynchronous, the bus bridge will
have to include an extra handshaking mechanism to support the data transfers across different clock
domains. This is not supported on the example bridge discussed here.

HCLK

HRESETn

HSEL

HADDR[14:0]

HTRANS[1:0]

HWRITE

HREADY

PADDR[11:0]

PWRITE

PSTRB[3:0]

HWDATA[31:0]

HREADYOUT

HRDATA[31:0]

HRESP

PENABLE

PWDATA[31:0]

PREADY0

PRDATA0[31:0]

PSLVERR0

PREADY7

PRDATA7[31:0]

PSLVERR7

AHB to APB
Bridge

HPROT[6:0]

HNONSEC

PPROT[2:0]

PSEL[7:0]

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

160

To keep the design simple, we have also omitted exclusive access support, as semaphore data are
normally placed in SRAM rather than in peripherals.

For a simple read operation, the bridge outputs the address and APB control signal at the beginning of
the data phase. When the read data is obtained, the read value is sampled in a register and output to
the AHB system in the next clock cycle. Since the bridge supports multiple APB slave interfaces, there
are multiple PSEL, PRDATA, PSLVERR, and PREADY signals, which have a number as their suffix.

Figure 7.15: AHB5 to APBv2 bus bridge read timing.

It is possible to design the bridge so that as soon as the read data is ready, it is passed on to the AHB
system without the sampling cycle. However, this could result in poor timing performance if the
output delay of the peripheral system is high, or if the processor core requires a longer setup time
for the read data. Registering the read data signal and read response provides better synthesis timing
performance for the ASIC/FPGA design. The disadvantage is that it slightly increases the area of the
design and adds an extra clock cycle for APB operations.

The write transfer bridging is similar to read transfers. For write data, in most cases, it is not a problem
to connect from HWDATA directly to PWDATA because there is no need to add a multiplexer in the
write data path (only buffers are needed as the HWDATA signals are connected to a large number of bus
slaves). But the PREADY and PSLVERR signals are registered before feeding back to the AHB system.

HCLK

HADDR Address

HSEL

HTRANS

HWRITE

NSEQ IDLE

Other address
phase controls Read IDLE

HREADY

Read address phase Read data phaseTransfer #1

PADDR Valid

PSEL(n)

HRDATA

HRESP

Read data

OKAY OKAY OKAY

IDLE

IDLE

PENABLE

PWRITE

PRDATA(n)

PREADY(n)

PSLVERR(n)

Read data

161

Figure 7.16: AHB5 to APBv2 bus bridge write timing.

In order to generate the read and write control signals, a simple finite state machine (FSM) is used.
The FSM is also used to generate the two-cycle error response on the AHB if an error response on the
APB is detected.

Figure 7.17: AHB5 to APBv2 bus bridge state machine operations.

Idle

1st cycle of APB
transfer

Other cycles of the APB
transfer

State unchange
if PREADY = 0

PREADY = 1,
PSLVERR = 0

APB selected

APB selected

APB not
selected

APB not
selected

1st cycle of error
response on AHB

2nd cycle of error
response on AHB

OKAY response on AHB

APB not selected

APB selected

PREADY = 1,
PSLVERR = 1

HCLK

HADDR Address

HSEL

HTRANS

HWRITE

NSEQ IDLE

Other address
phase controls Write IDLE

HREADY

Write address phase Write data phaseTransfer #1

PADDR Valid

PSEL(n)

HWDATA

HRESP

Write data

OKAY OKAY OKAY

IDLE

IDLE

PENABLE

PWRITE

PWDATA(n)

PREADY(n)

PSLVERR(n)

Write data

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

162

If a slave error is detected on the APB bus, the APB bridge needs to generate an error response to
the AHB master. The error response on the AHB must be two cycles in length. Therefore, two states
are assigned in the FSM for this purpose. For example, if an APB receives an error from the peripheral
(PSLVERR = 1), the waveform would look like:

Figure 7.18: AHB5 to APBv2 bus bridge read with error response.

The same applies to the bridging write transfers. If an APB write transfer receives an error response,
the bus bridge generates the error response using the same mechanism.

HCLK

HADDR Address

HSEL

HTRANS

HWRITE

NSEQ IDLE

Other address
phase controls Read IDLE

HREADY

Read address phase Read data phaseTransfer #1

PADDR Valid

PSEL(n)

HRDATA

HRESP

Read data ignored

OKAY OKAY OKAY

IDLE

IDLE

PENABLE

PWRITE

PRDATA(n)

PREADY(n)

PSLVERR(n)

Read data

ERROR

163

Figure 7.19: AHB5 to APBv2 bus bridge write with error response.

Based on these waveforms, we could design the AHB to APB Bridge, as shown in the following
block diagram:

Figure 7.20: Design of the AHB5 to APBv2 bus bridge.

HSEL

HTRANS[1]

HREADY

AHB
Interface

Finite
State

Machine (FSM)

APB selected

register

enable

PREADY0

PREADY1

PREADY7

PRDATA0

PRDATA1

PRDATA7

Data phase MUX control

PSLVERR0

PSLVERR1

PSLVERR7

PSEL[7:0]

PENABLE

register

enable

PADDR
[15:2]

HADDR
[18:0]

Binary to
one hot

HREADYOUT

register

enable

HRDATA

APB
Interface

for up to 8
slaves

HADDR
[18:16]

HADDR
[15:2]

HRESP

HWDATA PWDATA

PWRITEHWRITE

HCLK

HADDR Address

HSEL

HTRANS

HWRITE

NSEQ IDLE

Other address
phase controls Write IDLE

HREADY

Write address phase Write data phaseTransfer #1

PADDR Valid

PSEL(n)

HWDATA

HRESP OKAY OKAY OKAY

IDLE

IDLE

PENABLE

PWRITE

PWDATA(n)

PREADY(n)

PSLVERR(n)

Write data

ERROR

Write data

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

164

The Verilog RTL of the bus bridge is as follows:

// Simple AHB to APB bridge
//
module ahb_to_apb (
 input wire HCLK, // Clock
 input wire HRESETn, // Reset

 input wire HSEL, // Device select
 input wire [14:0] HADDR, // Address
 input wire [1:0] HTRANS, // Transfer control
 input wire [2:0] HSIZE, // Transfer size
 input wire HWRITE, // Write control
 input wire HNONSEC, // Security attribute (TrustZone)
 input wire [6:0] HPROT, // Protection information
 input wire HREADY, // Transfer phase done
 input wire [31:0] HWDATA, // Write data

 output wire HREADYOUT, // Device ready
 output wire [31:0] HRDATA, // Read data output
 output wire HRESP, // Device response
 // APB Output
 output wire [11:0] PADDR, // APB Address
 output wire PENABLE, // APB Enable
 output wire PWRITE, // APB Write
 output wire [2:0] PPROT, // APB protection information
 output wire [3:0] PSTRB, // APB byte strobe
 output wire [31:0] PWDATA, // APB write data
 output wire PSEL0, // APB Select (8 slaves)
 output wire PSEL1,
 output wire PSEL2,
 output wire PSEL3,
 output wire PSEL4,
 output wire PSEL5,
 output wire PSEL6,
 output wire PSEL7,
 // APB Inputs
 input wire [31:0] PRDATA0, // Read data for each APB slave
 input wire [31:0] PRDATA1,
 input wire [31:0] PRDATA2,
 input wire [31:0] PRDATA3,
 input wire [31:0] PRDATA4,
 input wire [31:0] PRDATA5,
 input wire [31:0] PRDATA6,
 input wire [31:0] PRDATA7,
 input wire PREADY0, // Ready for each APB slave
 input wire PREADY1,
 input wire PREADY2,
 input wire PREADY3,
 input wire PREADY4,
 input wire PREADY5,
 input wire PREADY6,
 input wire PREADY7,
 input wire PSLVERR0, // Error state for each APB slave
 input wire PSLVERR1,
 input wire PSLVERR2,
 input wire PSLVERR3,
 input wire PSLVERR4,
 input wire PSLVERR5,
 input wire PSLVERR6,
 input wire PSLVERR7
);

165

 // Internal signals
 reg [15:2] AddrReg; // Address sample register
 reg [7:0] SelReg; // One-hot PSEL output register
 reg WrReg; // Write control sample register
 reg [2:0] StateReg; // State for finite state machine

 wire ApbSelect; // APB bridge is selected
 wire ApbTranEnd; // Transfer is completed on APB
 wire AhbTranEnd; // Transfer is completed on AHB
 reg [7:0] NextPSel; // Next state of One-hot PSEL
 reg [2:0] NextState; // Next state for finite state machine
 reg [31:0] RDataReg; // Read data sample register
 reg [2:0] PProtReg; // Protection information
 reg [3:0] NxtPSTRB; // Write byte strobe next state
 reg [3:0] RegPSTRB; // Write byte strobe register
 wire [31:0] muxPRDATA; // Slave multiplexer signal
 wire muxPREADY;
 wire muxPSLVERR;

 // Start of main code

 // Generate APB bridge select
 assign ApbSelect = HSEL & HTRANS[1] & HREADY;
 // Generate APB transfer ended
 assign ApbTranEnd = (StateReg==3’b010) & muxPREADY;
 // Generate AHB transfer ended
 assign AhbTranEnd = (StateReg==3’b011) | (StateReg==3’b101);

 // Generate next state of PSEL at each AHB transfer
 always @(ApbSelect or HADDR)
 begin
 if (ApbSelect)
 begin
 case (HADDR[14:12]) // Binary to one-hot encoding for device select
 3’b000 : NextPSel = 8’b00000001;
 3’b001 : NextPSel = 8’b00000010;
 3’b010 : NextPSel = 8’b00000100;
 3’b011 : NextPSel = 8’b00001000;
 3’b100 : NextPSel = 8’b00010000;
 3’b101 : NextPSel = 8’b00100000;
 3’b110 : NextPSel = 8’b01000000;
 3’b111 : NextPSel = 8’b10000000;
 default: NextPSel = 8’b00000000;
 endcase
 end
 else
 NextPSel = 8’b00000000;
 end

 // Registering PSEL output
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 SelReg <= 8’h00;
 else if (HREADY|ApbTranEnd)
 SelReg <= NextPSel; // Set if bridge is selected
 end // Clear at end of APB transfer

 // Sample control signals
 always @(posedge HCLK or negedge HRESETn)
 begin

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

166

 if (~HRESETn)
 begin
 AddrReg <= {10{1’b0}};
 WrReg <= 1’b0;
 PProtReg<= {3{1’b0}};
 end
 else if (ApbSelect) // Only change at beginning of each APB transfer
 begin
 AddrReg <= HADDR[11:2]; // Note that lowest two bits are not used
 WrReg <= HWRITE;
 PProtReg<= {(~HPROT[0]),HNONSEC,(HPROT[1])};
 end
 end

 // Byte write strobes
 always @(*)
 begin
 if (HSEL & HTRANS[1] & HWRITE)
 begin
 case (HSIZE[1:0])
 2’b00: // byte
 begin
 case (HADDR[1:0])
 2’b00: NxtPSTRB = 4’b0001;
 2’b01: NxtPSTRB = 4’b0010;
 2’b10: NxtPSTRB = 4’b0100;
 2’b11: NxtPSTRB = 4’b1000;
 default:NxtPSTRB = 4’bxxxx; // Should not be here.
 endcase
 end
 2’b01: // half word
 NxtPSTRB = (HADDR[1])? 4’b1100:4’b0011;
 default: // word
 NxtPSTRB = 4’b1111;
 endcase
 end
 else
 NxtPSTRB = 4’b0000;
 end

 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 RegPSTRB<= {4{1’b0}};
 else if (HREADY)
 RegPSTRB<= NxtPSTRB;
 end

 // Generate next state for FSM
 always @(StateReg or muxPREADY or muxPSLVERR or ApbSelect)
 begin
 case (StateReg)
 3’b000 : NextState = {1’b0, ApbSelect}; // Change to state-1 when selected
 3’b001 : NextState = 3’b010; // Change to state-2
 3’b010 : begin
 if (muxPREADY & muxPSLVERR) // Error received - Generate two cycle
 // Error response on AHB by
 NextState = 3’b100; // Changing to state-4 and 5
 else if (muxPREADY & ~muxPSLVERR) // Okay received
 NextState = 3’b011; // Generate okay response in state 3
 else // Slave not ready
 NextState = 3’b010; // Unchange
 end
 3’b011 : NextState = {1’b0, ApbSelect}; // Terminate transfer

167

 // Change to state-1 if selected
 3’b100 : NextState = 3’b101; // Goto 2nd cycle of error response
 3’b101 : NextState = {1’b0, ApbSelect}; // 2nd Cycle of Error response
 // Change to state-1 if selected
 default : // Not used
 NextState = {1’b0, ApbSelect}; // Change to state-1 when selected
 endcase
 end

 // Registering state machine
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 StateReg <= 3’b000;
 else
 StateReg <= NextState;
 end

 // Slave Multiplexer
 assign muxPRDATA = ({32{SelReg[0]}} & PRDATA0) |
 ({32{SelReg[1]}} & PRDATA1) |
 ({32{SelReg[2]}} & PRDATA2) |
 ({32{SelReg[3]}} & PRDATA3) |
 ({32{SelReg[4]}} & PRDATA4) |
 ({32{SelReg[5]}} & PRDATA5) |
 ({32{SelReg[6]}} & PRDATA6) |
 ({32{SelReg[7]}} & PRDATA7) ;
 assign muxPREADY = (SelReg[0] & PREADY0) |
 (SelReg[1] & PREADY1) |
 (SelReg[2] & PREADY2) |
 (SelReg[3] & PREADY3) |
 (SelReg[4] & PREADY4) |
 (SelReg[5] & PREADY5) |
 (SelReg[6] & PREADY6) |
 (SelReg[7] & PREADY7) ;
 assign muxPSLVERR = (SelReg[0] & PSLVERR0) |
 (SelReg[1] & PSLVERR1) |
 (SelReg[2] & PSLVERR2) |
 (SelReg[3] & PSLVERR3) |
 (SelReg[4] & PSLVERR4) |
 (SelReg[5] & PSLVERR5) |
 (SelReg[6] & PSLVERR6) |
 (SelReg[7] & PSLVERR7) ;

 // Sample PRDATA
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 RDataReg <= {32{1’b0}};
 else if (ApbTranEnd|AhbTranEnd)
 RDataReg <= muxPRDATA;
 end

 // Connect outputs to top level
 assign PADDR = {AddrReg[15:2], 2’b00}; // from sample register
 assign PWRITE = WrReg; // from sample register
 assign PPROT = PProtReg; // from sample register
 assign PSTRB = RegPSTRB;
 assign PWDATA = HWDATA; // No need to register (HWDATA is in data phase)
 assign PSEL0 = SelReg[0]; // PSEL for each APB slave
 assign PSEL1 = SelReg[1];
 assign PSEL2 = SelReg[2];
 assign PSEL3 = SelReg[3];
 assign PSEL4 = SelReg[4];

Chapter 7 | Design of bus infrastructure components

System-on-Chip Design with Arm® Cortex®-M processors

168

 assign PSEL5 = SelReg[5];
 assign PSEL6 = SelReg[6];
 assign PSEL7 = SelReg[7];
 assign PENABLE= (StateReg == 3’b010); // PENABLE to all AHB slaves
 assign HREADYOUT = (StateReg == 3’b000)|(StateReg == 3’b011)|(StateReg==3’b101);
 assign HRDATA = RDataReg;
 assign HRESP = (StateReg==3’b100)|(StateReg==3’b101);

endmodule

In this design, up to eight APB slaves can be connected to the bridge. The design can be modified
easily to support more or fewer APB slaves. This can be done by changing the binary to one-hot logic,
the PSEL register, and the multiplexers.

The current design allows each APB to take up 4kB of memory. If the memory range for each APB
slave needs to be increased or decreased, the address signal lines connected to the slave multiplexer
need to be changed. In most cases, 4kB should be enough for most simple APB slaves.

7.4 Bridging from Cortex-M3/Cortex-M4 AHB Lite to AHB5
A simple bus wrapper component is needed to bridge the AHB interface of Cortex-M3 or Cortex-M4
processors to AHB5 due to:

�� Conversion of memory attribute sideband signals to new AHB5 HPROT signals;

�� Conversion of exclusive access signals.

Please note that there is also a mismatch between the AHB Lite specification and the Cortex-M3
and Cortex-M4’s bus interface design. Since the Cortex-M3 was designed before the AHB Lite
specification was finalized, the HRESP input signals on the Cortex-M3 processor are 2-bit wide as they
are in AHB (AMBA 2), although the RETRY and SPILT responses are not supported. When connecting
a Cortex-M3 processor to AHB Lite infrastructure, the bit 1 of the HRESP input in the processor can
be tied to 0. Since Cortex-M4 was designed to enable easy migration from Cortex-M3, it kept the
same arrangement, and therefore its HRESP inputs are also 2-bit wide.

The Verilog RTL of the bus wrapper is as follows:

module cm3ahb_to_ahb5 (
 input wire HCLK, // Clock
 input wire HRESETn, // Reset

 input wire CM3HREADY, // HREADY on Cortex-M3/M4
 input wire CM3HWRITE,
 input wire [3:0] CM3HPROT,
 input wire [1:0] CM3MEMATTR, // Memory attribute
 input wire CM3EXREQ, // Exclusive request
 output wire CM3EXRESP, // Exclusive response
 output wire [1:0] CM3HRESP,

169

 output wire [6:0] AHB5HPROT,
 output wire AHB5HEXCL, // Exclusive request
 input wire AHB5EXOKAY, // Exclusive okay
 input wire AHB5HRESP
);

 reg ExclTransfer; // Indicates data phase of exclusive accesses
 // Cortex-M3 AHB5
 // MEMATTR[1] - shareable HPROT[6] - shareable
 // MEMATTR[0] - allocate HPROT[5] - allocate
 // HPROT[4] - lookup
 // HPROT[3] - cacheable HPROT[3] - modifiable
 // HPROT[2] - bufferable HPROT[2] - bufferable
 // HPROT[1] - privileged HPROT[1] - privileged
 // HPROT[0] - data HPROT[0] - data

 assign AHB5HPROT[6] = CM3MEMATTR[1] & CM3HPROT[3];
 assign AHB5HPROT[5] = CM3HPROT[3] & (~CM3HWRITE | ~CM3MEMATTR[0]);

 assign AHB5HPROT[4] = CM3HPROT[3];
 assign AHB5HPROT[3:0] = CM3HPROT[3:0];

 assign AHB5HEXCL = CM3EXREQ;

 // Mark data phases of exclusive accesses
 always @(posedge HCLK or negedge HRESETn)
 begin
 if (~HRESETn)
 ExclTransfer <= 1’b0;
 else if (CM3HREADY)
 ExclTransfer <= CM3EXREQ;
 end

 assign CM3EXRESP = (ExclTransfer & ~AHB5EXOKAY & CM3HREADY);

 // Wide matching for HRESP
 assign CM3HRESP = {1’b0, AHB5HRESP}; // Only OKAY & ERROR are allowed

endmodule

In this bus wrapper, we omitted the HNONSEC (Security Attribute for TrustZone support). If a
Cortex-M processor without TrustZone support is used in a TrustZone enabled system, you can use
one of two arrangements:

1. The Cortex-M processor is treated as always Non-secure. In this case, the HNONSEC signal(s)
of the Cortex-M processor is tied high. The bus system needs to handle permission checking to
prevent the processor from accessing Secure memories.

2. The Cortex-M processor is treated as always Secure. In this case, the HNONSEC signal(s) must be
generated based on the memory address partitioning (1 for Non-secure addresses and 0 for Secure
addresses).

The Corstone system design kits from Arm provide a component called Master Security Controller to
handle security management of legacy bus masters in a TrustZone based system.

Chapter 7 | Design of bus infrastructure components

Design of
simple peripherals

CHAPTER
8

System-on-Chip Design with Arm® Cortex®-M processors

172

8.1 Common practices for peripheral designs
If you are designing a peripheral for a Cortex-M processor-based system or setting out to develop
a wrapper for legacy 8-bit or 16-bit peripheral blocks, a number of standard practices will make the
software development easier:

�� Make sure that the peripheral’s registers are word-aligned unless you are creating an AHB peripheral
with byte-addressable registers. In most cases, peripherals will be connected to the APB bus
system. Since there is no transfer size information on this bus and the bus size is always 32-bit wide,
it is best to make every register word size and align to word addresses. At the peripheral interface,
the address bit [1:0] is unused and can be ignored.

�� When creating peripheral registers, it is important to avoid a status bit that can be cleared by
writing a zero to it. For example, if the application needs to perform a read-modify-write operation
to change a one-bit bitfield value in a peripheral register, and if another status bit of the same
register changed state between the read and the write access, the information of the status bit
change would be lost when the write-back takes place. Normally, status bits that indicate events
can be implemented as write 1 to clear. In this way, the status bit will not be cleared accidentally.

�� When creating status registers in peripherals, it is best to avoid a status register that changes
its value upon read accesses (e.g., clear on read). This is because you might want to read the
peripheral memory map through a debugger at the same time as the program is running. Of course,
sometimes, this cannot be avoided. In this case, you might want to create a separate address for
the debugger accesses to the peripheral status register so that reading of status information by the
debugger will not change the behavior of the device.

�� Be aware that the status of the peripheral interface might be in an undefined state during the
starting up of an FPGA. Internally to the FPGA, the peripheral can be reset after the FPGA is ready.
But the external circuit interface to the peripheral will need to be aware that the FPGA needs a
certain period of time to get ready. Most FPGA products have status output to indicate that the
starting sequence is completed. This can be used to externally disable the circuit from activation.

�� In most cases, interrupt signals from peripherals are designed as level trigger interrupts. Compared
to pulse triggered interrupts, level trigger interrupts can propagate through clock domains with
simple synchronizers. Whereas synchronization for pulse trigger interrupt signals is more complex.

�� When developing a complex design, it is often impractical to design all of the required peripherals
by yourself. However, there are various offerings available from Intellectual Property providers that
can be used to create peripheral solutions that work with Arm processors. Arm also has a range of
peripheral products and subsystem products for accelerating time to market.

�� In many cases, a peripheral could operate at a much slower clock speed than the processor. Instead
of using bus bridges to convert the bus clock speed to match the peripheral speed, it is often
best to have a separated clock for the bus interface of the peripheral and a clock for peripheral
functions. The complexity of the peripheral would increase as a result, as there is a need for

173

additional synchronization logic between the clock domains. However, this arrangement avoids
high access latency when reading/writing to the peripheral registers, which reduces the energy
efficiency of the system and has an impact on interrupt latency.

8.2 Designing Simple APB Peripherals
For the majority of peripheral designs, the AMBA APB protocol is usually chosen because it is very
simple. There are, of course, situations where peripherals need to be designed with an AHB interface
instead. For example, if a peripheral is required to support any of the following:

�� Transfers of different data sizes (registers are byte/half-word addressable),

�� Exclusive accesses, or

�� Instances in which the peripheral needs to behave differently when other bus-masters have access
to it (Note: This requires the HMASTER signal).

In this section, we will cover the design of simple APB peripherals, including a simple parallel I/O
interface and a simple timer. First of all, though, we will take a look at APB interface design in general.

APB transfers take two cycles in AMBA 2, or a minimum of two cycles in AMBA 3 and later versions.
For read operations, an APB slave must provide valid read data at the last cycle of the transfer, except
when it is responding with an error signal (applicable only in AMBA 3 or after). For slower frequency
systems, we can generate the read data as soon as possible without any pipeline stage.

Figure 8.1: Simple APB read data generation.

With the arrangement shown in Figure 8.1, the PRDATA will be valid for all the cycles during the APB
transfer. This solution is good enough for some APB systems. However, in systems that require higher
operating frequency, this design might not be suitable because of the propagation delay in the read

ReadEnable

PADDR

MUX
PRDATA

Hardware
registers

PSEL

PWRITE

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

174

data generation. For example, if an APB slave contains a large number of hardware registers, the read
data multiplexer will have a long delay. In addition to that, the APB slave multiplexer at the system-
level (in our example the APB slave multiplexer is built-in to the AHB to APB Bridge) also requires
some time to multiplex the read data from different APB slaves. As a result, the total propagation
delay can be quite significant and can be worse when we include wire connection delays in the
calculation. This can reduce the maximum clock frequency of the system, or cause signal routing
problems within the FPGA/ASIC designs.

In order to solve this problem, we can insert a register stage in the APB slave read data interface
to improve the synthesis timing of the data path. The pipeline stage could be inserted in different
positions, depending on your design. One of the possible arrangements is to register the read data
multiplexer output.

Figure 8.2: Pipelined APB read data generation.

By using this pipeline stage, we can prevent the signal path from hardware registers within the APB
slaves to the AHB to APB bridge from getting too long. In addition, an extra registering stage can be
placed within the AHB to APB bridge, so in total, a data read takes two clock cycles to get the data
value from the peripheral register to the processor. This seems to have increased the read operation
latency, but the first registering cycle within the APB slave overlapped with the APB operations (APB
transfers take a minimum of two cycles), so the only extra latency cycle is at the registering stage of
the AHB to APB Bridge.

Figure 8.3: The signal path of pipelined APB read data generation.

MUX

Hardware
registers

Optional
registering

stage

APB
infrastructure

APB slave AHB to APB bridge

AHB
infrastructure

Processor data
path

AHB connection Processor internal
delay

Registering
stage

Register bank
(R0 - R15)

PSEL

PWRITE

ReadEnable

PADDR

MUX PRDATAD Q

En
Hardware
registers

175

In the example designs, the register slices for read data only activate if there is a read to the slave.
Otherwise, the register is held unchanged to reduce power consumption. The read data output
(PRDATA) is masked by a ReadEnable signal to block data output when the APB slave is not being
read. Such a blocking mechanism could potentially simplify merging of PRDATA from multiple slaves
by using just OR logic if all bus slaves in the APB segment has the same behavior.

The write operation is easier to implement. For example, if each writable hardware register has
a corresponding write enable signals, the write enable signal can be generated as:

Figure 8.4: APB write implementation.

When designing APB peripherals, we should assign each hardware register to word-aligned addresses
and reserve the whole word for the register even if only part of the space is used. This is because
the APB interface does not provide transfer size information, so each access is assumed to be the
maximum transfer size of the bus (i.e., word size). The common practice is that bit 1 and bit 0 of the
PADDR bus are not used, and registers are assigned with word aligned addresses like (0xXXXX0000,
0xXXXX0004, 0xXXXX0008, etc.). Even if the register does not require the whole word, it occupies
the whole word address.

Figure 8.5: Keep peripheral registers word-aligned so that the lowest two bits of an address can be tied off.

For many designers, they might have legacy peripherals that were designed for simple 8-bit or 16-bit
microcontrollers and want to reuse them on their Cortex-M processor-based design. In most cases,
these peripherals have three read and write control signals: Chip-Select, Read-Enable, and Write-

PSEL

PWRITE

Enable

PADDR Decoder

Hardware Register
#0

Hardware Register
#1

Hardware Register
#N

WriteEnable0

WriteEnable1

WriteEnable(N)

PWDATA

0x0000

Address Offset

0x0004

0x0008

0x000C

0x0010

Peripheral base
address

Register #0

Register #1

Register #2

Register #3

Register #4

Unused
space Registers

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

176

Enable. If the peripheral has a synchronous (clocked) interface and does not require a tristate data bus,
it is normally an easy task to connect this type of peripheral to APB.

Figure 8.6: Simple APB wrapper for legacy peripherals with a simple synchronous interface.

However, if the peripheral requires a tristate bus interface, or uses an asynchronous interface, the
wrapper will have to handle the transfers in multiple clock cycles and create a turn-around cycle if
a tristate bus is used (a turn-around cycle is used to prevent current spikes on the data bus when the
direction of the data changes, caused by the bus master and bus slave tristate buffers being turned
on simultaneously for a very short period of time during the transition). In order to allow multiple
cycle operations, the APB system must support the PREADY signal, so the APB for AMBA 3 or later is
needed in this situation.

The simplest way to develop a wrapper for such a peripheral is to create a finite state machine and
generate the read enable, write enable, and tristate buffer output enable, using the state value. (Note:
We assume that the OutputEnable signal is used to enable the tristate buffer for write data, and
the ReadEnable is used to enable the tristate buffer for data output on the slaves). If the peripheral
accesses take longer, the finite state machine design can be extended easily by adding extra states.

Figure 8.7: State machine to interface APB to asynchronous or tristate buses.

PSEL ChipEnable

ReadEnable

WriteEnable

PWRITE

PREADY

AddressPADDR[n-1:2]

PWDATA WriteData

1

PSLVERR 0

PRDATA ReadData

PENABLE

Idle

Read and sampling
Cycle

Turn-around cycle
for read

Write cycle

Turn-around cycle
for write

PSEL = 1, PENABLE = 0
and PWRITE= 0

PSEL = 1, PENABLE = 0
and PWRITE= 1

ReadEnable = 1,
OutputEnable = 0

ReadEnable = 0,
OutputEnable = 0

WriteEnable = 1,
OutputEnable = 1

WriteEnable = 0,
OutputEnable = 1

ReadEnable = 0,
WriteEnable = 0,
OutputEnable = 0

177

In the example shown in Figure 8.8, a sampling register is used to hold the read data during the
turn-around cycle for read. This allows for better synthesis timing performance. Usually, a tristate
bus operates slower than a unidirectional bus. Without the sampling register, the delay of the read
operation, together with the delay caused by the APB slave multiplexer can become a critical path of
the design and limits the maximum clock frequency.

Using the state machine diagram, the wrapper logic to interface an asynchronous peripheral can be
developed as follows:

Figure 8.8: APB to simple asynchronous interface wrapper with tristate bus support.

Example Verilog code for this wrapper is listed here.

module apb_to_async_wrapper (
 input wire PCLK, // Clock
 input wire PRESETn, // Reset
 // APB interface inputs
 input wire PSEL, // Device select
 input wire [7:2] PADDR, // Address
 input wire PENABLE, // Transfer control
 input wire PWRITE, // Write control
 input wire [31:0] PWDATA, // Write data
 // APB interface outputs
 output wire [31:0] PRDATA, // Read data
 output wire PREADY, // Device ready
 output wire PSLVERR, // Device error response

 // simple interface’s output
 output wire [7:2] Addr, // Address
 output wire [31:0] WrData, // Write Data
 output wire ReadEnable, // Read enable
 output wire WriteEnable, // Write enable
 output wire OutputEnable, // Tristate buffer for WrData
 input wire [31:0] RdData // Read data
);

 // Cycles for read & write, values are example only. Modify if needed.
 localparam RD_CYCLE=4’h3; // 3 cycles for read
 localparam WR_CYCLE=4’h2; // 2 cycles for write
 // Encoding of FSM states

PSEL ChipEnable

ReadEnable

WriteEnablePWRITE

PREADY

AddressPADDR[n-1:2]

PWDATA WriteData

PSLVERR 0

PRDATA ReadData

PENABLE

FSM

OutputEnable

Sampling
register

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

178

 localparam FSM_IDLE=3’b000; // Idle state
 localparam FSM_READ_1=3’b100; // Read operation
 localparam FSM_READ_2=3’b101; // Turnaround
 localparam FSM_WRITE_1=3’b110; // Write operation
 localparam FSM_WRITE_2=3’b111; // Turnaround

 wire RdStart; // Read started
 wire WrStart; // Write started
 wire OpDone; // Operation done
 reg [3:0] reg_cycle; // wait cycle counter
 reg [3:0] nxt_cycle; // next state for reg_cycle
 reg [2:0] reg_fsm_state; // FSM state register
 reg [2:0] nxt_fsm_state; // next state for reg_fsm_state
 reg reg_ReadEnable; // Registered ReadEnable output
 reg reg_WriteEnable;// Registered WriteEnable output
 reg reg_OutputEnable;// Registered OutputEnable output
 reg [31:0] reg_rdata;

 assign RdStart = PSEL & ~PENABLE & ~PWRITE;
 assign WrStart = PSEL & ~PENABLE & PWRITE;

 // Counter to handle multi-cycle operations
 always @(*)
 begin
 if (RdStart)
 nxt_cycle = RD_CYCLE;
 else if (WrStart)
 nxt_cycle = WR_CYCLE;
 else if (|reg_cycle)
 nxt_cycle = reg_cycle - 1’b1;
 else
 nxt_cycle = reg_cycle;
 end

 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 reg_cycle <= 4’b0000;
 else
 reg_cycle <= nxt_cycle;
 end

 assign OpDone = (nxt_cycle==4’b0000) & reg_fsm_state[2];

 // FSM
 always @(*)
 begin
 case (reg_fsm_state[2:0])
 FSM_IDLE,FSM_READ_2,FSM_WRITE_2:
 begin
 if (RdStart)
 nxt_fsm_state = FSM_READ_1;
 else if (WrStart)
 nxt_fsm_state = FSM_WRITE_1;
 else
 nxt_fsm_state = FSM_IDLE;
 end
 FSM_READ_1:
 nxt_fsm_state = OpDone? FSM_READ_2: FSM_READ_1;
 FSM_WRITE_1:
 nxt_fsm_state = OpDone? FSM_WRITE_2: FSM_WRITE_1;
 default: // should not be here
 nxt_fsm_state = FSM_IDLE;
 endcase

179

 end

 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 reg_fsm_state <= FSM_IDLE;
 else
 reg_fsm_state <= nxt_fsm_state;
 end

 // Sample read data from bus slave
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 reg_rdata <= {32{1’b0}};
 else if ((reg_fsm_state==FSM_READ_1) & OpDone)
 reg_rdata <= RdData;
 end

 // Registering ReadEnable control
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 reg_ReadEnable <= 1’b0;
 else
 reg_ReadEnable <= (RdStart|reg_ReadEnable) & ~OpDone;
 end

 // Registering WriteEnable control
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 reg_WriteEnable <= 1’b0;
 else
 reg_WriteEnable <= (WrStart|reg_WriteEnable) & ~OpDone;
 end

 // Registering OutputEnable (tristate buffer) control
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 reg_OutputEnable <= 1’b0;
 else
 reg_OutputEnable <= (WrStart|reg_OutputEnable) &
 ~(reg_fsm_state==FSM_WRITE_2);
 end

 assign PRDATA = (PENABLE & ~PWRITE) ? reg_rdata:{32{1’b0}};
 assign PSLVERR = 1’b0;
 assign PREADY =
 ~((reg_fsm_state==FSM_READ_1)||(reg_fsm_state==FSM_WRITE_1));

 // Output to bus slave
 assign Addr[7:2] = PADDR[7:2];
 // Note: assumed PADDR is registered in AHB to APB bridge
 assign WrData[31:0] = PWDATA[31:0];
 // Note: PWDATA should be stable before reaching FSM_WRITE_1

 // Connect registered R/W control outputs to top level
 assign ReadEnable = reg_ReadEnable;
 assign WriteEnable = reg_WriteEnable;
 assign OutputEnable = reg_OutputEnable;

endmodule

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

180

8.2.1 General Purpose Input Output (GPIO) interface
In Arm terminology, peripherals that handle a parallel I/O interface are often called General Purpose I/O
(GPIO). Some of the commercial I/O interface blocks might be able to support a large number of features,
but in here, we are focusing on the APB interface itself, so the design will only provide basic features.

The first stage of the design process is to determine the interface signals required. For basic
functionality, we need to have input signals, output signals, and enable control signals for output
tristate buffers. We can make the design more flexible by setting the width of the I/O as a Verilog
parameter, with a default width of 8-bit. In this way, the block can be reused easily on other designs
that need a different I/O width.

Figure 8.9: Simple GPIO peripheral.

The GPIO block will also allow the generation of interrupts to a processor core. In order to make
the design more flexible, for each I/O pin, we will provide an interrupt output, as well as a combined
interrupt output.

The APB interface will include APB signals for AMBA 3. However, as the design does not require wait
state, the PREADY output will be tied to high and PSLVERR signal will be tied to low. This design can be
used on APB systems for AMBA 2. In this case, the PREADY and PSLVERR outputs can be ignored.

The next step of the design process is to determine the programmer’s model for the GPIO block. The
programmer’s model is fairly simple, containing only six registers.

Table 8.1: Programmer’s model for example GPIO block.

APB interface PORTOUT[7:0]

PORTEN[7:0]

PORTIN[7:0]GPIOINT[7:0]

COMBINT

GPIO

Address offset Name Type Reset value Descriptions

0x000 DataIn RO - Read back value of the IO port

0x004 DataOut R/W 0x00 Output data value

0x008 OutEnable R/W 0x00 Output Enable (Tri-state buffer enable)

0x00C IntEnable R/W 0x00 Interrupt Enable (for each bit, set to 1 to enable
interrupt generation, or clear to 0 to disable the
interrupt)

0x010 IntType R/W 0x00 Interrupt Type (for each bit, set to 1 for edge trigger
interrupt, and clear to 0 for level trigger interrupt)

0x014 IntPolarity R/W 0x00 Interrupt Polarity (for each bit, clear to 0 for rising
edge trigger or high-level trigger, and set to 1 for
falling edge trigger or low-level trigger)

0x018 INTSTATE R/Wc 0x00 Bit[7:0] – Interrupt status, write 1 to clear

181

With these details in place, we can begin to develop the design for the example GPIO block.

Figure 8.10: Design of a simple GPIO peripheral.

The GPIO design itself does not contain the tristate buffers. These have to be added externally
because tristate buffers can be technology-specific, and designers might want to define them
manually to match the electrical characteristics needed by the applications. Additionally, in some
designs, the I/O pins might need to be shared with other peripherals. In such cases, the tristate buffers
would have to be added after the pin multiplexor stage.

The design also contains a dual flip-flop synchronizer. This is used to prevent metastability issues
caused by toggling of asynchronous external inputs. The interrupt generation circuit is connected to
the synchronizer output. Please note that, with this arrangement, the interrupt generation will not
work if the clock is stopped.

For interrupt generation on the Cortex-M processors with this GPIO unit, please note that, aside from
enabling the interrupt enable at the GPIO block, it is also necessary to program the interrupt enable
register in the NVIC in the Cortex-M processor.

The APB interface design for the example GPIO block is quite simple. First, we use PSEL, PWRITE, and
PENABLE to create the enable signals for read and write operations. Then, we combine these signals

DataOut

OutEn

DD QQ

I/O Pad

DataIn

IntPolarity

D QD Q

IntType 1 0

IntEnable

Edge detection

Synchroniser

Polarity
adjustment

Type
multiplexer

COMBINT

GPIOINT

8

8 8

8

8

8

8

8

APB
Interface

GPIO

PORTOUT

PORTIN

PORTEN

IntState

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

182

with the output from address decoding logic to enable write control for each register and to control
the read multiplexer for the generation of read data.

Figure 8.11: APB interface for simple GPIO peripheral.

The Verilog RTL of the example GPIO is as follows:

// Simple GPIO
//
//-------------------------------------
// Programmer’s model
// 0x00 RO DataIn
// 0x04 RW Data Output
// 0x08 RW Output Enable
// 0x0C RW Interrupt Enable
// 0x10 RW Interrupt Type
// 0x14 RW Interrupt Polarity
// 0x18 RWc Interrupt State
//-------------------------------------
module apb_gpio #(
 parameter PortWidth = 8
) (
 input wire PCLK, // Clock
 input wire PRESETn, // Reset
 // APB interface inputs
 input wire PSEL, // Device select

PSEL

PWRITE
ReadEnable

PADDR[4:2]

MUX
PRDATA

Hardware registers

D Q

En

=0x4

=0x8

=0xC

=0x10

=0x14

WrEn

WrEn

WrEn

WrEn

WrEn

Synchronized
DATAIN

0

1

2

3

4

5

WriteEnable

PENABLE

PWDATA

D

D

D

D

D

Q

Q

Q

Q

Q

INTPOLARITY

DATAOUT

OUTENABLE

INTEN

INTYPE
PREADY

PSLVERR

1

0

=0x18 6
Clear

Q

INTSTATE

Set

Interrupts

183

 input wire [7:2] PADDR, // Address
 input wire PENABLE, // Transfer control
 input wire PWRITE, // Write control
 input wire [31:0] PWDATA, // Write data
 // APB interface outputs
 output wire [31:0] PRDATA, // Read data
 output wire PREADY, // Device ready
 output wire PSLVERR, // Device error response

 // GPIO Interface inputs and output
 input wire [PortWidth-1:0] PORTIN, // GPIO input
 output wire [PortWidth-1:0] PORTOUT, // GPIO output
 output wire [PortWidth-1:0] PORTEN, // GPIO output enable
 // Interrupt outputs
 output wire [PortWidth-1:0] GPIOINT, // Interrupt output for each pin
 output wire COMBINT // Combined interrupt
);

 // Signals for read/write controls
 wire ReadEnable;
 wire WriteEnable;
 wire WriteEnable04; // Write enable for Data Output register
 wire WriteEnable08; // Write enable for Output Enable register
 wire WriteEnable0C; // Write enable for Interrupt Enable register
 wire WriteEnable10; // Write enable for Interrupt Type register
 wire WriteEnable14; // Write enable for Interrupt Polarity register
 wire WriteEnable18; // Write enable for Interrupt State register
 reg [PortWidth-1:0] ReadMux;
 reg [PortWidth-1:0] ReadMuxReg;

 // Signals for Control registers
 reg [PortWidth-1:0] RegDOUT;
 reg [PortWidth-1:0] RegDOUTEN;
 reg [PortWidth-1:0] RegINTEN;
 reg [PortWidth-1:0] RegINTTYPE;
 reg [PortWidth-1:0] RegINTPOL;
 reg [PortWidth-1:0] RegINTState;

 // I/O signal path
 reg [PortWidth-1:0] DataInSync1;
 reg [PortWidth-1:0] DataInSync2;
 wire [PortWidth-1:0] DataInPolAdjusted;
 reg [PortWidth-1:0] LastDataInPol;
 wire [PortWidth-1:0] EdgeDetect;
 wire [PortWidth-1:0] RawInt;
 wire [PortWidth-1:0] MaskedInt;

 // Start of main code

 // Read and write control signals
 assign ReadEnable = PSEL & (~PWRITE); // assert for whole APB read transfer
 assign WriteEnable = PSEL & (~PENABLE) & PWRITE; // assert for 1st cycle of write
transfer
 assign WriteEnable04 = WriteEnable & (PADDR[7:2] == 6’b000001);
 assign WriteEnable08 = WriteEnable & (PADDR[7:2] == 6’b000010);
 assign WriteEnable0C = WriteEnable & (PADDR[7:2] == 6’b000011);
 assign WriteEnable10 = WriteEnable & (PADDR[7:2] == 6’b000100);
 assign WriteEnable14 = WriteEnable & (PADDR[7:2] == 6’b000101);
 assign WriteEnable18 = WriteEnable & (PADDR[7:2] == 6’b000110);

 // Write operations
 // Data Output register
 always @(posedge PCLK or negedge PRESETn)
 begin

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

184

 if (~PRESETn)
 RegDOUT <= {PortWidth{1’b0}};
 else if (WriteEnable04)
 RegDOUT <= PWDATA[(PortWidth-1):0];
 end

 // Output enable register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegDOUTEN <= {PortWidth{1’b0}};
 else if (WriteEnable08)
 RegDOUTEN <= PWDATA[(PortWidth-1):0];
 end

 // Interrupt Enable register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegINTEN <= {PortWidth{1’b0}};
 else if (WriteEnable0C)
 RegINTEN <= PWDATA[(PortWidth-1):0];
 end

 // Interrupt Type register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegINTTYPE <= {PortWidth{1’b0}};
 else if (WriteEnable10)
 RegINTTYPE <= PWDATA[(PortWidth-1):0];
 end

 // Interrupt Polarity register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegINTPOL <= {PortWidth{1’b0}};
 else if (WriteEnable14)
 RegINTPOL <= PWDATA[(PortWidth-1):0];
 end

 // Read operation
 always @(PADDR or DataInSync2 or RegDOUT or RegDOUTEN or
 RegINTEN or RegINTTYPE or RegINTPOL or RegINTState)
 begin
 case (PADDR[7:2])
 0: ReadMux = DataInSync2;
 1: ReadMux = RegDOUT;
 2: ReadMux = RegDOUTEN;
 3: ReadMux = RegINTEN;
 4: ReadMux = RegINTTYPE;
 5: ReadMux = RegINTPOL;
 6: ReadMux = RegINTState;
 default : ReadMux = {PortWidth{1’b0}}; // Read as 0 if address is out of range
 endcase
 end

 // Register read data
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 ReadMuxReg <= {PortWidth{1’b0}};
 else

185

 ReadMuxReg <= ReadMux;
 end

 // Output read data to APB
 assign PRDATA = (ReadEnable) ? {{(32-PortWidth){1’b0}},ReadMuxReg} : {32{1’b0}};
 assign PREADY = 1’b1; // Always ready
 assign PSLVERR = 1’b0; // Always okay

 // Output to external
 assign PORTEN = RegDOUTEN;
 assign PORTOUT = RegDOUT;

 // Synchronize input
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 DataInSync1 <= {PortWidth{1’b0}};
 DataInSync2 <= {PortWidth{1’b0}};
 end
 else
 begin
 DataInSync1 <= PORTIN;
 DataInSync2 <= DataInSync1;
 end
 end

 // Interrupt generation - polarity handling
 assign DataInPolAdjusted = DataInSync2 ^ RegINTPOL;

 // Interrupt generation - record last value of DataInPolAdjusted
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 LastDataInPol <= {PortWidth{1’b0}};
 else
 LastDataInPol <= DataInPolAdjusted;
 end

 // Interrupt generation - positive edge detection
 assign EdgeDetect = ~LastDataInPol & DataInPolAdjusted;

 // Interrupt generation - select interrupt type
 assign RawInt = (RegINTTYPE & EdgeDetect) | // Edge trigger, or
 (~RegINTTYPE & DataInPolAdjusted); // Level trigger

 // Interrupt generation - Enable masking
 assign MaskedInt = RawInt & RegINTEN;

 // Interrupt state
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegINTState <= {PortWidth{1’b0}};
 else
 RegINTState <= MaskedInt|(RegINTState & ~(PWDATA[PortWidth-1:0] &
{PortWidth{WriteEnable18}}));
 end

 // Connect interrupt signal to top level
 assign GPIOINT = RegINTState;
 assign COMBINT = (|RegINTState);

endmodule

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

186

8.2.2 Simple APB Timer
Using a similar approach for the peripheral design, we can also include a simple timer. Unlike the
SYSTICK timer, this timer will be based on a 32-bit down counter and has an external input allowing
pulse width measurement. The timer can also generate an interrupt when the counter value changes
from 1 to 0, and it will automatically reload with a programmable reload value. To make the timer more
flexible, we also include an external input signal, which can be used as an external enable control or as
an external clock. This allows the timer to be used for a pulse width measurement or frequency meter.
The only other interface on this timer block will be the APB interface.

The next step of the design process is to determine the programmer’s model for the timer block,
which is fairly simple as it contains only four registers.

Table 8.2: Programmer’s model for example timer block.

The design of the timer is very simple:

Figure 8.12: Design of a simple timer peripheral.

The APB interface design for the timer is almost the same as the GPIO, hence, it is not covered in
detail again here. The Verilog RTL code of the design is as follows:

Address offset Name Type Reset value Descriptions

0x000 CTRL R/W 0x00 Control register
[3] IntrEN – Interrupt output enable
[2] ExtCLKSel – External Clock Select
[1] ExtENSel – External Enable Select
[0] Enable – Counter Enable

0x004 CurrVal R/W 0x00 Current Value

0x008 Reload R/W 0x00 Reload value

0x00C INTSTATE R/Wc 0x00 Bit 0 – Interrupt status, write 1 to clear

D

Synchroniser

Q D Q
EXTIN

(external
input)

D Q

Edge
detect

1

1

CTRL[1]

CTRL[2]

0

1

0

1

CTRL[0]

Down Counter

Decrement

Reload
Value

= 1

D Q

CTRL[3]

TIMEINT
(interrupt)

Write 1 to
INTSTATE[0]

187

// Simple Timer
//
//-------------------------------------
// Programmer’s model
// 0x00 RW CTRL[3:0]
// [3] Timer Interrupt Enable
// [2] Select External input as Clock
// [1] Select External input as Enable
// [0] Enable
// 0x04 RW Current Value[31:0]
// 0x08 RW Reload Value[31:0]
// 0x0C RWc Interrupt state
// [0] IntState, write 1 to clear
//-------------------------------------

module apb_timer (
 input wire PCLK, // Clock
 input wire PRESETn, // Reset
 // APB interface inputs
 input wire PSEL, // Device select
 input wire [7:2] PADDR, // Address
 input wire PENABLE, // Transfer control
 input wire PWRITE, // Write control
 input wire [31:0] PWDATA, // Write data
 // APB interface outputs
 output wire [31:0] PRDATA, // Read data
 output wire PREADY, // Device ready
 output wire PSLVERR, // Device error response

 input wire EXTIN, // External input

 output wire TIMERINT // Timer interrupt output
);

 // Signals for read/write controls
 wire ReadEnable;
 wire WriteEnable;
 wire WriteEnable00; // Write enable for Control register
 wire WriteEnable04; // Write enable for Current Value register
 wire WriteEnable08; // Write enable for Reload Value register
 wire WriteEnable0C; // Write enable for Interrupt state register
 reg [31:0] ReadMux;
 reg [31:0] ReadMuxReg;

 // Signals for Control registers
 reg [3:0] RegCTRL;
 reg [31:0] RegCurrVal;
 reg [31:0] RegReloadVal;
 reg [31:0] NxtCurrVal;

 // Internal signals
 reg ExtInSync1; // Synchronization registers for external input
 reg ExtInSync2;
 reg ExtInDelay; // Delay register for edge detection
 wire DecCtrl; // Decrement control
 wire ClkCtrl; // Clk select result
 wire EnCtrl; // Enable select result
 wire EdgeDetect; // Edge detection
 reg RegTimerInt; // Timer interrupt output register
 wire NxtTimerInt;

 assign WriteEnable08 = WriteEnable & (PADDR[7:2] == 6’b000010);

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

188

 // Start of main code
 // Read and write control signals
 assign ReadEnable = PSEL & (~PWRITE); // assert for whole APB read transfer
 assign WriteEnable = PSEL & (~PENABLE) & PWRITE; // assert for 1st cycle of write
transfer
 assign WriteEnable00 = WriteEnable & (PADDR[7:2] == 6’b000000);
 assign WriteEnable04 = WriteEnable & (PADDR[7:2] == 6’b000001);
 assign WriteEnable08 = WriteEnable & (PADDR[7:2] == 6’b000010);
 assign WriteEnable0C = WriteEnable & (PADDR[7:2] == 6’b000011);

 // Write operations
 // Control register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegCTRL <= {4{1’b0}};
 else if (WriteEnable00)
 RegCTRL <= PWDATA[3:0];
 end

 // Current Value register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegCurrVal <= {32{1’b0}};
 else
 RegCurrVal <= NxtCurrVal;
 end

 // Reload Value register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegReloadVal <= {32{1’b0}};
 else if (WriteEnable08)
 RegReloadVal <= PWDATA[31:0];
 end

// Read operation
 always @(PADDR or RegCTRL or RegCurrVal or RegReloadVal or RegTimerInt)
 begin
 case (PADDR[7:2])
 0: ReadMux = {{28{1’b0}}, RegCTRL};
 1: ReadMux = RegCurrVal;
 2: ReadMux = RegReloadVal;
 3: ReadMux = {{31{1’b0}}, RegTimerInt};
 default : ReadMux = {32{1’b0}}; // Read as 0 if address is out of range
 endcase
 end

 // Register read data
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 ReadMuxReg <= {32{1’b0}};
 else
 ReadMuxReg <= ReadMux;
 end

 // Output read data to APB
 assign PRDATA = (ReadEnable) ? ReadMuxReg : {32{1’b0}};
 assign PREADY = 1’b1; // Always ready
 assign PSLVERR = 1’b0; // Always okay

189

 // Synchronize input and delay for edge detection
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 ExtInSync1 <= 1’b0;
 ExtInSync2 <= 1’b0;
 ExtInDelay <= 1’b0;
 end
 else
 begin
 ExtInSync1 <= EXTIN;
 ExtInSync2 <= ExtInSync1;
 ExtInDelay <= ExtInSync2;
 end
 end

 // Edge detection
 assign EdgeDetect = ExtInSync2 & ~ExtInDelay;

 // Clock selection
 assign ClkCtrl = RegCTRL[2] ? EdgeDetect : 1’b1;

 // Enable selection
 assign EnCtrl = RegCTRL[1] ? ExtInSync2 : 1’b1;

 // Overall decrement control
 assign DecCtrl = RegCTRL[0] & EnCtrl & ClkCtrl;

 // Decrement counter
 always @(WriteEnable04 or PWDATA or DecCtrl or RegCurrVal or
 RegReloadVal)
 begin
 if (WriteEnable04)
 NxtCurrVal = PWDATA[31:0];
 else if (DecCtrl)
 begin
 if (RegCurrVal == 32’h0)
 NxtCurrVal = RegReloadVal;
 else
 NxtCurrVal = RegCurrVal - 1;
 end
 else
 NxtCurrVal = RegCurrVal;
 end

 // Interrupt generation
 // Trigger an interrupt when decrement to 0 and interrupt enabled
 assign NxtTimerInt = (DecCtrl & RegCTRL[3] &
 (RegCurrVal==32’h00000001));

 // Registering interrupt output
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegTimerInt <= 1’b0;
 else
 RegTimerInt <= NxtTimerInt|(RegTimerInt & ~(WriteEnable0C & PWDATA[0]));
 end

 // Connect to external
 assign TIMERINT = RegTimerInt;

endmodule

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

190

8.2.3 Simple UART
A simple UART is also included in the example test bench. Since this chapter focuses on AHB/APB
development, we are not going to cover the details of the UART design here. The UART has an APB
interface similar to the timer and GPIO. It has the following registers:

Table 8.3: Programmer’s model for example UART.

This simple UART design supports 8-bit data transfers with 1 start bit, 1 stop bit, and without either
hardware flow control or parity support. Despite being less than 500 lines of Verilog code, it contains
a built-in baud rate generator, and the design supports 16 times oversampling on the serial input for
better receive reliability. It also supports interrupt for transmit (when write buffer is emptied) and
interrupt for receive (when data is received). For simulation purposes, a UART monitor module is also
included in the example testbench to capture the transmitted serial data.

Figure 8.13: Simple UART peripheral.

The Verilog RTL code of the design is as follows:

Address offset Name Type Reset value Descriptions

0x000 CTRL R/W 0x00 Control register (bit[3:0])
[3] Receive interrupt enable
[2] Transmit interrupt enable
[1] Receive enable
[0] Transmit enable

0x004 STAT R/W 0x00 Status register (bit[3:0])
[3] Receive overrun error, write 1 to clear
[2] Transmit overrun error, write 1 to clear
[1] Receive buffer full
[0] Transmit buffer full

0x008 TXD R/W 0x00 Write : Transmit data register
Read : Transmit buffer full (bit[0])

0x00C RXD RO 0x00 Received data register (bit[7:0])

0x010 BAUDDIV R/W 0x00 Baud rate divider (bit[19:0])
(Minimum value is 32)

0x014 INTSTATE R/Wc 0x00 Interrupt status
[1] – TX interrupt, write 1 to clear
[0] – RX interrupt, write 1 to clear

APB interface

TXD (transmit data)

TXEN (transmit enable)

RXD (receive data)

TXINT
(transmit
interrupt)

RXINT
(receive interrupt)

UART

BAUDTICK (baud rate x 16)

191

// Simple UART
//
//-------------------------------------
// Programmer’s model
// 0x00 RW CTRL[3:0] TxIntEn, RxIntEn, TxEn, RxEn
// [3] RX Interrupt Enable
// [2] TX Interrupt Enable
// [1] RX Enable
// [0] TX Enable
// 0x04 RW STAT[3:0]
// [3] RX buffer overrun (write 1 to clear)
// [2] TX buffer overrun (write 1 to clear)
// [1] RX buffer full (Read only)
// [0] TX buffer full (Read only)
// 0x08 W TXD[7:0] Output Buffer Data
// R TX buffer full - bit[0]
// 0x0C RO RXD[7:0] Received Data
// 0x10 RW BAUDDIV[19:0] Baud divider
// (minimum value is 32)
//-------------------------------------

module apb_uart (
 input wire PCLK, // Clock
 input wire PRESETn, // Reset
 // APB interface inputs
 input wire PSEL, // Device select
 input wire [7:2] PADDR, // Address
 input wire PENABLE, // Transfer control
 input wire PWRITE, // Write control
 input wire [31:0] PWDATA, // Write data
 // APB interface outputs
 output wire [31:0] PRDATA, // Read data
 output wire PREADY, // Device ready
 output wire PSLVERR, // Device error response

 input wire RXD, // Serial input
 output wire TXD, // Transmit data output
 output wire TXEN, // Transmit enabled
 output wire BAUDTICK, // Baud rate (x16) Tick (for testbench)

 output wire TXINT, // Transmit Interrupt
 output wire RXINT // Receive Interrupt
);

 // Signals for read/write controls
 wire ReadEnable;
 wire ReadEnable10; // Read baud rate divider
 wire WriteEnable;
 wire WriteEnable00; // Write enable for Control register
 wire WriteEnable04; // Write enable for Status register
 wire WriteEnable08; // Write enable for TxData buffer
 wire WriteEnable10; // Write enable for Baud rate divider
 wire WriteEnable14; // Write enable for Interrupt clear
 reg [7:0] ReadMux;
 reg [7:0] ReadMuxReg;
 reg ReadEnable10Reg; // Read enable for Baud rate divider
 // (size optimization)
 // Signals for Control registers
 reg [3:0] RegCTRL;
 reg [7:0] RegTxBuf;
 reg [7:0] RegRxBuf;
 reg [19:0] RegBaudDiv;

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

192

 // Internal signals
 // Baud rate divider
 reg [15:0] RegBaudCntrI;
 wire [15:0] NxtBaudCntrI;
 reg [3:0] RegBaudCntrF;
 wire [3:0] NxtBaudCntrF;
 wire [3:0] MappedCntrF;
 reg RegBaudTick;
 reg BaudUpdated;
 wire ReloadI;
 wire ReloadF;
 wire BaudDivEn;

 // Status
 wire [3:0] UartStatus;
 reg RegRxOverrun;
 wire RxOverrun;
 reg RegTxOverrun;
 wire TxOverrun;
 wire NxtRxOverrun;
 wire NxtTxOverrun;
 // Interrupts
 reg RegTXINT;
 wire NxtTXINT;
 reg RegRXINT;
 wire NxtRXINT;

 // transmit
 reg [3:0] TxState; // Transmit FSM state
 reg [3:0] NxtTxState;
 wire TxStateInc; // Bit pulse
 reg [3:0] TxTickCnt; // Transmit Tick counter
 wire [3:0] NxtTxTickCnt;
 reg [7:0] TxShiftBuf; // Transmit shift register
 wire [7:0] NxtTxShiftBuf;
 reg TxBufFull; // TX Buffer full
 wire NxtTxBufFull;
 reg RegTxD; // Tx Data
 wire NxtTxD;
 wire TxBufClear;

 // Receive data sync and filter
 reg RxDSync1; // Double flip-flop synchronizer
 reg RxDSync2; // Double flip-flop synchronizer
 reg [2:0] RxDLPF; // Average Low Pass Filter
 wire RxShiftIn; // Shift Register Input

 // Receiver
 reg [3:0] RxState; // Receiver FSM state
 reg [3:0] NxtRxState;
 reg [3:0] RxTickCnt; // Receiver Tick counter
 wire [3:0] NxtRxTickCnt;
 wire RxStateInc;// Bit pulse
 reg [6:0] RxShiftBuf;// Receiver shift data register
 wire [6:0] NxtRxShiftBuf;
 reg RxBufFull;
 wire NxtRxBufFull;
 wire RxBufSample;
 wire RxDataRead;
 wire [7:0] NxtRxBuf;

 // Start of main code
 // Read and write control signals
 assign ReadEnable = PSEL & (~PWRITE); // assert for whole APB read transfer

193

 assign WriteEnable = PSEL & (~PENABLE) & PWRITE; // assert for 1st cycle of write
transfer
 assign WriteEnable00 = WriteEnable & (PADDR[7:2] == 6’b000000);
 assign WriteEnable04 = WriteEnable & (PADDR[7:2] == 6’b000001);
 assign WriteEnable08 = WriteEnable & (PADDR[7:2] == 6’b000010);
 assign WriteEnable10 = WriteEnable & (PADDR[7:2] == 6’b000100);
 assign WriteEnable14 = WriteEnable & (PADDR[7:2] == 6’b000101);
 assign ReadEnable10 = PSEL & (~PWRITE) & (~PENABLE) & (PADDR[7:2] == 6’b000100);

 // Write operations
 // Control register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegCTRL <= {4{1’b0}};
 else if (WriteEnable00)
 RegCTRL <= PWDATA[3:0];
 end

 // Status register
 assign NxtRxOverrun = (RegRxOverrun & ~(WriteEnable04 & PWDATA[3])) | RxOverrun;
 assign NxtTxOverrun = (RegTxOverrun & ~(WriteEnable04 & PWDATA[2])) | TxOverrun;

 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 RegRxOverrun <= 1’b0;
 RegTxOverrun <= 1’b0;
 end
 else
 begin
 RegRxOverrun <= NxtRxOverrun;
 RegTxOverrun <= NxtTxOverrun;
 end
 end

 // Transmit data register
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegTxBuf <= {8{1’b0}};
 else if (WriteEnable08)
 RegTxBuf <= PWDATA[7:0];
 end

 // Baud rate divider - integer
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RegBaudDiv <= {20{1’b0}};
 else if (WriteEnable10)
 RegBaudDiv <= PWDATA[19:0];
 end

 // Read operation
 assign UartStatus = {RegRxOverrun, RegTxOverrun, RxBufFull, TxBufFull};

 always @(PADDR or RegCTRL or UartStatus or RegBaudDiv or
 TxBufFull or RegRxBuf or RegTXINT or RegRXINT)
 begin
 case (PADDR[7:2])
 0: ReadMux = {{4{1’b0}}, RegCTRL};
 1: ReadMux = {{4{1’b0}}, UartStatus};

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

194

 2: ReadMux = {{7{1’b0}}, TxBufFull};
 3: ReadMux = RegRxBuf;
 4: ReadMux = RegBaudDiv[7:0];
 5: ReadMux = {{6{1’b0}}, RegTXINT, RegRXINT};
 default : ReadMux = {8{1’b0}}; // Read as 0 if address is out of range
 endcase
 end

 // Register read data
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 ReadMuxReg <= {8{1’b0}};
 ReadEnable10Reg <= 1’b0;
 end
 else
 begin
 ReadMuxReg <= ReadMux;
 ReadEnable10Reg <= ReadEnable10;
 end
 end

 // Output read data to APB
 assign PRDATA[7: 0] = (ReadEnable) ? ReadMuxReg : {8{1’b0}};
 assign PRDATA[19: 8] = (ReadEnable10Reg) ? RegBaudDiv[19:8] : {12{1’b0}};
 assign PRDATA[31: 20] = {12{1’b0}};
 assign PREADY = 1’b1; // Always ready
 assign PSLVERR = 1’b0; // Always okay

 // --
 // Baud rate generator
 // Baud rate generator enable
 assign BaudDivEn = (RegCTRL[1:0] != 2’b00);
 assign MappedCntrF = {RegBaudCntrF[0],RegBaudCntrF[1],
 RegBaudCntrF[2],RegBaudCntrF[3]};
 // Reload Integer divider
 // when UART enabled and (RegBaudCntrF < RegBaudDiv[3:0])
 // then count to 1, or
 // when UART enabled then count to 0
 assign ReloadI = (BaudDivEn &
 (((MappedCntrF >= RegBaudDiv[3:0]) &
 (RegBaudCntrI[15:1] == {15{1’b0}})) |
 (RegBaudCntrI[15:0] == {16{1’b0}})));
 // Next state for Baud rate divider
 assign NxtBaudCntrI = (BaudUpdated | ReloadI) ? RegBaudDiv[19:4] :
 (RegBaudCntrI - {{15{1’b0}},BaudDivEn});
 assign ReloadF = BaudDivEn & (RegBaudCntrF==4’h0) &
 ReloadI;
 assign NxtBaudCntrF = (BaudUpdated) ? RegBaudDiv[3:0] :
 (ReloadF) ? 4’b1111 :
 (RegBaudCntrF - {{3{1’b0}},ReloadI});
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 RegBaudCntrI <= {16{1’b0}};
 RegBaudCntrF <= {4{1’b0}};
 BaudUpdated <= 1’b0;
 RegBaudTick <= 1’b0;
 end
 else
 begin
 RegBaudCntrI <= NxtBaudCntrI;

195

 RegBaudCntrF <= NxtBaudCntrF;
 // Baud rate updated - to load new value to counters
 BaudUpdated <= WriteEnable10;
 RegBaudTick <= ReloadI;
 end
 end

 // Connect to external
 assign BAUDTICK = RegBaudTick;

 // --
 // Transmit

 // Increment TickCounter
 assign NxtTxTickCnt = ((TxState==4’h1) & RegBaudTick) ? 4’h0 :
 TxTickCnt + {{3{1’b0}},RegBaudTick};

 // Increment state (except Idle(0) and Wait for Tick(1))
 assign TxStateInc = (((&TxTickCnt)|(TxState==4’h1)) & RegBaudTick);
 // Buffer full status
 assign NxtTxBufFull = (WriteEnable08) | (TxBufFull & ~TxBufClear);
 // Clear buffer full status when data is load into shift register
 assign TxBufClear = ((TxState==4’h0) & TxBufFull) |
 ((TxState==4’hB) & TxBufFull & TxStateInc);

 // TxState machine
 // 0 = Idle, 1 = Wait for Tick,
 // 2 = Start bit, 3 = D0 10 = D7
 // 11 = Stop bit
 always @(TxState or TxBufFull or TxTickCnt or TxStateInc or RegCTRL)
 begin
 case (TxState)
 0: begin
 NxtTxState = (TxBufFull & RegCTRL[0]) ? 1 : 0; // New data is written to buffer
 end
 1: begin // Wait for next Tick
 NxtTxState = TxState + {3’b0,TxStateInc};
 end
 2,3,4,5,6,7,8,9,10: begin // Start bit, D0 - D7
 NxtTxState = TxState + {3’b0,TxStateInc};
 end
 11: begin // Stop bit , goto next start bit or Idle
 NxtTxState = (TxStateInc) ? (TxBufFull ? 4’h2:4’h0) : TxState;
 end
 default: // Illegal state
 NxtTxState = 4’h0;
 endcase
 end

 // Load/shift TX register
 assign NxtTxShiftBuf = (((TxState==4’h0) & TxBufFull) |
 ((TxState==4’hB) & TxBufFull &
 TxStateInc)) ? RegTxBuf :
 (((TxState>4’h2) & TxStateInc) ?
 {1’b1,TxShiftBuf[7:1]} : TxShiftBuf[7:0]);

 // Data output
 assign NxtTxD = (TxState==2) ? 1’b0 :
 (TxState>4’h2) ? TxShiftBuf[0] : 1’b1;

 // Registering outputs
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

196

 begin
 TxBufFull <= 1’b0;
 TxShiftBuf <= {8{1’b0}};
 TxState <= {4{1’b0}};
 TxTickCnt <= {4{1’b0}};
 RegTxD <= 1’b1;
 end
 else
 begin
 TxBufFull <= NxtTxBufFull;
 TxShiftBuf <= NxtTxShiftBuf;
 TxState <= NxtTxState;
 TxTickCnt <= NxtTxTickCnt;
 RegTxD <= NxtTxD;
 end
 end

 // Generate TX overrun error status
 assign TxOverrun = TxBufFull & ~TxBufClear & WriteEnable08;

 // Connect to external
 assign TXD = RegTxD;
 assign TXEN = RegCTRL[0];

// --
// Receive synchronizer and low pass filter

 // Doubling Flip-flop synchronizer
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 RxDSync1 <= 1’b1;
 RxDSync2 <= 1’b1;
 end
 else
 begin
 RxDSync1 <= RXD;
 RxDSync2 <= RxDSync1;
 end
 end

 // Averaging low pass filter
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 RxDLPF <= 3’b111;
 else if (RegBaudTick)
 RxDLPF <= {RxDLPF[1:0], RxDSync2};
 end

 // Averaging values
 assign RxShiftIn = (RxDLPF[1] & RxDLPF[0]) |
 (RxDLPF[1] & RxDLPF[2]) |
 (RxDLPF[0] & RxDLPF[2]);

 // --
 // Receive

 // Increment TickCounter
 assign NxtRxTickCnt = ((RxState==4’h0) & ~RxShiftIn) ? 4’h8 :
 RxTickCnt + {{3{1’b0}},RegBaudTick};
 // Increment state
 assign RxStateInc = ((&RxTickCnt) & RegBaudTick);

197

 // Shift register
 assign NxtRxShiftBuf= (RxStateInc) ? {RxShiftIn, RxShiftBuf[6:1]} : RxShiftBuf;
 // Buffer full status
 assign NxtRxBufFull = RxBufSample | (RxBufFull & ~RxDataRead);

 // Sample shift register when D7 is sampled
 assign RxBufSample = ((RxState==4’h9) & RxStateInc);

 // Sample receive buffer
 assign NxtRxBuf = (RxBufSample) ? {RxShiftIn,RxShiftBuf} : RegRxBuf;
 // Reading receive buffer (Set at 1st cycle of APB transfer
 // because read mux is registered before output)
 assign RxDataRead = (PSEL & ~PENABLE & (PADDR[7:2]==3) & ~PWRITE);
 // Generate RX overrun error status
 assign RxOverrun = RxBufFull & RxBufSample & ~RxDataRead;

 // RxState machine
 // 0 = Idle, 1 = Start of Start bit detected
 // 2 = Sample Start bit, 3 = D0 10 = D7
 // 11 = Stop bit
 always @(RxState or RxShiftIn or RxTickCnt or RxStateInc or RegCTRL)
 begin
 case (RxState)
 0: begin
 NxtRxState = ((~RxShiftIn) & RegCTRL[1]) ? 1 : 0; // Wait for Start bit
 end
 1: begin // Wait for middle of start bit
 NxtRxState = RxState + {3’b0,RxStateInc};
 end
 2,3,4,5,6,7,8,9: begin // D0 - D7
 NxtRxState = RxState + {3’b0,RxStateInc};
 end
 10: begin // Stop bit , goto back to Idle
 NxtRxState = (RxStateInc) ? 0 : 10;
 end
 default: // Illegal state
 NxtRxState = 4’h0;
 endcase
 end

 // Registering
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 RxBufFull <= 1’b0;
 RxShiftBuf <= {7{1’b0}};
 RxState <= {4{1’b0}};
 RxTickCnt <= {4{1’b0}};
 RegRxBuf <= {8{1’b0}};
 end
 else
 begin
 RxBufFull <= NxtRxBufFull;
 RxShiftBuf <= NxtRxShiftBuf;
 RxState <= NxtRxState;
 RxTickCnt <= NxtRxTickCnt;
 RegRxBuf <= NxtRxBuf;
 end
 end

// --
// Interrupts
 assign NxtTXINT = RegCTRL[2] & TxBufFull & TxBufClear; // Falling edge of buffer full

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

198

 assign NxtRXINT = RegCTRL[3] & RxBufSample; // A new receive data is sampled

 // Registering outputs
 always @(posedge PCLK or negedge PRESETn)
 begin
 if (~PRESETn)
 begin
 RegTXINT <= 1’b0;
 RegRXINT <= 1’b0;
 end
 else
 begin
 RegTXINT <= NxtTXINT|(RegTXINT & ~(WriteEnable14 & PWDATA[1]));
 RegRXINT <= NxtRXINT|(RegRXINT & ~(WriteEnable14 & PWDATA[0]));
 end
 end

 // Connect to external
 assign TXINT = RegTXINT;
 assign RXINT = RegRXINT;

endmodule

199

8.3 ID registers
Many Arm peripherals and CoreSight debug components contain a range of read-only ID registers at
the end of the 4KB memory spaces. These ID values enable debug tools to identify debug components
automatically (as described in Section 5.2.7 Debug components discovery), and they allow the
software to determine the revision of the design so that it knows what features are available. In some
cases, such information is also useful for software to implement a workaround if certain defects in the
peripheral design can be overcome by using software measures.

Peripheral IP from Arm normally uses the following peripheral ID format:

Table 8.4: Peripheral ID format.

One of the ID registers, PID3, contains an Engineering Change Order (ECO) bit field which can be
generated from input signals. The ECO operation enables you to carry out minor design changes in
the late stage of a chip design process; for example, at the silicon mask level. By providing an external
input to provide ECO input field, it is possible to use tie-off cells on those peripheral inputs to reflect
ECO maintenance revisions.

The ID registers are not strictly required for peripheral operation. In ultra-low-power designs, you can
remove these ID registers to reduce gate count and power consumption.

Name Address offset Type Descriptions

PID4 0xFD0 RO Peripheral ID register 4
[7:4] Block count
[3:0] jep106_c_code (see Section 5.2.7)

PID5 0xFD4 RO Peripheral ID register 5, usually tied to 0

PID6 0xFD8 RO Peripheral ID register 6, usually tied to 0

PID7 0xFDC RO Peripheral ID register 7, usually tied to 0

PID0 0xFE0 RO Peripheral ID register 0
[7:0] Part number [7:0]

PID1 0xFE4 RO Peripheral ID register 1
[7:4] jep106_id[3:0] (see Section 5.2.7)
[3:0] Part number [11:8]

PID2 0xFE8 RO Peripheral ID register 2
[7:4] Revision
[3] jedec_used
[2:0] jep106_id[6:4] (see Section 5.2.7)

PID3 0xFEC RO Peripheral ID register 3
[7:4] ECO Revision number
[3:0] Customer modification number

CID0 0xFF0 RO Component ID register 0

CID1 0xFF4 RO Component ID register 1

CID2 0xFF8 RO Component ID register 2

CID3 0xFFC RO Component ID register 3

Chapter 8 | Design of simple peripherals

System-on-Chip Design with Arm® Cortex®-M processors

200

When you modify a peripheral from Arm’s product range, it is recommended that you alter the JEDEC
ID value and the part number in the ID registers to indicate that the peripheral is no longer identical to
the original version from Arm. Alternatively, you can remove these ID registers.

8.4 Other peripheral design considerations
8.4.1 Security of system control functions
Typically, a peripheral unit that controls the system (e.g., clock and power control functions) should
be privileged access only. If TrustZone security is implemented (for Cortex-M23 and Cortex-M33
processors), these functions could also be Secure access only, and Secure firmware needs to provide
APIs for Non-secure software to request system control configuration updates. This prevents
untrusted software from stopping critical system functions.

8.4.2 Processor’s halting
Potentially some peripherals like watchdog timers might need to suspend their operations when the
processor is halted. Otherwise, a reset could be triggered unexpectedly during debugging. Some
timers (e.g., SysTick timers inside the Cortex-M processors) also stop counting automatically when the
processor is halted to allow single-stepping of application code.

8.4.3 Handling of 64-bit data
In some cases, timers might need to handle 64-bit count values, but the bus interface of a peripheral
might be only 32-bit. In such cases, the timer needs to include:

�� Include a 64-bit sampling register to allow a 64-bit counter value to be sampled in one go, and then
read out using two accesses;

�� Include a 64-bit transfer register to allow new 64-bit values to be set up using multiple accesses,
and then be transferred into the counter using a separated control register.

Additional information on this topic is available on Arm’s website:
https://developer.arm.com/docs/103489550/latest/accessing-64-bit-peripherals-using-cortex-m-
processors

http://https://developer.arm.com/docs/103489550/latest/accessing-64-bit-peripherals-using-cortex-m-processors
http://https://developer.arm.com/docs/103489550/latest/accessing-64-bit-peripherals-using-cortex-m-processors

201

Chapter 8 | Design of simple peripherals

Putting the
system together

CHAPTER
9

System-on-Chip Design with Arm® Cortex®-M processors

204

9.1 Creating a simple microcontroller-like system
After designing the bus infrastructure components and peripherals, we can then put together
a processor system and simulate it in a simulator. In this section, we will cover a very simple
microcontroller-like design based on the Cortex-M3 processor (DesignStart) and the components that
we created in the last two chapters.

Figure 9.1: Simple microcontroller example.

The design contains multiple levels of design hierarchy – as follows:

�� The processor subsystem contains the processor and the bus infrastructure components, as well as
the APB subsystem where digital peripherals are located.

�� The APB subsystem contains the AHB to APB bridge, as well as peripherals (digital parts only).
In this example, we have:

�� Two GPIO ports (8-bit each);

�� Two timers;

�� One UART;

�� Registers for system control function are also placed here.

 Cortex-M3 DesignStart
(cortexm3ds_logic,

obfuscated)

CORTEXM3INTEGRATIONDS

cm3_code_mux

cm3ahb_to_ahb5

ahb_slave_mux

Default slave
(ahb_defslave)

cm3ahb_to_ahb5

Default slave
(ahb_defslave)

ahb_slave_mux

GPIO #0
(apb_gpio)

GPIO #1
(apb_gpio)

Timer #0
(apb_timer)

Timer #1
(apb_timer)

UART #0
(apb_uart)AH

B
to

 A
PB

 b
rid

ge
 (a

hb
_t

o_
ap

b)

apb_subsystem

Behavioural
ROM model
(ahb_rom)

Behavioural
RAM model
(ahb_ram)

Interrupts

Debug interface

Sys ctrl reg

Pi
n

m
ul

tip
le

xin
gSystemD-CODEI-CODE

Sys ctrl

cm3_processor_subsystem

cl
k_

re
se

t_
ct

rl
Be

ha
vi

ou
ra

l I
/O

 p
ad

s

CLKIN

nSRSTIN

PORT0
[7:0]

PORT1
[7:0]

Debug
interface

cm3_system_top
cm3_mcu

205

�� The behavior memory models are one level up in the design hierarchy (cm3_system_top). This level
also contains the pin multiplexing.

�� The top-level of the microcontroller (cm3_mcu) contains the top-level of the Cortex-M3 system the
clock reset control (e.g., clock gating, reset synchronizers) and I/O pads.

This is a simple design just for illustration and educational purposes. In the real world, microcontroller
designs are likely to be much more complex; for example:

�� Most commercial microcontrollers have a lot more peripherals, including analog peripherals.

�� In real microcontrollers, there might be additional bus masters such as DMA controllers.

�� In SoC design, RAM, ROM (or embedded flash macros) would be likely to have power management/
control features.

�� If embedded flash is used, flash programming support requires additional control registers and a
voltage booster (e.g., DC-DC converter).

�� Many microcontrollers also have on-chip DC-DC converters to provide lower voltage (~ 1 to 1.2
volts) for digital circuitries. The supply voltage for the chip normally ranges from 1.8 volts to 3.6 volts.

�� Additional circuits are needed for chip manufacturing testing. This topic is commonly known as DFT
(Design for Testing) and will be covered later.

�� Power management in modern microcontrollers can be quite complex. For example, there can be
multiple power domains and many clock domains and runtime power mode options. In addition, some
of them have separate retention SRAM for holding crucial data while in very low-power sleep modes.

�� Various security features might be needed depending on targeted applications.

9.2 Design partitioning
After looking at Figure 9.1, some of you might wonder if there is anything that needs to be considered
when defining the design hierarchy? There are indeed several aspects to bear in mind, notably:

�� The cm3_processor_subsystem-level contains only synthesizable components. This enables us to
synthesize most of the digital parts in one go. If the memory macros require bus wrappers, we can also
move the bus wrappers into the processor subsystem in order to synthesize them all in one place.

�� A peripheral/APB subsystem is designed as one unit – this allows it to be reused in multiple
designs. The system control function is split into two halves: one part of it is in the programmable
registers inside the APB subsystem, while the other half is located at a higher level. The reason is
that in many SoC designs, the system control function might involve non-synthesizable IP such as

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

206

voltage control or clock control logic. If a system contains analog peripherals, then it is also possible
to use the same arrangement to separate synthesizable and non-synthesizable parts of any analog
peripherals in the design hierarchy.

�� Pin multiplexing is also placed outside of the processor subsystem – this enables the same
peripheral subsystem to be used with different projects, which can have different chip packages and
hence different pin multiplexing arrangements. Another reason for this is that the pin multiplexing
might also need to handle pins from analog components at this level.

�� I/O pads are instantiated in the design (in this example, behavioral models of I/O pads are used
for simulations). In SoC design, it is often essential to instantiate I/O pads based on electrical
characteristics of the pin functions. Usually, various types of input, output, and tristate pads are
available for each semiconductor process node with different drive strengths and different speeds.
The behavioral models for I/O pads can be used directly in FPGA synthesis, as FPGA development
tools can help you to define I/O characteristics using a project’s configuration files.

�� Clock gating is handled at a high level in the design hierarchy. This can help simplify the setup of clock
tree synthesis. In this case, the clock gating is done in a design unit called clk_reset_ctrl at the top-level.

�� If your SoC design needs to support multiple power domains, it is also important to partition
designs based on the power domains. In design units where multiple blocks of different power
domains are present; it is best not to have any logic functions inside those hierarchical files to
simplify power domain handling in implementation flow.

9.3 What is inside a simulation environment?
A number of Verilog simulators are available on the market. In the majority of Arm Cortex-M processor
deliverables, we support the following products: Mentor Modelsim/Questasim, Cadence NC Verilog,
and Synopsys VCS. Other simulators could be used, although the deliverables only include the
simulation scripts that are mentioned above.

To simulate the simple MCU design, we also need a testbench. A testbench is a simulated environment
in which the microcontroller system will be working. In addition to the processor system, which we
will call DUT (Device-Under-Test), the simulation environment typically contains a number of other
components:

�� Clock and reset signal generator(s).

�� Trickbox(es) that provide input stimulus to the DUT and might also interface with outputs from the
DUT. This is optional. In the case of testing a microcontroller-like system, it is possible to use some
form of loopback signal connections as a trickbox to test peripheral interfaces.

�� In some cases, simulation models of external memories or external peripherals might also be
needed to test some of the interfaces on the DUT. For example, if your system design supports
external memories, then you will need to add a model of the external memory in the testbench for
testing external memory accesses.

207

�� For a processor testbench, it is also common to add some mechanism to allow message display
under the control of software in the processor. For example, when the processor executes a
“printf(“Hello world\n”)” statement, the “Hello world” message can be displayed in the simulator’s
console.

�� Other verification components – one of the techniques for verification is to add a range of
verification components like bus protocol checkers in the simulation (some of these components
can be inside the DUT). If something goes wrong, for example, illegal bus behavior is observed, the
verification component can stop the simulation and report the errors.

In our example testbench, a UART monitor (uart_mon.v) is used to display text messages generated by
software (e.g., using printf function). This unit is also used to end the simulation when it receives
a special character.

Figure 9.2: Testbench for simple microcontroller example.

To run a system-level simulation, the program memory of the processor system also needs to contain
a valid program. Therefore, we need to prepare some minimal software code and a compilation setup
to enable us to do a basic simulation.

9.4 Prepare the minimal software support for simulation
9.4.1 Overview of example code based on CMSIS-CORE
For our example simulation, we are going to create our example code based on the CMSIS-CORE
software framework. The CMSIS-CORE header files are widely used in the microcontroller industry
and can make software development easier. Nevertheless, we do need to create a range of files:

Table 9.1: Source file created for minimal software support based on CMSIS-CORE.

Clock and reset
generation

(tb_clk_reset_gen)

Microcontroller
(cm3_mcu,

Device Under Test)

UART monitor
(uart_mon)

Testbench
(tb_cm3_mcu)

File Descriptions

cm3_mcu.h Device-specific header based on CMSIS-CORE. This contains the peripheral register definitions and
interrupt assignments.

startup_cm3_mcu.s Assembly startup file – this contains the reset handler, default handlers, and the vector table

uart_util.c Simple UART functions to configure the UART and basic UART transmit and receive function. This is used
for supporting message display during simulation.

system_cm3_mcu.c This provides SystemInit(void) usually used for system clock initialization

system_cm3_mcu.h Header file that declares functions available in system_cm3_mcu.c

hello.c Simple hello world message display and demo

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

208

The assembly startup code (startup_cm3_mcu.s) is toolchain-specific. For this demo, we use Arm
assembler from Arm Compiler 5 (this is available as a part of Arm Development Studio as well Keil
Microcontroller Development Kit, MDK-ARM).

To support the printf function with redirection to the UART, the Arm software development toolchain
Keil MDK-ARM provides the following files:

Table 9.2: Source file created for minimal software support based on CMSIS-CORE.

For applications that do not use I/O functions like printf, puts, gets, etc., these two files are not
required.

9.4.2 Device header file, for example, MCU (cm3_mcu.h)
With the CMSIS-CORE software framework, each microcontroller device has its device header file,
and the filenames are defined by chip vendors. You can create this file by modifying examples from
Arm (e.g., the Cortex-M DesignStart packages contain example files).

One part of the header is Interrupt Number Definition. In our simple MCU example, it has only 6
interrupts, the numbers of which are defined as follows:

/*
 * ==
 * ---------- Interrupt Number Definition -----------------------------------
 * ==
 */

typedef enum IRQn
{
/****** Cortex-M3 Processor Exceptions Numbers ***
*/
 NonMaskableInt_IRQn = -14, /*!< 2 Cortex-M3 Non Maskable Interrupt
*/
 HardFault_IRQn = -13, /*!< 3 Cortex-M3 Hard Fault Interrupt
*/
 MemoryManagement_IRQn = -12, /*!< 4 Cortex-M3 Memory Management Interrupt
*/
 BusFault_IRQn = -11, /*!< 5 Cortex-M3 Bus Fault Interrupt
*/
 UsageFault_IRQn = -10, /*!< 6 Cortex-M3 Usage Fault Interrupt
*/
 SVCall_IRQn = -5, /*!< 11 Cortex-M3 SV Call Interrupt
*/
 DebugMonitor_IRQn = -4, /*!< 12 Cortex-M3 Debug Monitor Interrupt
*/
 PendSV_IRQn = -2, /*!< 14 Cortex-M3 Pend SV Interrupt
*/
 SysTick_IRQn = -1, /*!< 15 Cortex-M3 System Tick Interrupt
*/

File Descriptions

retarget_io.h Contains low level functions for retargeting I/O functions

RTE_Components.h Configuration file for retarget_io.h

209

/****** CM3MCU Specific Interrupt Numbers **/
 GPIO0_IRQn = 0, /*!< Port 0 combined Interrupt
*/
 GPIO1_IRQn = 1, /*!< Port 0 combined Interrupt
*/
 TIMER0_IRQn = 2, /*!< TIMER 0 Interrupt
*/
 TIMER1_IRQn = 3, /*!< TIMER 1 Interrupt
*/
 UARTTX0_IRQn = 4, /*!< UART 0 TX Interrupt
*/
 UARTRX0_IRQn = 5, /*!< UART 0 RX Interrupt
*/
} IRQn_Type;

Another part of this header file that needs some effort to create is the register definitions. In CMSIS-
CORE, peripheral registers are defined as C struct and use a pointer declaration to create the
peripheral definitions. An example of the C struct for the simple APB timer is as follows:

------------- Timer (Timer) -----------/
/** @addtogroup Timer
 memory-mapped structure for Timer
 @{
*/
typedef struct
{
 __IO uint32_t CTRL; /*!< Offset: 0x000 Control Register (R/) */
 __IO uint32_t CURRVAL; /*!< Offset: 0x004 Current Value Register (R/W) */
 __IO uint32_t RELOAD; /*!< Offset: 0x008 Reload Value Register (R/W) */
 __IO uint32_t IRQSTATE; /*!< Offset: 0x00C Interrupt State Register (R/W) */
} CM3MCU_TIMER_TypeDef;

/*@}*/ /* end of group Timer */

You can also add C macros to declare the bit fields in the registers.

#define CM3MCU_TIMER_CTRL_EN_pos 0 /*!<
CM3MCU_TIMER_CTRL_EN_Pos: Enable Position */
#define CM3MCU_TIMER_CTRL_EN_Msk (0x1ul << CM3MCU_TIMER_CTRL_EN_pos) /*!<
CM3MCU_TIMER ENABLE : Timer Enable Mask */
#define CM3MCU_TIMER_CTRL_ExtENSel_pos 1 /*!<
CM3MCU_TIMER_CTRL_ExtENSel_Pos: Ext Enable Sel Position */
#define CM3MCU_TIMER_CTRL_ExtENSel_Msk (0x1ul << CM3MCU_TIMER_CTRL_ExtENSel_pos) /*!<
CM3MCU_TIMER ExtENSel : Timer Ext Enable Sel Mask */
#define CM3MCU_TIMER_CTRL_ExtClkSel_pos 2 /*!<
CM3MCU_TIMER_CTRL_ExtClkSel_Pos: Ext Clock select Position */
#define CM3MCU_TIMER_CTRL_ExtClkSel_Msk (0x1ul << CM3MCU_TIMER_CTRL_ExtClkSel_pos)
/*!< CM3MCU_TIMER ExtClkSel : Timer Ext Clock select Mask */
#define CM3MCU_TIMER_CTRL_IRQEN_pos 3 /*!<
CM3MCU_TIMER_CTRL_IRQEN_Pos: IRQ Enable Position */
#define CM3MCU_TIMER_CTRL_IRQEN_Msk (0x1ul << CM3MCU_TIMER_CTRL_IRQEN_pos) /*!<
CM3MCU_TIMER ENABLE : Timer IRQ Enable Mask */
#define CM3MCU_TIMER_CURRVAL_pos 0 /*!<
CM3MCU_TIMER_CURRVAL_pos: Current Value Position */
#define CM3MCU_TIMER_CURRVAL_Msk (0xFFFFFFFFul << CM3MCU_TIMER_CURRVAL_pos)/*!<

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

210

CM3MCU_TIMER CURRVAL : Current Value Mask */
#define CM3MCU_TIMER_RELOAD_pos 0 /*!<
CM3MCU_TIMER_RELOAD_pos: Reload Value Position */
#define CM3MCU_TIMER_RELOAD_Msk (0xFFFFFFFFul << CM3MCU_TIMER_RELOAD_pos) /*!<
CM3MCU_TIMER RELOAD : Reload Value Mask */
#define CM3MCU_TIMER_IRQSTATE_pos 0 /*!<
CM3MCU_TIMER_IRQSTATE_pos: IRQSTATE Position */
#define CM3MCU_TIMER_IRQSTATE_Msk (0x1ul << CM3MCU_TIMER_IRQSTATE_pos) /*!<
CM3MCU_TIMER IRQSTATE : IRQ Status Mask */

The final part of this file that you need to add is the memory map and peripheral definitions:

/**/
/* Peripheral memory map */
/**/
/** @addtogroup CM3MCU_MemoryMap CM3MCU Memory Mapping
 @{
*/

/* Peripheral and SRAM base address */
#define CM3MCU_FLASH_BASE (0x00000000UL) /*!< (FLASH) Base Address */
#define CM3MCU_SRAM_BASE (0x20000000UL) /*!< (SRAM) Base Address */
#define CM3MCU_PERIPH_BASE (0x40000000UL) /*!< (Peripheral) Base Address */
#define CM3MCU_RAM_BASE (0x20000000UL)

/* APB peripherals */
#define CM3MCU_GPIO0_BASE (CM3MCU_PERIPH_BASE + 0x0000UL)
#define CM3MCU_GPIO1_BASE (CM3MCU_PERIPH_BASE + 0x1000UL)
#define CM3MCU_TIMER0_BASE (CM3MCU_PERIPH_BASE + 0x2000UL)
#define CM3MCU_TIMER1_BASE (CM3MCU_PERIPH_BASE + 0x3000UL)
#define CM3MCU_UART0_BASE (CM3MCU_PERIPH_BASE + 0x4000UL)

/*@}*/ /* end of group CM3MCU_MemoryMap */

/**/
/* Peripheral declaration */
/**/
/** @addtogroup CM3MCU_PeripheralDecl CM3MCU_CM3 Peripheral Declaration
 @{
*/

#define CM3MCU_GPIO0 ((CM3MCU_GPIO_TypeDef *) CM3MCU_GPIO0_BASE)
#define CM3MCU_GPIO1 ((CM3MCU_GPIO_TypeDef *) CM3MCU_GPIO1_BASE)
#define CM3MCU_TIMER0 ((CM3MCU_TIMER_TypeDef *) CM3MCU_TIMER0_BASE)
#define CM3MCU_TIMER1 ((CM3MCU_TIMER_TypeDef *) CM3MCU_TIMER1_BASE)
#define CM3MCU_UART0 ((CM3MCU_UART_TypeDef *) CM3MCU_UART0_BASE)

/*@}*/ /* end of group CM3MCU_PeripheralDecl */

211

9.4.3 Device startup file for example MCU (startup_cm3_mcu.s)
The device startup file can be based on assembly language or C. The requirement and syntax (if using
assembly language) is toolchain-specific. Here we use the assembly syntax for Arm assembler. Two
parts of modifications are needed when modifying an existing startup code to fit your own devices:

1. Vector table definition;

2. Default handler definition.

The vector table for our example microcontroller is shown below:

; Vector Table Mapped to Address 0 at Reset

 AREA RESET, DATA, READONLY
 EXPORT __Vectors
 EXPORT __Vectors_End
 EXPORT __Vectors_Size

__Vectors DCD __initial_sp ; Top of Stack
 DCD Reset_Handler ; Reset Handler
 DCD NMI_Handler ; NMI Handler
 DCD HardFault_Handler ; Hard Fault Handler
 DCD MemManage_Handler ; MPU Fault Handler
 DCD BusFault_Handler ; Bus Fault Handler
 DCD UsageFault_Handler ; Usage Fault Handler
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD 0 ; Reserved
 DCD SVC_Handler ; SVCall Handler
 DCD DebugMon_Handler ; Debug Monitor Handler
 DCD 0 ; Reserved
 DCD PendSV_Handler ; PendSV Handler
 DCD SysTick_Handler ; SysTick Handler
 DCD GPIO0_Handler ; GPIO 0 Handler
 DCD GPIO1_Handler ; GPIO 1 Handler
 DCD TIMER0_Handler ; TIMER 0 handler
 DCD TIMER1_Handler ; TIMER 1 handler
 DCD UARTTX0_Handler ; UART 0 TX Handler
 DCD UARTRX0_Handler ; UART 0 RX Handler
__Vectors_End

Just like the interrupt number assignment in the device-specific header file (cm3_mcu.h), the vector
assignment needs to match the IRQ assignments in the Verilog RTL file. The names of the interrupt
handlers must also match the name definitions of the default handlers in the startup code, which is
the second part of modification as shown below:

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

212

Default_Handler PROC
 EXPORT GPIO0_Handler [WEAK]
 EXPORT GPIO1_Handler [WEAK]
 EXPORT TIMER0_Handler [WEAK]
 EXPORT TIMER1_Handler [WEAK]
 EXPORT UARTTX0_Handler [WEAK]
 EXPORT UARTRX0_Handler [WEAK]
UARTRX0_Handler
UARTTX0_Handler
GPIO0_Handler
GPIO1_Handler
TIMER0_Handler
TIMER1_Handler
 B . ; dead loop
 ENDP

9.4.4 UART utilities
After we have the peripheral definitions in the device-specific header (cm3_mcu.h), we can create a C
program file to provide simple functions for UART configuration, transmit and receive functions.

#include “cm3_mcu.h”

void uart_config(void);
void uart_putc(char c);
char uart_getc(void);
int stdout_putchar (int ch);

void uart_config(void)
{
 CM3MCU_UART0->BAUDDIV = 32;
 CM3MCU_UART0->CTRL = 1; // Enable TX

 return;
}

void uart_putc(char c)
{
 while (CM3MCU_UART0->STATE & 1); // wait if TX FIFO full
 CM3MCU_UART0->TXD = (uint32_t) c;
 return;
}

char uart_getc(void)
{
 while ((CM3MCU_UART0->STATE & 2)==0); // wait if RX FIFO empty
 return ((char) CM3MCU_UART0->RXD);
}

// Function used by retarget_io.c
int stdout_putchar (int ch)
{
 uart_putc(ch);
 return (ch);
}

Combining this utility file and the UART monitor in the testbench, we can output text messages and
display them in the simulation console.

213

9.4.5 System initialization function
The file system_cm3_mcu.c provides a system initialization routine (SystemInit(void)) which is called
by the reset handler in the startup code. This function is often used for setting up Phase-Locked Loop
(PLL) and clock configurations but might also contain other initialization steps.

In our implementation of system_cm3_mcu.c, the only step carried out by SystemInit is setting up
variables which define the system clock speed. These variables can then be used by the application
codes - see below:

#include <stdint.h>
#include “cm3_mcu.h”

/*--
 DEFINES
--/

/*--
 Define clocks
--/

#define XTAL (50000000UL) /* Oscillator frequency */

/*--
 Clock Variable definitions
--/
uint32_t SystemCoreClock = XTAL; /*!< Processor Clock Frequency */

/*--
 Clock functions
--/
void SystemCoreClockUpdate (void) /* Get Core Clock Frequency */
{
SystemCoreClock = XTAL;
}

/**
* Initialize the system
*
* @param none
* @return none
*
* @brief Setup the microcontroller system.
* Initialize the System.
*/
void SystemInit (void)
{
SystemCoreClock = XTAL;

 return;
}

The file system_cm3_mcu.h is only used to provide function prototypes of functions available in
system_cm3_mcu.c. Application code might call those functions if the application needs to update
clock configurations during runtime.

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

214

9.4.6 Retargeting
With all these files prepared, you can now create an application that boots up and utilizes the peripherals
to do some basic control operations. You can also create a hello world application as follows:

#include “cm3_mcu.h”
#include <stdio.h>

extern void uart_config(void);
extern void uart_putc(char c);

int main(void)
{
 uart_config();
 printf (“Hello world\n”);
 uart_putc(4);// end simulation
 while(1);
}

When using the printf function, the compilation needs some way of knowing where the message
needs to be directed to. The redirection of these messages could be handled by:

�� Semi-hosting support in the debugger (note: this is not supported in Keil MDK-ARM);

�� Peripheral (e.g., UART);

�� Instrumentation Trace Macrocell (ITM) in Armv7-M or Armv8-M Mainline processors via a trace
connection (e.g., Serial Wire Output).

The file retarget_io.c supporting multiple redirection methods are listed above. To select UART as standard
output (stdout), the file RTE_Components.h defines the following C macros used by retarget_io.h:

#define RTE_Compiler_IO_STDOUT /* Compiler I/O: STDOUT */
#define RTE_Compiler_IO_STDOUT_User /* Compiler I/O: STDOUT User */

When these C macros are defined, the retarget_io.c selects a user-defined stdout_puchar(int ch)
function for standard outputs.

/**
 Put a character to the stdout

 \param[in] ch Character to output
 \return the character written, or -1 on write error.
*/
#if defined(RTE_Compiler_IO_STDOUT)
#if defined(RTE_Compiler_IO_STDOUT_User)
extern int stdout_putchar (int ch);
...

215

By defining this stdout_puchar(int ch) function in uart_util.c to output the character to UART, we will
be able to collect and display printf messages in simulations.

9.4.7 Other software support package considerations
After creating the basic software support files, a range of system-level simulations can be carried out.
However, if you are a SoC designer and you want to make it easier for your customers to adopt your
products, there is more work to do:

Device drivers – Typically, chip vendors provide a range of device drivers to access peripheral
functions and hence help software developers to create applications quickly. One of the products in
the CMSIS is CMSIS-Driver, which provides device driver API definitions for a range of communication
peripherals. This can help software developers to port their applications to your device.

Device and Board support packages – Typically, chip vendors need to bundle together the relevant
software packages to enable users to download all the essential files quickly and easily. To make
it even better, the CMSIS team has created a CMSIS-PACK framework that is integrated with
development toolchains (an Eclipse plug-in for Eclipse-based IDE is also available) to enable software
developers to download software packages and dependent packages (if needed). The CMSIS-PACK
standard also specifies XML description files that provide essential information about the packages
such as the devices supported. Utilities for creating CMSIS-PACK are available from Arm at: https://
arm-software.github.io/CMSIS_5/Pack/html/createPackUtil.html. For more information, please visit
https://arm-software.github.io/CMSIS_5/Pack/html/index.html

CMSIS-SVD – Another useful part of the CMSIS is the System View Description (SVD), which is an
XML-based file to describe a programmer’s model of peripherals in the chip. Using this file, debug
tools can visualize peripheral register states to allow software developers to analyze the status of the
system more easily.

Flash programming – If your chip contains embedded flash memories, you need to prepare flash
programming support for your customers. This is provided as part of the CMSIS-PACK, and you can
find more information about creating CMSIS-PACK compatible flash programming algorithms at
https://arm-software.github.io/CMSIS_5/Pack/html/flashAlgorithm.html

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

216

9.5 System-level simulation
9.5.1 Compiling hello world
After the software files are created, you can compile the files either using Keil MDK-ARM or DS-5.
For many chip designers using a Linux environment, it is easier to create a “makefile” and handle the
compilation in a shell environment. A simple “makefile” for Arm Compiler 5 can be as follows:

Makefile using Arm Compiler 5
INC_DIR1 = cmsis_include
INC_DIR2 = .
USER_DEF =
ARM_CC_OPTS = --cpu Cortex-M3 -c -O3 -g -Otime -I $(INC_DIR1) -I $(INC_DIR2)
ARM_ASM_OPTS = --cpu Cortex-M3 -g
ARM_LINK_OPTS = “--keep=startup_cm3_mcu.o(RESET)” “--first=startup_cm3_mcu.o(RESET)” \
 --rw_base 0x20000000 --ro_base 0x00000000 --map

all: hello.hex hello.lst
hello.o: hello.c
 armcc $(ARM_CC_OPTS) $< -o $@

system_cm3_mcu.o: system_cm3_mcu.c
 armcc $(ARM_CC_OPTS) $< -o $@

uart_util.o: uart_util.c
 armcc $(ARM_CC_OPTS) $< -o $@

retarget_io.o: retarget_io.c RTE_Components.h
 armcc $(ARM_CC_OPTS) $< -o $@

startup_cm3_mcu.o: startup_cm3_mcu.s
 armasm $(ARM_ASM_OPTS) $< -o $@

hello.elf: hello.o system_cm3_mcu.o uart_util.o retarget_io.o startup_cm3_mcu.o
 armlink hello.o system_cm3_mcu.o uart_util.o retarget_io.o startup_cm3_mcu.o $(ARM_LINK_
OPTS) -o $@

hello.hex : hello.elf
 fromelf --vhx --8x1 $< --output $@

hello.lst : hello.elf
 fromelf -c -d -e -s $< --output $@

clean:
 rm *.o
 rm *.elf
 rm *.lst
 rm *.hex

To allow the behavior ROM model to load the program image into it, we need to generate a hex file
which contains a list of 8-bit hexadecimal values. This is generated with the fromelf utility. If you are
using Keil MDK, you can add this in your project options to execute fromelf after compilation is done.

217

Figure 9.3: Specify additional step to be carried out after compilation in Keil MDK-ARM.

Note: The symbol #L refers to the filename of the generated executable.

9.5.2 Using Modelsim/QuestaSim to compile and simulate the design
There are quite a number of Verilog files in the design. To make the handling of the compile flow
easier, a Verilog command file (tbench_cm3.vc) is created:

// Verilog Command File for Cortex-M3 simulation
// ============= Verilog library extensions ===========
+libext+.v+.vlib

// ============= Module search path =============
-y ../cortex_m3/cortexm3integration_ds_obs/verilog/
-y ../mcu_system
-y .

// ============= Include file search path =============
//+incdir+dirname
+incdir+../cortex_m3/cortexm3integration_ds_obs/verilog/

../cortex_m3/cortexm3integration_ds/verilog/cm3_code_mux.v
tbench_cm3.v

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

218

This Verilog command file contains the search path, and any additional design files need to be included
in the compilation. With this file, we can launch the compilation with the following commands:

vlib work # Create work library – need to do it once only
vlog -incr -lint +v2k -f tbench_cm3.vc -novopt

Several options are used in this compilation:

�� The option “-incr” means incremental compilation, so if a file hasn’t been changed since the last
compilation, it can be skipped.

�� “-lint” is to enable lint checking, which flags up various possible design errors.

�� “-novopt” is used to help maintain all the internal information of the design which can help analysis
of its behavior in waveform windows. Without this option, the optimization will remove a lot of
internal signal details to speed up the simulation but can be very hard to debug. This option should
not be used for regression testing.

After the compilation is carried out successfully, and assuming that the hex file of the software image
is prepared and is in the current directory as image.dat, we can start the simulation with:

vsim -novopt -gui tbench_cm3

The use of “-gui” launches the GUI to allow us to add a waveform window. This is optional. If
everything works, you can start the simulation with “run -all.” The “Hello world” message should be
displayed, and the simulation stop automatically when the program sends a special character (0x4) to
the UART monitor.

Reading pref.tcl
// Questa Sim
// Version 10.6e linux Jun 22, 2018
//
// Copyright 1991-2018 Mentor Graphics Corporation
// All Rights Reserved.
//
// QuestaSim and its associated documentation contain trade
// secrets and commercial or financial information that are the property of
// Mentor Graphics Corporation and are privileged, confidential,
// and exempt from disclosure under the Freedom of Information Act,
// 5 U.S.C. Section 552. Furthermore, this information
// is prohibited from disclosure under the Trade Secrets Act,
// 18 U.S.C. Section 1905.
//
vsim -novopt -gui tbench_cm3
Start time: 22:31:20 on Apr 12,2019

219

** Warning: (vsim-8891) All optimizations are turned off because the -novopt switch is in
effect. This will cause your simulation to run very slowly. If you are using this switch
to preserve visibility for Debug or PLI features please see the User’s Manual section on
Preserving Object Visibility with vopt.
Loading work.tbench_cm3
Loading work.tb_clk_reset_gen
Loading work.cm3_mcu
Loading work.clk_reset_ctrl
Loading work.behavioral_clk_gate
Loading work.cm3_system_top
Loading work.cm3_processor_subsystem
Loading work.CORTEXM3INTEGRATIONDS
Loading work.cortexm3ds_logic
Loading work.cm3_code_mux
Loading work.cm3ahb_to_ahb5
Loading work.ahb_decoder_code
Loading work.ahb_slavemux
Loading work.ahb_defslave
Loading work.ahb_decoder_system
Loading work.apb_subsystem
Loading work.ahb_to_apb
Loading work.apb_gpio
Loading work.apb_timer
Loading work.apb_uart
Loading work.ahb_rom
Loading work.ahb_ram
Loading work.sys_ctrl
Loading work.behavioral_input_pad
Loading work.behavioral_input_pullup_pad
Loading work.behavioral_tristate_pullup_pad
Loading work.behavioral_output_pad
Loading work.behavioral_tristate_pad
Loading work.uart_mon
run -all
** Warning: (vsim-8233) ../mcu_system/ahb_ram.v(111): Index 1zzzzzzzzzzzzzzzz into array
dimension [0:65535] is out of bounds.
Time: 0 ns Iteration: 0 Instance: /tbench_cm3/u_cm3_mcu/cm3_system_top/u_ahb_ram
** Warning: (vsim-8233) ../mcu_system/ahb_ram.v(112): Index 1zzzzzzzzzzzzzzzx into array
dimension [0:65535] is out of bounds.
Time: 0 ns Iteration: 0 Instance: /tbench_cm3/u_cm3_mcu/cm3_system_top/u_ahb_ram
** Warning: (vsim-8233) ../mcu_system/ahb_ram.v(113): Index 1zzzzzzzzzzzzzzxz into array
dimension [0:65535] is out of bounds.
Time: 0 ns Iteration: 0 Instance: /tbench_cm3/u_cm3_mcu/cm3_system_top/u_ahb_ram
563700 UART: Hello world
579700 UART:
579700 UART: Simulation End
** Note: $finish : ./uart_mon.v(119)
Time: 579700 ns Iteration: 1 Instance: /tbench_cm3/uart_mon
1
Break in Module uart_mon at ./uart_mon.v line 119
End time: 22:32:37 on Apr 12,2019, Elapsed time: 0:01:17
Errors: 0, Warnings: 4

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

220

9.6 Advanced processor systems and Corstone Foundation IP
The simple system design covered here is adequate for small projects. However, in commercial
product development, system designs can be much more complex. For example:

�� The bus system might need to support multiple bus masters including a DMA controller, high-speed
communication interfaces (e.g., peripherals like USB controller and Ethernet controller can have a
bus master interface).

�� Additional power management schemes might be needed to enable longer battery life. For example,
multiple bus systems can be used, and each of them can be running at different clock speeds to
reduce active power.

�� Additional security features are often needed, especially when dealing in IoT applications. For
example, security control features might be added in peripheral bus bridges to allow peripherals
to be allocated to specific tasks, and to make some of the peripherals privileged access only. If a
system design is based on Armv8-M processors, the use of the TrustZone security extensions also
requires additional system IP to partition memories into Secure and Non-secure spaces.

�� Protection of firmware IP (intellectual property) is required for many commercial products. As a
result, additional IP (including some form of non-volatile memory) is needed to enable the product’s
Life Cycle State (LCS) management and debug authentication.

To help reduce time-to-market, Arm has produced and delivered a range of system components and
system design products. The Corstone Foundation IP are system design packages containing:

�� Subsystems based on Arm Cortex processor, which can be used as a standalone system or as
a subsystem in complex SoC designs.

�� A wide collection of bus infrastructure components including bus bridges, TrustZone security
management components (for Corstone-20x and Corstone-7xx).

�� A selection of baseline peripherals.

�� Software support.

These IPs are verified, and system designers can integrate these subsystems into their design to
accelerate their projects. The Corstone Foundation IP series contains multiple products:

�� Corstone-050, 100, 102 – IoT subsystem for Cortex-M3 processor and including deliverables in the
previous Cortex-M System Design Kit (CMSDK).

�� Corstone-200, 201 – IoT subsystem for Cortex-M33 with TrustZone security, also including CMSDK.

�� Corstone-700 – scalable IoT subsystem for small Cortex-A processors and optional Cortex-M
subsystems.

221

For designers that prefer a simpler system design, the previous generation of CMSDK is included
in full versions of Corstone Foundation IP, which provides example system designs for Cortex-M0,
Cortex-M0+, Cortex-M3, and Cortex-M4 processors.

Corstone-050 is included in the Cortex-M3 DesignStart deliverables.

9.7 Verification
System-level simulation is great for testing the integration of the system (connections between units)
and testing of the basic functionality of the design units. In commercial projects, getting a system-level
simulation running is only one part of the verification task. There are other verification methodologies
needed for SoC designs; notably:

LINT checking
A lint checking tool can be used to analyze the design source code (Verilog / VHDL) to flag up coding
errors (e.g., a missing signal in the sensitivity list). The term “lint” originates from the name of a tool for
C code checking (https://en.wikipedia.org/wiki/Lint_(software)).

Some Verilog/VHDL simulation tools include LINT checking capability. For example, in the simulation
example Section 9.5, we added the “-lint” option in the vlog command to enable lint checking in
Modelsim/Questasim.

Formal verification
Since system-level simulation cannot reach corner cases, formal verification is usually needed for
component level (smaller design units) verifications. With formal verification, you need to define input
constraints for the DUT (Device Under Test) and rules for expected outputs. The formal verification
tool then works out all the possible inputs and scenarios to see if the DUT truly follows the rules
for the expected output. Take an example in which the DUT is a bus bridge component; a formal
verification environment might look like the one shown in Figure 9.4:

Figure 9.4: Formal verification environment for a bus bridge component.

Due to the long duration for the formal verification runs, usually formal verification is not used at
system-level.

Bus bridge (DUT)

Constraints for valid
bus transactions and

checker for
responses from DUT

Bus slave
interface

Bus master
interface

Checker for bus
transaction outputs
and constraints for

valid slave responses

Score board checker to ensure transactions
are mapped correctly

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

222

Clock Domain Cross (CDC) checks
Many SoC designs contain multiple clock domains that are asynchronous to each other, and
appropriate synchronization logic should be in place. CDC checks are used to detect missing
synchronization logic (e.g., double flip-flop synchronizers). When using a CDC checker, you might need
to add a range of constraints to specified exempted cases (e.g., In some cases, a signal going from one
clock domain to another can only change when the destination domain’s clock is stopped).

Netlist simulations
After the design is synthesized and has potentially gone through placement and routing flow, it is
common to back annotate the netlist and timing to double-check the design using netlist simulations
with a subset of tests used in RTL level simulation. Due to additional timing details, typically in the
form of SDF (standard delay format) files, netlist simulations are much slower than RTL simulations
and therefore re-running all verifications on netlist is typically unfeasible.

While static timing analysis can detect timing violations, netlist simulation is still useful to detect
missing or errors in timing constraints. Netlist simulation is also needed to verify scan patterns
generated by ATPG (Automatic Test Pattern Generation, see Section 9.9) tools, as scan patterns often
contain user-defined setup patterns at the start of the scan test that need to be verified at netlist level.

FPGA prototype
In addition to demonstration purpose, FPGA prototyping is very useful for validating debug
connections and related aspects such as pin multiplexing. Since software developers can create
applications and execute them on FPGA platforms as in real applications (potentially at a reduced
speed), application developers can use FPGA prototypes to develop application-level testing and run
the test much quicker than in RTL simulations.

Verifications for designs with multiple power domains
If a design contains multiple power domains, additional verifications are required:

�� Power-aware simulations – entering of sleep modes and waking up can be simulated, with some of
the power domains powered down during sleep.

�� Power intent verification – verification of power intent description (e.g., UPF).

�� Low-power formal verification – if a logic operation has moved from one power domain to another
due to synthesis optimizations, potentially this can cause incorrect behavior during power down.
Low-power equivalent checking can identify such mismatch in behavior.

223

9.8 ASIC implementation flow
ASIC implementation flow (sometimes also referred to as physical design) can contain many steps:

Figure 9.5: Example of implementation flow.

Brief descriptions of some of the key steps in the implementation flow are explained below.
Some of the checking (e.g., static timing analysis) might be carried out multiple times during the
implementation flow.

Synthesis – Conversion of RTL to netlist. In addition to the RTL, ASIC synthesis tools also need the cell
library and various timing constraints for the clock, reset, and interface signals. Synthesis processes
might include automatic clock gate generation to help low-power optimization.

Scan insertion – adding of scan chains to the netlist for chip manufacturing testing. See Section 9.9
for more information.

Static timing analysis (STA) – STA tools calculate the timing of the netlist based on timing models
of the cell library and check if the design can meet the timing constraint requirements. The analysis
involves multiple “corners” to detect potential failures like setup timing violation (circuit running too
slow) and hold time violation (a signal changes so fast that a register capturing it can end up with an
incorrect value).

Placement and routing – The tool places the logic gates in the chip layout and connects the signals
between logic gates. Potentially, the placement can be divided into two stages: initial placement

Verilog /
VHDL

Synthesis,
scan insertion Netlist

Timing
constraints

Floor
planning

Placement and
routing, clock tree

synthesis (CTS), post
route optimization

Layout

Automatic
Test Pattern
Generation

(ATPG)

Logic
equivalence
check (LEC)

Logic
equivalence
check (LEC)

Product test
patterns

Extraction

Netlist and
SDF timing

data

Netlist
simulations

Extraction

Netlist and
SDF timing

data
Netlist

simulations Functional
tests

Power
analysis

Power
analysis

Initial placement

Signoff

Static timing
analysis (STA)

Static timing
analysis

(STA)

On-chip signal
integrity (SI)

analysis

Hard
macrosCell libraries

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

224

provides a rough location of logic gates to enable better timing optimizations during synthesis, and
then a second stage finalizes the locations of the gates.

Clock tree synthesis (CTS) – CTS inserts clock tree buffers to ensure that clock signals reach the
different registers at the right time. In a SoC design, two registers receiving the same clock signal
might see the clock edge at different times if they are not in the same area on the chip (due to the
propagation delay of the clock signal). CTS can balance the clock tree accordingly so that signal paths
between the registers still work after placement.

Logic equivalence checking (LEC) – this ensures that the functionality of the design units matches the
RTL code. If the LEC check fails, the reason could be an error in the design, missing constraints in the
synthesis or LEC setup, or potentially something has gone wrong in the synthesis.

Automatic Test Pattern Generation (ATPG) – ATPG analyzes the netlist and generates scan patterns for
chip manufacturing testing. (There can be multiple types of scan patterns for different test purposes).

On-chip signal integrity (SI) analysis – This can help prevent chip failures caused by cross-talk between
wires, and static and dynamic voltage drops (known as IR drop) in power rails during circuit activities.
Power analysis – this enables designers to confirm that the chip can operate within the power budget.

There can be additional steps required, for example, when dealing with embedded memory macros.
Designers need to use memory compilers to generate the memory macros.

9.9 Design for Testing/Testability (DFT)
As transistors get smaller and smaller, a tiny defect in the silicon wafer can easily cause them to fail,
and chip manufacturers need to be able to test the chip thoroughly before releasing the product to
their customers. While it is possible to carry out some level of testing by running programs on the
chip, such a testing methodology is unlikely to get a very high test-coverage and might take a very
long time. To enable better testability, modern digital chip design often incorporates additional test
circuitries to help manufacturing testing.

Earlier, we mentioned about scan insertion and ATPG in the implementation flow. This is one of the
most common approaches used today for testing of digital circuitries. To use scan tests, the flip-flops
in the circuit design include additional ports for scan test operations:

Figure 9.6: Scan D flip-flop.

Q
SOSI

D

SE
CLK

Reset / nReset

D

SI
QD

CLK

Q

SO

CLK

SE

Reset / nReset

A scan flip-flop

225

The extra signals on the scan D flip-flop include:

�� SI – scan in;

�� SO – scan out;

�� SE – scan enable.

After synthesis with scan enable (i.e., scan registers are used), we can then create scan chains using
scan insertion in synthesis tools. There can be multiple scan chains in a design (but not too many, as
there are restrictions in the chip testers), and the more scan chains you have, the shorter each chain
would be and can shorten the time required for running scan tests.

Figure 9.7: Two scan chains inserted (functional logic not shown).

With the scan chain in place, we can then use a tester hardware call Automatic Test Equipment (ATE)
to shift in any test patterns to the logic by applying a series of clock pulses with scan enable asserted,
and clocked the design with scan enable de-asserted to exercise the functional logic (capture cycle).

Figure 9.8: Simple scan test operations.

Q
SOSI

D

SE
CLK

Q
SOSI

D

SE
CLK

Q
SOSI

D

SE
CLK

SCANIN[0]

Q
SOSI

D

SE
CLK

Q
SOSI

D

SE
CLK

Q
SOSI

D

SE
CLK

SCANIN[1]

SCANOUT[0]

SCANOUT[1]

SCANEN

CLK

Reset /
nReset

SCANIN[n:0]

SCANEN

CLK

nReset

Test pattern #0 Test pattern #1

SCANOUT[n:0] Shift out reset states Shift out result state #1

Test pattern #2

Shift out result state #2

Capture
cycle

Capture
cycle

Chapter 9 | Putting the system together

System-on-Chip Design with Arm® Cortex®-M processors

226

During a scan test, it is often essential to bypass internal clock gating and internal reset generation
circuits to allow ATE to have direct control of the clock and reset. Therefore, in Arm IP designs, you
might see signals like this:

�� CGYPASS – clock gating bypass;

�� RSTBYPASS – internal reset generation bypass;

�� SCANMODE – Scan mode indication/control to force components to work in certain ways to help
test coverage. For example, wrappers of memory macros can route write data to read data so that
data paths can be tested easily.

These signals should be high during the whole duration of the scan test, including capture cycles.

In some cases, a setup pattern needs to be added to the beginning of test patterns to enable scan
tests. For example, the scan test pins might be multiplexed with other function pins and need a special
signal sequence to enable the scan pin accesses. Such a setup pattern is defined by the chip designers.

The ATPG tool can generate different types of test patterns. The typical scan test is targeted at
detecting stuck-at faults, which means that it checks the inputs and outputs of logic gates are not
stuck with a value of 0 or 1. It is also possible to generate scan test patterns for IDDQ (Idd quiescent)
testing, which detects unexpected supply current when a certain logic state is reached, which can be
an indication of manufacturing faults.

Scan tests can also be used for at-speed testing of some degree. However, in modern ASICs that run
at over 100MHz, many ATE (chip testers) might not be able to support at-speed testing at such a high
clock speed and in those cases, traditional functional tests might be more suitable.

Another type of manufacturing test is the memory built-in self-test (BIST). Memory BIST controllers
can be inserted by EDA tools and controlled via JTAG or other test interfaces. When memory BIST is
enabled, a memory BIST controller automatically creates test patterns to access the memory macros
to verify their functions. There can be more than one memory BIST controller in a chip when there is
more than one memory block. To help the integration of memory BIST, Arm processors with internal
SRAM (e.g., caches) provide memory BIST support. The exact details are processor-specific, so please
refer to processor integration manuals for more information.

There are also manufacturing tests that focus on electrical characteristics of input and output pins.
Common examples of these tests include:

�� Input threshold voltage (VIL, VIH);

�� Input leakage current (IIL, IIH);

�� Output driving voltage (VOL, VOH) (can also cover output drive current test).

227

While output pins can be accessed, and their electrical characteristic measured easily, the output
signals of input pads are inside the chip and creating a test for checking each of the signals can be
tricky. To make it easier, we can add a simple logic to link the input pads’ outputs together and test
them at the same time.

Figure 9.9: Simple XOR tree for VIL/VIH tests.

Assuming that all the input pins have the same electrical characteristics, they should also have the
same outputs when the input voltage is in a valid range. Since we know how many input pins are in
the XOR tree, we can determine the expected test result easily. By adjusting the input voltage closer
to the input threshold voltage level slowly, and if any of the input pins fail to deliver the correct signal,
the VIL/VIH test result pin will toggle. Of course, if there are two input pads that fail at the same time
at a certain threshold voltage (the chance is low - but it is possible), then the VIL/VIH test result signal
will remain unchanged and will not be able to detect the issue.

Depending on other components in the chip design, there can be additional DFT integration
requirements. For example, an on-chip Phase-Locked Loop (PLL) module usually has some test pins
to enable the PLL to be tested.

Adjustable
voltage source

Input pads & buffer

Functional signal

Functional signal

Functional signal

Functional signal

VIL/VIH test result

Chapter 9 | Putting the system together

Beyond the
processor system

CHAPTER
10

System-on-Chip Design with Arm® Cortex®-M processors

230

10.1 Clock system design
10.1.1 Clock system design overview
All processor systems1 need clock signals to operate. For the majority of microcontroller systems, the
clock signals are generated by the following means:

�� Internal crystal oscillators with external crystals, or

�� Internal oscillators (e.g., R-C oscillators), or

�� Internal Phase-Locked-Loop (PLL).

When designing clock systems, several factors are typically considered:

�� Accuracy – Many peripherals and external communication interfaces require fairly high accuracy for
the clock frequency. For external crystals, the accuracy is often expressed as PPM (Part Per Million),
and commercial products usually require 40ppm or better accuracy for the crystal oscillators.
Internal R-C oscillators typically are not accurate (some can have up to 20% error).

�� Duty cycle – Typically, the clock source should provide a square wave with a 50% duty cycle. For
Cortex-M based systems, since all registers in the processor and the bus system trigger at the
system clock’s rising edge, a small inaccuracy in the duty cycle is unlikely to cause any problems.
However, when dealing with an interface with DDR (double data rate) operations, accuracy in clock
duty cycle can be very important.

�� Low-power – A crystal oscillator running at a high clock speed can consume a lot of power. So if high
clock speeds are required, a slower crystal oscillator is often used to generate a reference clock and a
PLL to generate a high-frequency clock out of it. When the system does not need the high clock speed,
the PLL can be turned off to save power. Another common requirement for low-power systems is to
provide an ultra-low-power clock source for Real-Time-Clock (RTC) and a periodic interrupt source for
RTOS (Real-Time Operating System). It is therefore relatively common for microcontrollers to have
a crystal oscillator for the system clock and a 32kHz crystal oscillator for the RTC clock.

�� Clock distribution inside the chip – In Chapter 9, we mentioned the topic of clock tree synthesis
during clock design flow. In many system designs, we need to make a clock edge that arrives at
different parts of the processor system at the same time. Clock tree balancing during clock tree
synthesis is required to achieve this goal. In addition to the clock signal propagation delay, clock
tree balancing must also take account of additional delays caused by clock gating cells, and,
potentially, additional clock skews and clock jitters (uncertainties). What is more, if all this wasn’t
enough to make your design flow complicated, the clock tree can use up a considerable amount
of power consumption!

In some cases, application-specific IC designs can have additional clock source requirements. For
example, chip designs with USB interfaces might require accurate 12MHz or 48MHz clock sources.

1 Note: There are processors designed with asynchronous logic, but their bus systems still need clock signals to allow them to interface with the external world and peripherals.

231

10.1.2 Clock switching
When there are multiple clock sources in the system, one of the design challenges is to handle
the switch over from one clock source to another. In a microcontroller application, you might have
multiple scenarios in which different clock sources are used – for example:

�� When the processor system is running background code, the processor’s clock may be driven from
the crystal oscillator.

�� When the processor system receives a certain processing workload, it needs higher performance
and therefore switches from the crystal oscillator’s clock to a PLL-generated high-frequency clock.

�� When there is nothing to process, the processor enters sleep mode during which only the RTC is
running (PLL and other oscillator turned off to minimize power consumption). The processor system
might in this state need to use the RTC clock to wake up the memory controllers after an interrupt
request is received.

As a result, the clock system design needs to support switching over from one clock source to another,
- and this process needs to be glitch-less. If a clock glitch enters the processor system, some of the
registers can be affected by metastability issues and enter an undefined state, and the system will not
be able to resume normal operations.

One way to provide glitch-free clock switching is to implement a clock switching FSM in each of
the clock domains and to enable their clock output only if none of the other clock output FSMs are
outputting. Figure 10.1 shows a clock switcher that supports three asynchronous clock sources:

Figure 10.1: Clock switcher that support three clock sources.

CLKSEL[0]

CLK_b_ON

CLK_c_ON

Sync DFF

Reg

CLK_a_ON

CLK_A

Clock
gateCLK_A

CLKSEL[1]

CLK_a_ON

CLK_c_ON

Sync DFF

Reg

CLK_b_ON

CLK_B

Clock
gateCLK_B

CLKSEL[2]

CLK_a_ON

CLK_b_ON

Sync DFF

Reg

CLK_c_ON

CLK_C

Clock
gateCLK_C

Clock select (1-hot)

Clock
output

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

232

The clock gating cells and the OR gate that merge clock sources need to be instantiated and cannot
be generated by synthesis. This prevents the synthesis process from reordering logic gates that can
result in glitches. The reset values of the flip-flop might need to be customized if you want to allow the
system to be started up with the clock running.

10.1.3 Low-power considerations
Crystal oscillators and PLL hardware are often delivered to chip designers as hard macros and
simulation models. To enable low-power optimizations at the application level, many of these designs
include power control interfaces that allow the oscillator of the PLL to be powered down when they
are not being used.

A problem with powering down oscillators and clock sources during sleep is that, in many cases, we
still need to have a clock source for various power management hardware, which requires clocks (they
might have internal state machines to power up memories). Therefore, chip designers must ensure
that either one of the active clock sources is kept active, or that the oscillator’s control is designed so
that after a wake-up event is triggered, an oscillator could start automatically to support the power-up
sequence.

Be careful about the wake-up time required for the oscillator and PLL, including the effect of various
operating temperatures and voltages. Typically, a finite state machine (FSM) is needed to ensure that
the clock signal to the processor system is gated off until it is fully stabilized. This is why the 32kHz
clock is usually left running during sleep mode so that the FSM can rely on this clock to operate.

10.1.4 DFT considerations
An important aspect of clock system design is Design for Testing (DFT). During scan tests, clock
signals need to be controllable from the ATE, and that means internal clock switches, clock gates, and
internal clock sources such as PLL have to be bypassed. Some of the PLL designs also have scan chains
that need to be hooked up and might have additional scan mode control signals.

In addition, some PLL designs provide test modes that can help chip designers to analyze the
performance of the PLL in the implemented chips. To use such features, you might need to implement
test modes that allow certain PLL signals to be observable at the top-level of the chip.

10.2 Multiple power domains and power gating
In low-power system designs, we often define multiple power domains in a chip and allow some to be
powered down when they are not needed. This technique is called power gating.

Unlike clock gating (which simply reduces dynamic leakage), power gating also removes static leakage
currents. However, as system states may be lost by removing power, there are some trade-offs to be
made – it may take time to save and recover the necessary state information and remove and restore
power. A special form of power gating called State Retention Power Gating (SRPG) is available, but
SRPG flip-flops are larger than standard flip-flops, have a slightly higher dynamic current, and need an
additional power rail to support retention.

233

To handle power gating and state retention power gating, we need special physical IP for power gating:

�� Header cells;

�� Footer cells;

�� Isolation cells;

�� State retention flip-flops (registers) (for SRPG only).

Figure 10.2: Various special cells for power gating.

Footer cells and footer cells - On-chip power gating typically involves inserting large, high- Vt
(threshold voltage), low-leakage PMOS (on supply connection side) and/or NMOS (on ground
connection) sleep transistors into the chip’s power network. This means that the device’s power
network consists of:

�� A power network that is permanently turned on (connected to an external supply), and

�� A number of power islands, to which the power supply may be turned off.

Isolation cells - Isolation cells are special cells that isolate a power-gated block from other parts of
the design which remain powered up. These are required to prevent (1) short-circuit currents and (2)
the inputs of other blocks from floating (a “clamp” will force such inputs to a logical 0 or 1 when the
output of the powered down block has been isolated.)

In some cases, when multiple power domains are used, it is possible to have different voltage levels,
and in these situations, level shifters are also needed.

Header cells (P-MOS)

Footer cells (N-MOS)

Power gated domain
Iso

Isolation
cell

Power on domain

Power on
domain

Clamp

Vdd

GND

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

234

To support power gating design, Arm physical IP products have Power Management Kits (PMK) that
contain a range of these special components for multiple power domain designs. Different process
nodes need different PMKs libraries. For more information about PMKs, please visit Arm’s website:
https://www.arm.com/products/silicon-ip-physical/logic-ip

The inclusion of such power gates brings a range of complexity to the physical design:

IR-drop - The voltage supplied to individual functional blocks will be lower than that provided to the
chip, due to losses within the on-chip power distribution network. Power gate transistors need to
be large in order to reduce the IR drop. In many cases, a number of header cells and footer cells are
required to avoid this.

In-rush current – If a voltage island is large and all the header and footer cells are turning on
simultaneously, it causes a large ‘in-rush current’ that can result in problems to the integrity of the
device’s power grid. In order to prevent this problem, the header and footer cells often have buffered
control output to allow-power switching sequences to be chained. This makes the time needed for
switching on a power domain longer but can prevent large ‘in-rush current’ that can cause physical
damage to the chip.

Power gating control skew rate - Another potential issue is that power gates themselves can have
leakage current, especially if the gating control signal is not well buffered and not reaching optimal
voltage. Therefore, the timing of the power gate operation needs to be carefully considered to ensure
that the slew rate of the power gate control signal is not too large.

Power-gating also has cost implications in terms of die area and silicon routing. It requires specialist
EDA tools and may make timing closure more difficult.

As explained in Chapter 6, there are a number of schemes to preserve the state of a block before it is
shut down. While state retention power gating (SRPG) enables the state in the processor system to
be retained during sleep, it won’t be useful if the states in peripherals and other system components
are lost during sleep. So if state retention power gating is used, the components in the system that
need to be powered down during sleep mode should also have state-retention power gating (SRPG)
implemented to ensure that software can make the most out of SRPG capability.

An alternative method is to store the status of the parts of the applications that need to be preserved
to a state retention RAM, before removing power. When power is restored, the software needs to
restore the application’s state. The state that needs saving might include the processor’s registers and
peripheral configurations.

Of course, it is also possible to power down and simply restart the system when it is needed.

235

10.3 Arm processors in a mixed-signal world
10.3.1 Convergence of microcontrollers and mixed-signal designs
Traditionally, many microcontrollers are mostly digital in design with a few analog components, like
ADCs (Analog to digital converters) and DACs (Digital to analog converters). In the last 10 years, more
and more analog components integrated into microcontrollers:

�� PLLs (Phase-Locked Loops) and oscillators;

�� ADCs;

�� DACs;

�� Voltage references;

�� Brown-out detector;

�� Analog comparators;

�� LCD driver;

�� Touch sensor / CAP sense;

�� Wireless interface, etc.

At the same time, analog components are getting more intelligent. For example, traditional sensor ICs
integrate more and more digital logic including, processors and are becoming “smart” sensors. This can
bring many advantages by enabling:

�� Better calibrations;

�� Fault detection and report to devices connected to it;

�� Better power management.

Since the Cortex-M processors are small, energy-efficient, and easy to use, they are widely used in
microcontrollers and smart analog IC designs. With various sleep mode features and intelligence in
software control, a range of mixed-signal designs can reach better levels of energy efficiency and, at
the same time, provide more features than before.

When dealing with mixed-signal designs, additional complexities are added to the projects; for example:

�� Design flow of analog components can be very different from digital. In some cases, Verilog-AMS
can be used, and in others, some analog components are designed with manual chip layout. There is
often a need for system-level mixed-signal simulation and verification.

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

236

�� In some cases, CMOS manufacturing technology is not suitable for certain analog applications
(e.g., power electronics, radio frequency circuits). In many cases, BiCMOS is used for mixed-signal
designs that combine CMOS, and bipolar transistor technologies on the same silicon die.

�� Many analog components need separated power domains (separated from the digital logic).
Additional considerations in a chip’s power rail design and floor-planning are needed to reduce
noise to sensitive analog components. For example, layout implementation techniques such as
guard rings and well isolation are common techniques that can be used to prevent switching noise
from a digital circuit reaching an analog circuit through silicon substrate coupling.

�� Analog components have different manufacturing test requirements.

Many EDA tool vendors have specific offerings to help when dealing with mixed-signal design flows.

10.3.2 Analog to digital conversions
There are many types of ADC available on the market. Depending on the application, there can be
different selection criteria for what type of ADC to choose. For example:

�� Conversion speed and sampling rate – When dealing with an input signal that has a frequency
range of X Hz, the minimum sampling rate needed is 2*X Hz. And in many cases, even 2*X Hz is not
enough for quality and reliability reasons. For example, imagine that a 4 kHz sine wave is sampled
at 8 kHz: there is a chance that we will sample the input signal at 0 level all the time. Therefore, it
is often necessary to have the sample rate more than 4 times that of the input signals. Please note
that the input bandwidth of an ADC can be much lower than half of the sampling rate.

�� Resolution – This is expressed as the number of bits in the conversion results. For an on-chip ADC,
typical resolutions range from 8-bit to 14-bits. The difference between the real value and the
measured value is often referred to as the quantization error and is ½ of the LSB of the ADC in ideal
cases, as shown in the diagram below:

Figure 10.3: ADC resolution and quantization error.

0v Vcc
Valid voltage range for measurement

00000000

Result

11111111
11111110
11111101
11111100

00000001
00000010
00000011

Input

Quantization
error

237

(Please note that many on-chip ADCs have a measurement range less than the supply voltage range.)

�� Signal-to-noise (SNR) ratio – this is often calculated using the number of bits in the results, by
assuming the noise level is +/- LSB. SNR is often expressed in decibels, i.e.

 SNRdb = 10log10 (Psignal/Pnoise)

�� Given that the ADC results are in the form of voltage values, we need to convert the formula by
squaring the input values (or 2x after log10), thus:

SNRdb = 20log10 (Vsignal/Vnoise)

�� Assuming that the ADC is 8-bit (256 levels), the SNR calculation can be formulated as shown:

SNRdb = 10log10 ((256)2) = 48db

In some cases, you can use oversampling and filtering techniques to reduce noise. But even if the ADC
noise level is low, in many cases, noises from other parts of the integrated circuit and on the circuit
board, could reduce the signal-to-noise ratio.

�� Suitability for the target process node – One of the challenges for mixed-signal design is that analog
circuit design does not scale well to small transistor geometries.

�� Area and power – Silicon area and the type of ADC directly contribute to cost and power. Based on
the project requirements, some of the ADC types might not be suitable for these reasons.

�� Operating conditions – If you are designing a chip for industrial (or even automotive) applications,
you will need to pay attention to the operating temperature range of ALL the components that you
use for the design (not just ADC, DAC, but also oscillators, memories, etc.). Some of the ADCs and
DACs might not work at high temperature.

Amongst various types of ADC, successive approximation ADCs are very popular in microcontrollers.
Successive approximation contains several parts, as shown in the diagram below:

Figure 10.4: Simplified block diagram of a successive approximation ADC.

Input
Buffer Switch Switch

capacitor

Comparator

Finite State Machine (FSM)

Start request
Conversion done

Result

Digital to
analog

conversion

Sample and hold circuit

Clock
(result reg)

Voltage
reference

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

238

Using bisection, a successive approximation ADC determines input voltage bit by bit, as illustrated below:

Figure 10.5: Operations of a successive approximation ADC.

With a 14-bit ADC, the finite state machine iterates the operation loop 14 times. While it is not the
fastest type of ADC, the conversion speed is acceptable for most applications and delivers relatively
high accuracy.

For designs that require very fast conversion speed, a flash ADC can be used. A flash ADC uses an
array of voltage comparators to detect the voltage and then converts the results to binary values.

Figure 10.6: Conceptual representation of a flash ADC.

Sample input Use sample and hold circuit to
hold input voltage in a capacitor

Result reg = 0.
Current bit = MSB

Set current bit in
result reg.

Check comparator –
DAC output > input voltage?

Clear current bit in
result reg.

Current bit shift right
by 1 bit

Current bit is bit 0?
Yes

No

Yes

No

Start

Conversion
done

Reference voltage

Input voltage Sampling

R +
-

R +
-

R +
-

R +
-

R +
-

Buffer

Binary value
generation

Result

Comparators

R

239

The illustration in Figure 10.6 is a conceptual one. In ASIC design, the resistor network is likely to be
replaced by switching capacitor networks as the implementation of resistors in ICs can be challenging
in terms of accuracy.

Due to their nature, flash ADCs are usually larger in silicon area, power-hungry, and can offer only
limited resolution (e.g., 8-bit). They are commonly used for video signal processing because other ADC
methods cannot reach the required speed, and 8-bit is sufficient for video processing needs.

For audio processing, a delta-sigma ADC could be used. Delta-sigma ADCs contains several stages;
namely:

�� A delta sigma modulator;

�� Digital low pass filter;

�� Decimation filter.

Figure 10.7: Block diagram of a delta sigma ADC.

The delta-sigma modulator runs at several MHz and can generate a bitstream with a feedback loop.
The 1-bit DAC in the feedback is simply a switch that switches between +Vref and -Vref based on the
result of the 1-bit ADC input. The differential amplifier compares the input signal with the 1-bit ADC,
and the integrator works as a lowpass filter of the result.

Figure 10.8: Simplified representation of a delta-sigma modulator.

With a delta-sigma ADC, the output is based on the density of ones in the output stream. Due to its
nature that high-frequency input will suffer higher quantization errors. For audio processing, this is
less of an issue as the human ear is less sensitive to higher frequency sounds, so we can apply a low
pass filter to suppress quantization noises.

Delta sigma
modulator

Input
signal Digital low pass

filter Decimation filter Result

+
-

Integrator

Differential
Amp

+
-

ComparatorInput signal

1-bit DAC

+

-

1-bit ADC
output

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

240

Since the output is in the form of a bitstream, the application code cannot use this result directly. With
a decimation filter, we can convert the bitstream information into multi-bit binary values at a lower
sampling rate.

The usable bandwidth of a delta-sigma ADC is a bit lower than the other ADCs mentioned previously.
In addition, delta-sigma ADCs are designed to be used with periodic sampling, whereas successive
approximation and flash ADC can be turned on and off at any time to skip samples when it is not
needed or perform conversions on an ad-hoc basis.

For applications where the sampling rate is very low, for example, in smart sensors when measurement
might be needed only for a few times a second, or even a sample every hour, we can use a slower ADC
like a dual-slope ADC.

Conceptually, dual slope ADCs can be implemented using an op-amp, a voltage comparator, a binary
counter, and a state machine, as illustrated in the diagram below:

Figure 10.9: Conceptual representation of a dual slope ADC.

When in operation, a dual-slope ADC applies the input voltage to an integrator circuit and integrates
the voltage for a fixed duration. A reference voltage of opposite polarity is then applied to the
integrator and allowed to ramp until the integrator output returns to zero. The input voltage can
then be calculated as a function of the reference voltage, the fixed-length period, and the measured
discharge period; which is expressed as follows:

Vin = Vref * (discharge time / fixed_charge_time)

Longer integration times permit higher resolution measurements, and this kind of ADC is particularly
suited for very accurate measurement of slowly varying signals.

+

-

Input
buffer

+

-

Vin (Input signal)

Reference
voltage

Binary
counter

Enable

Zero comparator

Clock

Result

Integrator

Finite state
machine

(FSM)

Clear

Discharge

Switch

Va

241

Figure 10.10: Conceptual operation of a dual-slope ADC.

10.3.3 Digital to analog conversions
There are various ways to convert digital values into analog signals. Traditional DACs might use a
combination of amplifier and resistor network to obtain analog output, as shown in the diagram below:

Figure 10.11: Conceptual operation of traditional DAC.

In some cases, when the quality of the output is not critical, we could consider simpler mechanisms for
analog output. For example, a simple PWM (Pulse Width Modulation) output could be used to drive
a small speaker for audio tone generation.

0v

Discharge

Switch

Clear

Start of
measurement

Select input Select reference

Fixed duration

Counter’s
Enable

Counter stop
here if Vin=Vref

Counter stop here
if Vin=2*VrefCounter stop here

if Vin=Vref/2

Counter stop
here if Vin=0

Variable discharge time
dependent on Vin

Constant discharge rate
based on voltage

reference

Va

+
-

Op-amp

R

-Vref

R*2

R*4

R*8

R*16

R*32

R*64

R*128

R*256

MSB

LSB

Input
Output

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

242

With a simple analog integrator (either on-chip or off-chip), we can also deploy the delta-sigma
technique to produce audio output, as shown here:

Figure 10.12: Delta-sigma DAC.

10.3.4 Other analog interface approaches
There are several different ways to connect audio/analog interfaces to digital ICs; namely:

I2S interface - For microcontroller-based products, using an external I2S audio codec IC is a common
choice. I2S are digital serial interfaces and therefore can be handled as digital peripherals. They can
also be implemented on FPGA development boards.

I2C/I3C/SPI interface – External ADC and DAC chips often use serial communication protocols such
as I2C/I3C (Inter-IC bus) or SPI (Serial Peripheral Interface). Such an arrangement is suitable for sensor
and control applications. I2C and SPI interface peripherals are widely available from various peripheral
IP providers. APB interface support is commonly available for these peripheral solutions.

PDM (Pulse Density Modulation) – In recent years, digital microphones with PDM interfaces are
becoming more common due to their low cost and simple interfaces. Similar to delta-sigma, a
microphone’s output is in serial bitstream where the density of ‘1’ indicates a higher analog value.
The PDM signals can be converted to analog values using digital filters and be implemented as digital
peripheral interfaces.

10.3.5 Connecting ADC and DAC IPs into a Cortex-M system
In instances where you license ADC or DAC IPs, these components usually provide simple digital
interfaces. To connect them to a Cortex-M system, the typical integration task includes the following
steps:

�� Adding an APB bus wrapper for various data and control registers (please note that, potentially,
additional level shifters might be needed in the bus wrapper design).

�� Adding interrupt handling logic (and registers) to handle completion of conversion or error cases.

�� Creation of software driver code and create test codes for system-level simulations.

+
-

Op amp

C

Output

Analog Integrator
A

B
A>B

Digital comparator

Digital integrator +1

-1

Input
value

Vref

1-bit DAC
signal

243

To help system-level verification, a number of EDA tool vendors offer solutions for mixed-signal
verification, including simulators that can handle Verilog and Verilog-AMS co-simulation. For example,
Cadence Virtuoso can handle co-simulation of RTL, Verilog-AMS, and wreal:

Figure 10.13: A Cadence Virtuoso demo containing a Cortex-M0 based system and mixed-signal IP (diagram in courtesy of Cadence Design Systems).

More information can be found on Cadence’s website at the links below:

https://community.cadence.com/cadence_blogs_8/b/ms/posts/arm-based-micro-controllers-using-
cadence-s-mixed-signal-solution

https://community.cadence.com/cadence_blogs_8/b/ii/posts/easing-mixed-signal-design-with-the-
arm-cortex-m0

10.4 Bringing an SoC to life – Beetle test chip case study
10.4.1 Beetle test chip overview
While Arm does not make silicon chips for sale, test chips are often built to validate new technologies.
For the engineers at Arm, because we focus on processors and IP-level development most of the time,
we don’t often see the whole detailed picture of the system design problems that our customers face.
Test chip projects give us first-hand experience of putting a complete SoC design together enabling
Arm engineers to create IP that is a better fit with what our customers really need to do the best job
for a given design.

Test chip projects can be both exciting and challenging at the same time. One of the test chip projects
that I have been involved in is called ‘Beetle.’ It uses a Cortex-M3 processor and the CoreLink SDK-
100 IoT subsystem (rebranded Corstone-100). In addition, it includes a range of peripherals, a true
random number generator (TRNG) needed for IoT security, embedded flash, an on-chip PLL, and an
integrated Bluetooth interface (Arm Cordio) - see the block diagram below:

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

244

Figure 10.14: Beetle test chip overview.

The chip package that was chosen for the project is a QFN 80 pin package (7mm x 7mm). Several
factors were considered in the selection; notably, it needs to be:

�� A representative package for low-cost IoT endpoints;

�� Suitable for Bluetooth wireless designs.

While ‘80 pins’ sounds like quite a lot of pins are available in the Beetle chip design, in practice, we are
quite tight on pin usage due to the following factors:

�� Additional pins for multiple voltage supply – since we did not integrate an on-chip DC-DC voltage
converter, we need to allocate multiple voltage supply pins for the different voltage levels used by
different parts of the chips.

�� The Cordio IP requires a number of dedicated pins for power, oscillators, and of course antenna and
RF interface.

�� Since we would like to enable all debug features to be used at any time, we did not multiplex debug
pins with functional pins.

�� Several pins are required to control test modes that expose internal signals for testing.

Figure 10.15: Beetle test chip photo.

245

On the upside, the limited pin situation is not such a problem as it may first seem because:

�� The bottom side of the chip provides a large ground connection, so we do not need to have many
ground pins; and,

�� Oscillators for the Cordio macros are also used by the processor system (shared).

10.4.2 Beetle test chip challenges
The Beetle test chip project proved to be very challenging for our designers in many ways.
For example, it is the first Arm test chip with the following features:

�� Embedded flash;

�� A built-in wireless interface (Cordio Bluetooth 4.2);

�� A TSMC 55ULP process node;

�� The CoreLink SDK-100 IoT subsystem.

The success of the chip was a really rewarding experience for the project team and everyone involved
in the Beetle.

The team was quite small, with only a few designers working on each step of the project. The planning
started Q1-2015, and the project officially kicked off in March-2015 with the system design phase.
Physical design started in the middle of May-2015, and the Beetle taped out at the beginning of
August. We had the chip working and demonstrated it at Arm TechCon 2015. (Here we would like to
thank the TSMC team for their help and a fast turnaround achieved for this project).

At the design level, one of the biggest challenges was the issue of handling supply voltage. In this
design, various supply voltages were needed for different parts of the Beetle chip; for example:

�� The logic cells use 0.9Vnom;

�� Due to time pressure and performance requirements, we used 1.2V SRAM;

�� Flash memory – 1.2V/2.5V where used for its read/write operations;

�� Cordio Bluetooth hard macro – sub-1V.

Making life a little more difficult for us, perhaps, the embedded flash macro had a strict requirement
on power-down procedures. Otherwise, it could cause permanent damage to the chip. This led to
additional design requirements for the PCB as it had to provide an input signal that would indicate
that the supply voltage was dropping. This signal is connected to the on-chip power management
control unit, which triggers an internal power control FSM to start the shutdown process. Since the
32kHz oscillator was designed to be always on, the FSM can rely on this to safely shut down the chip
before the supply voltage cuts out.

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

246

10.4.3 Beetle test chip system design
A key benefit of having a ready-to-use CoreLink SDK IoT subsystem included was envisaged as being
improved time to market, and the Beetle test chip project has proven that point without a doubt. The
CoreLink SDK-100 IoT subsystem includes the essential system design for the Cortex-M3 processor,
and in addition, it comes with the following memory system features in the package:

�� An embedded flash controller for TSMC 55ULP embedded flash;

�� An AHB flash cache for optimizing system performance when running code from flash.

The system design was also created with IoT security requirement in mind. With the TRNG IP, a secure
communication protocol stack like mbedTLS can utilize it for entropy generation, which enables better
security in session keys generation for encrypted IoT traffic. Another important aspect designed to
address IoT security requirements is the Secure firmware update and two banks of embedded flash
(128KB each) are included in the package to help support that.

To enable our software support development to start as early as possible, most parts of the beetle
test chip were also ported to FPGA to enable our software team to create software support, including
software packages and mbedOS support.

While the availability of CoreLink SDK-100 did a great deal to help the design process, there were still
several system design tasks to be accomplished at this stage, including the following:

�� Peripheral system integration;

�� Chip-level clock and reset control, including PLL integration;

�� Chip-level power management control;

�� Top-level pin assignment, pin multiplexing;

�� Cordio IP integration;

�� DFT.

Thanks to great support and teamwork from engineering groups within Arm across a number of
sites (Cambridge and Sheffield in the UK, Budapest in Hungary, Hsinchu in Taiwan, Austin in the US),
system design tasks progressed quickly and were actioned as we had planned from the start.

10.4.4 Implementation of the Beetle test chip
The Beetle test chip was implemented using a standard digital design flow and tools. Although the
chip contains wireless support, the Bluetooth IP is a hard macro, and detailed technical documents
were available to provide us with guidelines in system-level integration. The presence of the wireless
hard macro did add an additional constraint to the chip’s floor planning. For example, the hard macro
used had to be placed at the corner of the chip, and we needed to keep other, noisy IP like the PLL and
charge pump for the embedded flash away from that part of our design.

247

 Figure 10.16: Beetle test chip die photo.

10.4.5 Other related tasks
One of the goals of the beetle test chip project was to create a development board as a part of the
project for evaluation. So the project didn’t stop there after the test chip was designed and made.

Figure 10.17: Beetle development board.

While we were waiting for the test chip to be delivered, another project team was already busy on
the PCB design, and a third team had also started working on the software support. So by the time
the chip was back from manufacturing, it could be soldered on the PCB so that software testing could
begin. At the same time, a few of our engineers took the test chip samples to our ATE (Automatic
Test Equipment) laboratory to test the chip with the DFT supports (e.g., scan testing with ATE)
implemented in the chip to see if the design was working properly, while another small engineering
team was busy testing the Cordio wireless interface and Bluetooth software support.

Chapter 10 | Beyond the processor system

System-on-Chip Design with Arm® Cortex®-M processors

248

When the Beetle test chip was back from the manufacturer, we couldn’t get it to work at first,
despite the fact that the test chips had all worked during the ATE scan testing. After a few days of
head-scratching, we found that the floating pin for scan enable (for scan testing) was the cause of
the problem. While the test mode pins were tied to certain logic levels to suppress the scan testing
logic, the scan enable pin, - which was shared with a GPIO pin - , was floating and therefore causing
a metastability issue. By adding a pull-low resistor on the PCB, the chip booted up! (That was a very
nerve-wracking week for all of us in the different teams!)

The Beetle test chip is not the only Cortex-M test chip that Arm has created. Since that time, we have
designed and fabricated a series of Cortex-M test chips called Musca, using the Cortex-M33 processor
and a more recent CoreLink subsystem. These test chips and development boards have been proving
very useful for Trusted Firmware-M development projects. They are also an important way for Arm
engineers to learn about the design challenges that other chip designers face so that Arm products
can be further enhanced in the process.

249

Chapter 10 | Beyond the processor system

Software development
With contribution from Christopher
Seidl, senior marketing manager Keil MDK
and CMSIS, Arm

CHAPTER
11

System-on-Chip Design with Arm® Cortex®-M processors

252

11.1 Introduction to CMSIS (Cortex Microcontroller Software Interface Standard)
Back in Chapter 9 (Section 9.4 and 9.5), we covered the minimum software support needed to
bring up a system-level simulation. In the project created for that, a number of C header files from
the CMSIS-CORE project are used. These header files provide a low-level software interface for
applications, RTOS and middleware to access various processor level features:

�� Register definitions for the processor’s hardware blocks.

�� A range of access functions for the processor’s hardware blocks including NVIC, SysTick timer,
Instrumentation Trace Macrocell (ITM).

�� A range of functions for accessing special registers inside the processor.

�� A range of intrinsic functions for accessing special instructions.

The CMSIS-CORE project also provides a template for a microcontroller’s device driver design,
including a standardized way to define interrupt assignments, names for system exceptions and
a device’s system initialization code (e.g., SystemInit() in system_<device>.c).

Like other projects in CMSIS (Cortex Microcontroller Software Interface Standard), CMSIS-CORE is an
open-source project driven by Arm. CMSIS is a collection of multiple projects and is widely adopted by
the embedded software industry.

The CMSIS project started shortly after the arrival of Cortex-M3 based microcontrollers (Note:
Cortex-M3 was the first the Cortex-M processor). The success of Arm Cortex-M based devices
created a demand for standardization in the software development area. Engineers don’t want to cope
with different software development guidelines every time they change from one silicon vendor to
the other.

To answer this industry demand, Arm created the Cortex Microcontroller Software Interface Standard
(CMSIS). It enables consistent software layers and device support across a wide range of development
tools and microcontrollers. CMSIS is a lean software layer with little overhead and provides flexibility
to the device manufacturer in defining standard peripherals. The SoC designer can, therefore, support
the wide variations of the Cortex-M processor-based devices with this common standard.

The scope of the CMSIS project includes:

�� Reduces the learning curve, development costs, and time-to-market for developers. They can write
software faster through a variety of easy-to-use, standardized software interfaces.

�� Improves the software portability and re-usability by defining consistent software interfaces. With
its generic software libraries and interfaces, CMSIS provides a consistent software framework.

�� Provides interfaces for debug connectivity, debug peripheral views, software delivery, and device support.

253

�� Allows the usage of different compilers (such as Arm, GCC, and IAR) via its compiler independent
software layer.

CMSIS is defined in close cooperation with silicon and software vendors and provides a common
approach to interfacing to peripherals, real-time operating systems, and middleware components.
Over the years, the CMSIS project has expanded into multiple areas:

Figure 11.1: Current CMSIS projects.

SoC designers must be aware of the following CMSIS components, to create basic support for their
device in various toolchains:

�� CMSIS-CORE is a standardized API for the Cortex-M processor core and peripherals.

�� CMSIS-SVD (System View Description) describes how to display peripherals in IDEs. Create this
XML-based file to let tools display the peripherals in debuggers and to create header files with
peripheral register and interrupt definitions.

�� CMSIS-Pack is a delivery mechanism for device support and software components. Development
tools and web infrastructures use the information included in packs to extract device parameters,
software components, and evaluation board configurations.

�� CMSIS-DAP is standardized firmware for a debug probe unit (usually on a separated chip) that
connects to the Arm CoreSight Debug Access Port of your SoC design. CMSIS-DAP is well suited
for integration on low-cost evaluation boards.

Other components that you should be aware of are:

�� CMSIS-RTOS, a common API for real-time operating systems. It provides a standardized
programming interface that is portable to many RTOS and enables software components that can
work across multiple RTOS systems.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

254

�� CMSIS-Driver, a definition of peripheral driver interfaces for common peripherals such as USB,
Ethernet, SPI, and other types. Using this driver interface, middleware becomes reusable across
supported devices.

�� CMSIS-DSP, a library collection with over 60 signal processing functions.

�� CMSIS-NN, a collection of efficient neural network kernels developed to maximize the performance
and minimize the memory footprint of neural networks on the Cortex-M processor cores.

�� CMSIS-Zone, a tool that helps to describe system resources and to partition these resources into
multiple projects and execution areas. This is required for complex microcontrollers that contain
multiple cores, memory protection units, or TrustZone for Armv8-M.

An in-depth tutorial is available online that explains how to create device support for a custom device
using CMSIS and its pack delivery mechanism. You can find them here: https://arm-software.github.io/
CMSIS_5/Pack/html/createPack_DFP.html

11.2 Creating software support for multiple toolchains
11.2.1 What is needed for creating multiple toolchain support?
If you are creating a microcontroller product, your customers are likely to use a range of software
development tools, and therefore software support for multiple toolchains is essential. Fortunately, CMSIS-
CORE makes this easier, and typically, the required effort for supporting multiple toolchains is limited to:

�� Creating startup code for various toolchains – many toolchains use assembly startup code, and the
assembly language syntax is toolchain specific.

�� Creating compilation setup for various toolchains – this could be in the form of project files
for Integrated Development Environments (IDEs) or makefile for Arm Compiler / gcc in Linux
environment.

�� In creating portable source codes, avoid using compiler/toolchain specific features such as compiler
specific intrinsic/attributes. CMSIS-CORE already includes a range of intrinsic functions that is
supported across multiple toolchains, and that can be used instead. If a compiler-specific feature is
needed, you can add pre-processing macros to make the inclusion of such a feature optional so that
the source code can still be compiled by other toolchains.

For chip design project environments, Linux would often be used, and the use of a toolchain in the
command-line interface or with makefile is very common. We will look into examples of a simple
makefile for Arm Compiler 6 and gcc next.

11.2.2 Compilation with Arm Compiler 6
The project example provided in Chapter 9 demonstrates software compilation with Arm Compiler
5. Currently Arm toolchains – including Keil Microcontroller Development Kit (MDK-ARM) and Arm
Development Studio - also support Arm Compiler 6. If you are using Armv8-M processors such as

255

Cortex-M23 and Cortex-M33, Arm Compiler 6 is needed (Note: Arm Compiler 5 does not support
Armv8-M processors).

If using Arm Compiler 6, the compilation command-line needs to be changed:

�� Command name changed from armcc to armclang

�� Processor option “--cpu Cortex-M3” changed to “--target=arm-arm-none-eabi -mcpu=cortex-m3”

�� Optimization options might need to be updated (e.g., Otime in Arm Compiler 5 is not valid in Arm
Compiler 6).

A simple “makefile” for Arm Compiler 6 can be written as follows:

Makefile using Arm Compiler 6
INC_DIR1 = cmsis_include
INC_DIR2 = .
USER_DEF =
ARM_CC_OPTS = --target=arm-arm-none-eabi -mcpu=cortex-m3 -c -O3 -g -I $(INC_DIR1) -I
$(INC_DIR2)
ARM_ASM_OPTS = --cpu Cortex-M3 -g
ARM_LINK_OPTS = “--keep=startup_cm3_mcu.o(RESET)” “--first=startup_cm3_mcu.o(RESET)” \
 --force_scanlib --rw_base 0x20000000 --ro_base 0x00000000 --map

all: hello.hex hello.lst
hello.o: hello.c
 armclang $(ARM_CC_OPTS) $< -o $@

system_cm3_mcu.o: system_cm3_mcu.c
 armclang $(ARM_CC_OPTS) $< -o $@

uart_util.o: uart_util.c
 armclang $(ARM_CC_OPTS) $< -o $@

retarget_io.o: retarget_io.c RTE_Components.h
 armclang $(ARM_CC_OPTS) $< -o $@

startup_cm3_mcu.o: startup_cm3_mcu.s
 armasm $(ARM_ASM_OPTS) $< -o $@

hello.elf: hello.o system_cm3_mcu.o uart_util.o retarget_io.o startup_cm3_mcu.o
 armlink hello.o system_cm3_mcu.o uart_util.o retarget_io.o startup_cm3_mcu.o $(ARM_LINK_
OPTS) -o $@

hello.hex : hello.elf
 fromelf --vhx --8x1 $< --output $@
hello.lst : hello.elf
 fromelf -c -d -e -s $< --output $@

clean:
 rm *.o
 rm *.elf
 rm *.lst
 rm *.hex

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

256

The assembly startup code, the command-line for assembling and the linker command-lines can
remain unchanged when migrating from Arm Compiler 5 to Arm Compiler 6. However, when using
new optimization features in Arm Compiler 6, such as LTO (Link Time Optimization), both compilation
and linking options need to be updated.

11.2.3 Compilation with gcc
Another popular choice of toolchain is gcc. You can download the gcc toolchain (GNU Arm Embedded
Toolchain) for Cortex-M and Cortex-R processor from Arm’s developer website:

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/
gnu-rm

This toolchain only provides command-line tools but is sufficient for chip designers when compiling
projects for simulations. Chip vendors can also create a toolchain package for their customers by
providing an IDE built around gcc toolchain.

Unlike when using Arm Compiler 5/6, it is common to merge the compilation and link stages
when using gcc or use gcc for both compilation and linking because gcc can invoke the linker (ld)
automatically with the correct link options. Linking compiled objects using GNU linker (ld) directly
is less common as it is error-prone.

Instead of using the command-line to control memory layout as in previous Arm Compiler 5/6
examples, with gcc, we need to use a linker script to specify memory layout for the linking stage.
An example linker script can be written as follows:

/* Linker script to configure memory regions.
 * Need modifying for a specific board.
 * FLASH.ORIGIN: starting address of flash
 * FLASH.LENGTH: length of flash
 * RAM.ORIGIN: starting address of RAM bank 0
 * RAM.LENGTH: length of RAM bank 0
 */
GROUP(libgcc.a libc.a libm.a libnosys.a)

MEMORY
{
 FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x10000 /* 64KB */
 RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x8000 /* 32KB */
}

INCLUDE “sections.ld”

This linker script also pulls in a default linker script sections.ld, which defines the memory layout inside
the program image.

257

Since the assembly language syntax is different between Arm toolchain and GNU assembler, we also
need to create a startup code for gcc:

startup_cm3_mcu.S
 .syntax unified
 .arch armv7-m

 .section .stack
 .align 3

/*
// <h> Stack Configuration
// <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
// </h>
*/

 .section .stack
 .align 3
#ifdef __STACK_SIZE
 .equ Stack_Size, __STACK_SIZE
#else
 .equ Stack_Size, 0x200
#endif
 .globl __StackTop
 .globl __StackLimit
__StackLimit:
 .space Stack_Size
 .size __StackLimit, . - __StackLimit
__StackTop:
 .size __StackTop, . - __StackTop

/*
// <h> Heap Configuration
// <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
// </h>
*/

 .section .heap
 .align 3
#ifdef __HEAP_SIZE
 .equ Heap_Size, __HEAP_SIZE
#else
 .equ Heap_Size, 0
#endif
 .globl __HeapBase
 .globl __HeapLimit
__HeapBase:
 .if Heap_Size
 .space Heap_Size
 .endif
 .size __HeapBase, . - __HeapBase
__HeapLimit:
 .size __HeapLimit, . - __HeapLimit

/* Vector Table */

 .section .isr_vector
 .align 2
 .globl __isr_vector

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

258

__isr_vector:
 .long __StackTop /* Top of Stack */
 .long Reset_Handler /* Reset Handler */
 .long NMI_Handler /* NMI Handler */
 .long HardFault_Handler /* Hard Fault Handler */
 .long MemManage_Handler /* MPU Fault Handler */
 .long BusFault_Handler /* Bus Fault Handler */
 .long UsageFault_Handler /* Usage Fault Handler */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long 0 /* Reserved */
 .long SVC_Handler /* SVCall Handler */
 .long DebugMon_Handler /* Debug Monitor Handler */
 .long 0 /* Reserved */
 .long PendSV_Handler /* PendSV Handler */
 .long SysTick_Handler /* SysTick Handler */

 /* External Interrupts */
 .long GPIO0_Handler /* 16+ 0: GPIO 0 Handler */
 .long GPIO1_Handler /* 16+ 1: GPIO 1 Handler */
 .long TIMER0_Handler /* 16+ 2: Timer 0 Handler */
 .long TIMER1_Handler /* 16+ 3: Timer 1 Handler */
 .long UARTTX0_Handler /* 16+ 4: UART 0 TX Handler */
 .long UARTRX0_Handler /* 16+ 5: UART 0 RX Handler */

 .size __isr_vector, . - __isr_vector

/* Reset Handler */
 .text
 .thumb
 .thumb_func
 .align 2
 .globl Reset_Handler
 .type Reset_Handler, %function
Reset_Handler:
/* Loop to copy data from read only memory to RAM. The ranges
 * of copy from/to are specified by following symbols evaluated in
 * linker script.
 * __etext: End of code section, i.e., begin of data sections to copy from.
 * __data_start__/__data_end__: RAM address range that data should be
 * copied to. Both must be aligned to 4 bytes boundary. */

 ldr r1, =__etext
 ldr r2, =__data_start__
 ldr r3, =__data_end__

 subs r3, r2
 ble .LC1
.LC0:
 subs r3, #4
 ldr r0, [r1, r3]
 str r0, [r2, r3]
 bgt .LC0
.LC1:

#ifdef __STARTUP_CLEAR_BSS
/* This part of work usually is done in C library startup code. Otherwise,
 * define this macro to enable it in this startup.
 *
 * Loop to zero out BSS section, which uses following symbols
 * in linker script:
 * __bss_start__: start of BSS section. Must align to 4
 * __bss_end__: end of BSS section. Must align to 4

259

 */
 ldr r1, =__bss_start__
 ldr r2, =__bss_end__

 movs r0, 0
.LC2:
 cmp r1, r2
 itt lt
 strlt r0, [r1], #4
 blt .LC2
#endif /* __STARTUP_CLEAR_BSS */

#ifndef __NO_SYSTEM_INIT
 /* bl SystemInit */
 ldr r0,=SystemInit
 blx r0
#endif

 bl _start

 .pool
 .size Reset_Handler, . - Reset_Handler

/* Macro to define default handlers. Default handler
 * will be weak symbol and just dead loops. They can be
 * overwritten by other handlers */
 .macro def_default_handler handler_name
 .align 1
 .thumb_func
 .weak \handler_name
 .type \handler_name, %function
\handler_name :
 b .
 .size \handler_name, . - \handler_name
 .endm

/* System Exception Handlers */

 def_default_handler NMI_Handler
 def_default_handler HardFault_Handler
 def_default_handler MemManage_Handler
 def_default_handler BusFault_Handler
 def_default_handler UsageFault_Handler
 def_default_handler SVC_Handler
 def_default_handler DebugMon_Handler
 def_default_handler PendSV_Handler
 def_default_handler SysTick_Handler

/* IRQ Handlers */

 def_default_handler GPIO0_Handler
 def_default_handler GPIO1_Handler
 def_default_handler TIMER0_Handler
 def_default_handler TIMER1_Handler
 def_default_handler UARTRX0_Handler
 def_default_handler UARTTX0_Handler

 /*
 def_default_handler Default_Handler
 .weak DEF_IRQHandler
 .set DEF_IRQHandler, Default_Handler
 */
 .end

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

260

Please note that with GNU toolchain, there is a different between filename extension “.S” (upper case)
and “.s” (lower case). To enable preprocessing, the filename extension needs to be “.S” (upper case).

The retarget support code is different between gcc and Arm toolchain as well:

retarget.c

#include <stdio.h>
#include <sys/stat.h>

extern int stdout_putchar(int ch);

__attribute__ ((used)) int _write (int fd, char *ptr, int len)
{
 size_t i;
 for (i=0; i<len;i++)
{
 stdout_putchar((int) ptr[i]); // call character output function
}
 return len;
}

To compile the simple hello world project with gcc, the makefile can be made quite simple by merging
compilation and linking into one step:

Makefile using gcc (Arm GNU Embedded toolchain)
INC_DIR1 = cmsis_include
INC_DIR2 = .
USER_DEF =
CC_OPTS = -mthumb -mcpu=cortex-m3 -O3 -g -Otime -I $(INC_DIR1) -I $(INC_DIR2)
LINKER_SCRIPT_PATH = .
LINKER_SCRIPT = mem.ld
LINK_OPTS = -T $(LINKER_SCRIPT)

all: hello.hex hello.lst

hello.elf: hello.c system_cm3_mcu.c uart_util.c retarget.c startup_cm3_mcu.S
 arm-none-eabi-gcc $(CC_OPTS) hello.c system_cm3_mcu.c \
 uart_util.c retarget.c startup_cm3_mcu.S \
 -L $(LINKER_SCRIPT_PATH) $(LINK_OPTS) -o $@

hello.hex : hello.elf
 arm-none-eabi-objcopy -S hello.elf -O verilog $@

hello.lst : hello.elf
 arm-none-eabi-objdump -S hello.elf > $@

clean:
 rm *.o
 rm *.elf
 rm *.lst
 rm *.hex

261

11.3 Introduction of the Arm Development Studio featuring Arm Keil
 Microcontroller Development Kit (MDK)

11.3.1 Overview of Keil MDK
Unlike chip designers, microcontroller software developers often use development tools within IDEs
(Integrated Development Environments). There are several software development tools available with
IDE, and one of these products is Keil MDK (Keil was acquired by Arm in 2005). For chip designers,
it is important to test the prototypes (e.g., FPGA prototypes or engineering samples) with these IDEs
to ensure that debug and trace connections are correct, and there are no unexpected issues with
establishing debug connection to the Cortex-M processor(s).

Keil MDK is an integrated development environment (IDE) that contains compiler, editor, debugger, as
well as various utilities such as flash programming tools. Using MDK, software developers can create
embedded applications for Arm Cortex-M processor-based devices, program the application images
into the flash memories and verify their correct operations using the integrated debugger. The full
version of the Keil MDK also includes a set of middleware and two choices of IDEs.

Figure 11.2: Full packages in Keil MDK professional.

For microcontroller software developers, the user interface they are most familiar with is the µVision
IDE. From there, you can create/modify projects, edit source codes, compile codes, program the
devices, and debug the applications. The rest of this section is focused on µVision IDE, which most
microcontroller software developers use.

CMSIS support is closely integrated within the µVision IDE. For example, when creating a project,
the project wizard can utilize CMSIS-PACK to download the appropriate software packages required.
Software packs contain device support, CMSIS libraries, middleware, board support, code templates,
and example projects. These can be added any time to the toolchain. The IDE manages the provided
software components that are available for the application as building blocks.

Note: While you need to start with the IDE to set up a project, you can use the command-line
afterward to automatically build, flash, and debug your application.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

262

11.3.2 Keil MDK Installation
Keil MDK is available for Windows platform only. There are multiple versions of Keil MDK at different
price points. The free MDK-Lite edition supports devices with a code size of up to 32 kB and can be
used for professional development of commercial products. Download MDK from www.keil.com/
download. To install the product on your PC, follow the installation guide: www.keil.com/mdk5/install

After installing the Keil MDK, the CMSIS-PACK installer will start, and you need to download software
packs for the microcontroller devices you want to use. If you are a chip designer and creating your own
Cortex-M based device, then you only need to install the base CMSIS-CORE packages.

Figure 11.3: CMSIS-Pack installer startup screen.

Additional software utilities might be needed:

�� Debug probe driver - Depending on the debug probe that you are going to use, you might need to
install the correct device driver for it. The Keil MDK installation by default includes a number of
these drivers in <installation_dir>\ARM\<Segger/SiLabs/STLink/TI_XDS/ULINK>. Please double-
check the documentation that comes with your debug probe hardware to see the driver installation
requirements.

�� UART Terminal (or virtual COM port terminal) – If you want to redirect printf text message into a
UART connection and display that on your PC, you need a UART terminal program such as TeraTerm
or Putty. Since most modern PCs do not have RS232 ports anymore, you will need to get a USB-
UART adaptor, and that also has its hardware device driver to install. (Note: printf message display
using Cortex-M’s instrumentation Trace Macrocell (ITM) does not require such drivers as Keil MDK
can display the prinrf message in the debug IDE. But remember: the ITM feature is not available in
Armv6-M and Armv8-M Baseline processors).

263

Please note that there are two types of USB-UART adaptors:

�� Adaptors that provide DB9 connectors and use RS232(C) signal protocol

�� Adaptors that provide jumper wire connections and use logic level signaling (usually 3.3v but can
also be TTL compatible).

Silicon designs normally use 3.3v signaling for top-level I/O, and if RS232 signaling is needed, a
separate signal converter chip is required. Make sure that you have the right kind of USB-UART
adaptor when connecting your boards, as a direct connection between digital logic and RS232 can
result in permanent damage to the circuits.

11.3.3 Create an application
In this section, we will create a project based on a FPGA platform with a Cortex-M3 processor. Unlike
software development using microcontrollers, FPGA platforms do not have internal flash memories,
and the program is downloaded into the program RAM directly. Also, we do not have the chip-vendor
prepared software packs as in many microcontroller devices. However, many of the project flow
concepts are similar.

We go through the following steps to create an application:

1. Create a project and select the device along with the relevant CMSIS components.

2. Create and add the source code files to the project.

3. Edit the source files and add the required code.

4. Compile and link the application for downloading it to the on-chip Flash memory.

5. Debug the application and verify the correct operation.

For this project, we will create the following application files:

1. The main.c file contains the main() function that initializes essential hardware, the peripherals, and
starts the LED blinky execution.

2. The LED.c file contains functions to initialize and control the GPIO port. The LED_Initialize()
function initializes the GPIO port pin. The functions LED_On() and LED_Off() control the port pin
that interfaces to the LED.

3. The LED.h header file contains the function prototypes for the functions in LED.c and is included in
the file main.c.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

264

11.3.4 Using the project wizard to create a project
To create a blank Cortex-M3 project, we can use the project wizard, accessible from the pull-down
menu: Project → New µVision Project.

Figure 11.4: A new project.

It will then ask you where the project should be placed. For this example, we selected an empty folder
called “C:\work\CM3_Blinky_1”.

The project wizard then asks which device this project will be based on. For this project, which is
starting from scratch, the generic Cortex-M3 processor (ARMCM3) is selected.

Figure 11.5: Target select to ARMCM3.

265

The project wizard then opens the Run-Time Environment window, which allows us to include a range
of software components in the project. For the basic project that we are creating, we need the CMSIS-
CORE support and a device startup file. However, since we are creating our own startup code with
our specific vector table, only the CMSIS-CORE software component is selected, and we will add the
startup code to the project manually.

Figure 11.6: Select Run-time environment options.

If we want to include printf support in our example code, we should also include Compiler → I/O →
STDOUT [e.g., ITM/User]. The first project we demonstrate here does not require printf, so this is
not selected.

Now we have an empty project, as shown in Figure 11.7.

Figure 11.7: A blank project.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

266

You can add/modify the project’s source groups and add the source file to the project:

�� Rename a source group – single click on the name of the source group.

�� Add a new source group – right-click on the Target name (Target 1) and select “Add Group …”.

�� Add a source file to a source group - by double-click on the Source Groups.

For this example, I have modified the project to have two source groups, as shown in Figure 11.8, and
added some files to it:

Figure 11.8: Project modified to have two source groups.

11.3.5 Create and add source files
There are several ways to create and add source files to the project:

�� Create the source file in µVision IDE using File→New, write the code and “Save as” the file type
you need, and then add to the project.

�� Right click on a source group, select “Add New item to Group ‘<group name>’”

Figure 11.9: Add a new item to a source group.

267

When using the second method, the following window will appear and allow you to define the file
type and the filename.

Figure 11.10: Define file type and filename when adding a new item to a source group.

We can reuse some of the previously created projects such as startup code and system initialization
code, create the new source files (main.c, LED.c, and LED.h), and add these to the project.

Figure 11.11: Project with source files added.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

268

11.3.6 Edit the source files
We use the built-in editor in µVision to edit the source files; however, you can also use the editor of
your choice. The files are created and available in the project’s home directory. The µVision editor
includes features like code completion, dynamic syntax checking, code navigation, or function finding.
The editor margin can contain signs for bookmarks, breakpoints, error indicators, program counter,
code execution, or performance indicators.

We start with the last file LED.c and its associated header file LED.h. Based on the system-level header
file (cm3_mcu.h) created in previous chapters, the source code for LED utilities can be written using the
peripheral definitions defined in the cm3_mcu.h. The example code for LED.h is written as follows:

LED.h

#include “stdint.h” // Required for the return type of LED initialize
int32_t LED_Initialize (void); // function prototype for LED_Initialize
void LED_On (void); // function prototype for LED_On
void LED_Off (void); // function prototype for LED_Off

Here, we define the three functions that will be available to users. The actual content of the functions
is available in LED.c. Open this file and add the following code (Assuming the LED pin is GPIO 0 - pin 0):

LED.c

#include “LED.h”
#include “cm3_mcu.h”

void LED_On (void)
{
 CM3MCU_GPIO0->DATAOUT |= (0x01UL); // Set data output to 1
 return;
}
void LED_Off (void)
{
 CM3MCU_GPIO0->DATAOUT &= ~(0x01UL); // Set data output to 0
 return;
}

int32_t LED_Initialize (void)
{
 CM3MCU_GPIO0->DATAOUT &= ~(0x01UL); // Set data output to 0
 CM3MCU_GPIO0->OUTEN |= 0x1UL; // Enable bit 0 as output
 return (0);
}

The file main.c contains an endless loop that use the LED functions to toggle the LED. The toggling
delay is implemented using SysTick, which increments an integer variable SysTickCntr at 1KHz.

269

main.c

#include “cm3_mcu.h”
#include “LED.h”

volatile uint32_t SysTickCntr=0;
void TickDelay(int32_t);

int main(void)
{
 LED_Initialize();
 SysTick_Config((SystemCoreClock/1000)-1); // 1KHz Ticks
 while(1){
 LED_On();
 TickDelay(500);
 LED_Off();
 TickDelay(500);
 }; // end while
}

void TickDelay(int32_t tnum)
{
 uint32_t LastTick=0, NewTick=0, DivideCntr=0;
 LastTick = SysTickCntr;
 NewTick = LastTick;
 DivideCntr = tnum;
 while (DivideCntr>0) {
 NewTick = SysTickCntr;
 if (NewTick!=LastTick) { // SysTickCntr changed
 LastTick = NewTick;
 DivideCntr--;
 }
 }
 return;
}

void SysTick_Handler(void)
{ // Trigger at 1KHz
 SysTickCntr++;
 return;
}

11.3.7 Defining project options
Before we can compile and test our application, we need to define your project options. You can
access to project options by right-clicking on the target name on the project hierarchy window, or click
on the project option button:

Figure 11.12: Access to project options.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

270

Since this project is for our own system design, we need to tell the tool what the memory map looks
like. Therefore, in the target tab of the project option, we define the memory size for our system, as
shown in the example value in Figure 11.13:

Figure 11.13: Memory addresses and sizes in the project options.

We also need to tell the linker to use this memory layout for linking operations. This option (“Use Memory
Layout from Target Dialog”) is available in the linker option tap. (This option is not set by default).

Figure 11.14: Linker options, including the option to force the linker to use memory layout in the target dialog.

271

We can optionally define the compiler options in the C/C++ compiler options, as shown in Figure 11.15:

Figure 11.15: Compiler options, including optimization options, preprocessing flags, include paths and C/C++ coding rules.

If you are using an FPGA prototype, then there is no flash programming algorithm, and the download
option needs to be set up accordingly, as shown in Figure 11.16. To gain access to this dialog, either:

�� Click on debug option tab, then click on the “Settings” button on the right of the selected debug
probe choice, or

�� Click on the Utilities tab, then click on the “Settings” button.

Figure 11.16: Specify no flash download for FPGA projects.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

272

11.3.8 Compile the project
Once everything is in place, we can now compile and test our project. Go to Project – Build Target
and use F7 to build the application. This step compiles and links all related source files. The Build
Output window shows information about the build process. An error-free build displays program size
information, zero errors, and zero warnings:

Figure 11.17: Specify no flash download for FPGA projects.

11.3.9 Download and debug the application
The debug session can be started by hotkey “Ctrl-F5”, via a pull-down menu (Debug→Start/Stop
debug session) or by clicking on the “(d)” button in the toolbar just below the pull-down menu. By
default, the code stops at the beginning of main() when the debug session starts (this behavior is
controllable from debug options):

Figure 11.18: Debug session start screen.

273

Please note that in the debug session, the buttons in the toolbar are different from the coding screen.
You can see a description of the button by moving the mouse cursor on top of it.

Figure 11.19: Toolbar during debug session.

The µVision debugger connects to various debug/trace adapters and supports traditional features
like simple and complex breakpoints, watch windows, and execution control. Using trace, additional
features like event/exception viewers, system analyzer, execution profiler, and code coverage are
supported. Component viewer and event recorder help you to gain insight into the operation of third-
party software, such as Keil RTX.

In the Registers window, you see the content of the registers of the Cortex-M processor. The
Disassembly window shows the program execution in assembly code intermixed with the source
code (when available). When this is the active window, all debug stepping commands will then work
at the assembly level. The Call Stack + Locals window shows the function nesting and variables of the
current program location. You can use the Command window to enter debug commands.

The application has run to main and is ready to be run. If we do that now, we will see the LED toggles
at 2Hz (i.e., blinks at 1Hz). If you want to look at the toggling operations in detail, you can add a
breakpoint to the loop, such as line 12 of main.c (LED_on()). This can be done by simply left-clicking
the grey area next to this line, and you will see a red dot that shows the breakpoint set. Go to Debug
– Run or press F5 to run to this breakpoint. Use the Step function (F11) to step into the code. The
next line will be highlighted by two arrows. Step again, into the LED_On function. The scope changes,
and the LED.c file comes into the foreground. Step twice to see how the LED is lit and to go back to
main.c.

As you don’t want to step many times in the TickDelay function, use Step Over (F10) to step over this
function and stop at LED_Off. If we step into it and step out again, we will see that the LED is off.

Reset the CPU
Run (F5)
Stop

Step 1 line (F11)
Step over (F10)

Step Out (Ctrl+F11)
Run to cursor line (Ctrl+F10)

Show next statement

Command window
Disassembly window

Symbols window
Registers window
Call stack window

Watch window
Memory window Serial window

System analyzer window
Trace window
System viewer window
Toolbox

Find
Incremental find

Start/Stop debug sessions
Insert/remove breakpoint (F9)

Enable/disable breakpoint (Ctrl+F9)
Disable all breakpoints

in current target
Kill all breakpoints in

current target
Hide/show project window

Configure µVision

Show/hide windows

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

274

11.3.10 Using ITM for text message output (printf)
In Chapter 9, Section 9.4.6, we demonstrated how to redirect printf output messages to a UART
interface. You can do the same on FPGA platforms or your microcontroller designs and capture the
output messages with a USB-UART adaptor.

Instead of using a UART (since your chip might have only one usable UART, which you could, need
that for your application), you can use ITM (Instrumentation Trace Macrocell) to handle the printf text
message. The trace message output can pass through a trace connection (e.g., either SWO pin or trace
data pins) and be collected by the debug host, and then be displayed in real-time.

To use this feature:

�� The processor needs to be an Armv7-M or Armv8-M Mainline processor. (Cortex-M0/M0+/M1/
M23 processors do not support ITM).

�� A trace connection needs to be available (e.g., when using Serial-Wire debug, the TDO pin can be
switched into SWO for low-cost trace connection).

�� The debug probe and the debug environment must support ITM trace (e.g., Using Keil MDK and
ULINK2 debug probe allows us to collect trace message via the TDO pin).

To do that, several small changes are needed in the project we demonstrated before. The first
step is to include the STDOUT support in the Run-Time Environment. You can open the Run-Time
environment dialog by clicking on the button on the toolbar, as shown in Figure 11.20:

Figure 11.20: Open Manage Run-Time Environment dialog.

275

Inside the manage Run-time environment dialog, enable the STDOUT redirection to ITM, as shown in
Figure 11.21:

Figure 11.21: Adding STDOUT support in Run-Time Environment configuration.

If using a SWO trace connection, you will need to make sure the clock frequency setup is correct.

Figure 11.22: Target clock frequency setup in the project.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

276

If using the SWO that is multiplexed with the TDO pin, we must select Serial-Wire Debug mode in the
debug connection setting:

Figure 11.23: If using SWO signal for trace, select Serial-Wire debug mode so that TDO pin can be used for SWO.

Now click on the ‘Trace’ tab of the debug probe settings and enable trace. Please also double-check
that the clock frequency setting is correct.

Figure 11.24: Enable trace option.

277

Notes:

�� Starting from MDK version 5.28, there are separated clock settings for Core and Trace clocks.

�� If you find you are losing some of the trace messages, you can disable timestamp package generation
to reduce the bandwidth of the trace output. That might help avoid some of the trace data being lost.

The program main.c is then modified to generate printf messages:

main.c (for ITM printf demo)

#include “cm3_mcu.h”
#include “LED.h”
#include <stdio.h>

volatile uint32_t SysTickCntr=0;
void TickDelay(int32_t);

int main(void)
{
 uint32_t counter=0;
 LED_Initialize();
 printf (“Hello world\n”);
 SysTick_Config((SystemCoreClock/1000)-1); // 1KHz Ticks
 while(1){
 LED_On();
 TickDelay(500);
 LED_Off();
 TickDelay(500);
 counter++;
 printf(“%d\n”, counter);
 }; // end while
}

void TickDelay(int32_t tnum)
{
 uint32_t LastTick=0, NewTick=0, DivideCntr=0;
 LastTick = SysTickCntr;
 NewTick = LastTick;
 DivideCntr = tnum;
 while (DivideCntr>0) {
 NewTick = SysTickCntr;
 if (NewTick!=LastTick) { // SysTickCntr changed
 LastTick = NewTick;
 DivideCntr--;
 }
 }
 return;
}

void SysTick_Handler(void)
{ // Trigger at 1KHz
 SysTickCntr++;
 return;
}

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

278

We can now compile the project and start the debug session as before. In the debug session, before
we start the program execution, we need to open the printf display console: this is accessible from the
pull-down menu View→Serial Windows→Debug (printf) viewer:

Figure 11.25: Access to debug (printf) viewer in a debug session.

You should then be able to see the debug (printf) viewer in the bottom right-hand corner of the IDE
screen. When the program starts, you can then see the printf message being displayed in this window:

Figure 11.26: Debug (printf) viewer showing the printf message received via a trace connection.

279

11.3.11 Software development in collaborative environments
Today, development teams are distributed across various locations, often worldwide. To be able to
work on the same project, collaborative tools are used to grant access to every team member, no
matter where they are located. Currently, the most widely used tool is Git, which was established as
the version control system for the Linux kernel.

Development tools, like Keil MDK, have interfaces to Git so that developers can efficiently submit
their code to the repository and update the code base with contributions from other team members.

Git is so popular today that there are a lot of excellent tutorials out there to help you get started, and
since an in-depth introduction to Git is beyond the scope of this introductory chapter, we recommend
that you select one suitable for your needs and study the subject. It is worth bearing in mind though
before you are tempted to find other ways to collaborate that using Git is a good idea even for very
small development teams as each member has the complete repository available, in case the original
one fails for any reason and has to be recreated.

11.4 Using an RTOS
Before showing an example with RTOS, we will explore the two software concepts that can be used
for creating an embedded application.

11.4.1 RTOS software concepts
In an infinite loop design, the program runs in an endless loop. Program functions (threads) are called
from within the loop, while interrupt service routines (ISRs) perform time-critical jobs including some
data processing.

Simple embedded applications can safely be run in an endless loop. Time-critical functions, typically
triggered by hardware interrupts, are executed in an ISR that also performs the required data processing.
The main loop contains only basic operations that are not time-critical and run in the background.

In an RTOS-based design, multiple threads run in the multitasking environment provided by the real-
time operating system (RTOS). The RTOS provides inter-thread communication and time management
functions. A pre-emptive RTOS reduces the complexity of interrupt functions because high-priority
threads can perform time-critical data processing.

RTOS kernels are based on the idea of parallel execution threads (tasks). Just like in the real world,
an application usually must fulfill multiple different tasks. An RTOS-based application recreates this
model in software and makes sure that:

�� Thread priority and run-time scheduling are handled by the RTOS kernel, using a proven code base.

�� Inter-thread communication is handled using the API provided by the RTOS.

�� Larger teams can safely work on various aspects of the software. A pre-emptive multi-tasking
concept simplifies the progressive enhancement of an application as new functionality can be
added without risking the response time of more critical threads.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

280

�� Polling for interrupts is not required. Infinite loop software concepts often poll for occurred
interrupts. In contrast, RTOS kernels themselves are interrupt driven and can largely eliminate
polling. This allows the CPU to sleep or process threads more often.

�� Hard real-time requirements can be met because the RTOS kernel is usually transparent to the
interrupt system. Communication facilities can be used for IRQ-to-task communication and allow
top-half/bottom-half handling of your interrupts.

11.4.2 Using Keil RTX
The Keil RTX implements the CMSIS-RTOS API v2 as a native RTOS interface for the Cortex-M
processor-based devices. CMSIS-RTOS is one of the projects within CMSIS. It provides a common
RTOS software interface to application and middleware. The RTX is an Arm implementation of a small
RTOS kernel based on this open RTOS API standard.

While RTX RTOS is not part of CMSIS, it is an open-source project of its own, and it builds into Keil
MDK library support. Note: Software developers can include RTX in their software project for free!

Once the execution reaches main(), we use the recommended order to initialize the hardware and
start the kernel. We should implement in main() at least the following in the given order:

1. Initialization and configuration of hardware, including peripheral, memory, pin, clock, and interrupt
system.

2. Update of the system clock frequency using the CMSIS-CORE function SystemCoreClock.

3. Initialize the CMSIS-RTOS kernel using osKernelInitialize.

4. Optionally, we can create a new thread using osThreadNew, for example, app_main. In the following
example, this is used as the main thread. Alternatively, threads can also be directly created in main().
We will use this approach later in our little example project.

Start the RTOS scheduler using osKernelStart.

281

To add RTX into the project, we can enable the RTX library in the Manage Run-Time environment dialog:

Figure 11.27: Adding RTX in run-time environment option.

When using Keil RTX5, the project wizard specified that default device startup code and system
initialization must be used. Therefore, we enabled the option, and the project wizard added the default
Cortex-M3 startup code and system initialization code into the project. Since we cannot have two
versions of startup code in the project, the original startup code is removed, and the custom-defined
vector table is then transferred into the new default startup code. We also do the same for the system
initialization code.

Next, we modify the main.c to utilize the RTX kernel. In this example, we have only one thread for
toggling the LED:

main.c

#include “cm3_mcu.h”
#include “LED.h”
#include “cmsis_os2.h”

void thread_led (void *arg);

int main(void)
{
 LED_Initialize();
 osKernelInitialize(); // Initialize CMSIS-RTOS
 osThreadNew(thread_led, NULL, NULL); // create thead for thread_led
 osKernelStart(); // Start thread execution
 for (;;) {}

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

282

}

void thread_led (void *argument) {
 while(1){
 LED_On();
 osDelay(500);
 LED_Off();
 osDelay(500);
 }; // end while
}

Now we can compile the code and test it, and it should toggle the LED in the same way as the first example.

For more information on using RTX and CMSIS-RTOSv2 API, please visit:
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html

11.4.3 Optimizing memory usage
11.4.3.1 The need for RAM usage analysis
While our little program now behaves as expected, a software developer might face the problem that
the overall memory usage is too high. In RTOS based system, each thread needs to have its own stack,
and the RTOS itself also requires memory allocation for various objects (e.g., semaphores, mailboxes).
Although toolchains often have the capability to report stack usage of a function tree, there are
limitations:

�� If the code calls a library function and the library does not provide stack usage, C usage reports will
not be able to analysis the stack usage needed for the library calls.

�� If the code contains function calls to function pointers which are dynamically assigned, the
toolchain cannot determine a static call tree for stack usage analysis.

Even if the toolchain can report the RAM usage, it might not be clear how the RAM is used per thread.
The last build output should have shown a RW memory usage of roughly 3 kB. This is already quite a
lot for some devices that have a small amount of RAM. How can we reduce this? Let’s use some more
enhanced debug features to check our code.

11.4.3.2 Configure RTX for stack watermarking
Although the RTX kernel is added to the project in library form, it is still configurable, and a number
of settings can be controlled in RTX_Config.c and RTX_Config.h (you can see them in the project
hierarchy window).

The file RTX_Config.h contains a number of markups in its code comments to enable easy
configuration via a Configuration Wizard. Underneath the code window, you can see a Configuration
Wizard tab. Click on it, and you can then browse and edit each option in the file easily. In Figure 11.28,
we enable the Stack Usage Watermark feature – make sure you save this file before you recompile
the project!

283

Figure 11.28: Enabling stack usage watermark for stack size measurement in RTX.

After the project is compiled, start the debug session as usual, and the program should stop at the
beginning of main().

11.4.3.3 RTX RTOS viewer in Watch windows
After enabling the stack usage watermark feature in RTX, we can then report the stack usage of each
thread using the RTX RTOS viewer during a debug session.

The RTX RTOS viewer can be enabled in a debug session via pull-down menu View→Watch
windows→RTX RTOS. This shows some of the configuration information about the RTX kernel,
including memory configuration parameters (e.g., default stack size for threads) and states of stack
overflow detection features.

When the RTX RTOS viewer is open at the start of the application (before the OS start), this window
does not show any thread information. But once the program has run for a bit and then halted, the
RTX RTOS viewer will show the information about the threads as well as the OS kernel. Let the
program run for a while and then stop. In the RTX RTOS window, expand Threads, and then the
thread that is marked as thread_led. Observe the Stack usage:

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

284

Figure 11.29: Stack usage of each thread is shown in the RTX RTOS viewer.

Both stack values, the (currently) used one, and the maximum used one are shown in bytes. Observe
that the actual stack usage is very low. Also, the timer and the idle thread require very little stack. The
Global Dynamic Memory shows that only 360 bytes are consumed.

Previously, we have specified in the RTX_Config.h file that all objects can consume up to 4096 bytes.

285

Figure 11.30: Memory usage configuration on RTX_Config.h.

With the new information, we can now reduce the memory sizes of the RTX by editing various options
in RTX_Config.h. For example, we can:

�� Change the global dynamic memory size to only 512 bytes.

�� Reduce the stack size for Timer thread and Idle thread.

Save the file and recompile. You should see a reduction of RAM usage in your project. Do not forget to
disable the stack usage watermark feature afterward – as this can increase OS operation overhead.

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

286

11.5 Other toolchains
The example above used Arm’s toolchain and IDE for microcontroller software development, MDK.
There are multiple toolchains and IDEs available on the market for developing software for Arm
Cortex-M based processors. In Section 11.2.3, we briefly mentioned the GNU Arm Compiler, a
popular open-source toolchain available for download at: https://developer.arm.com/open-source/
gnu-toolchain/gnu-rm/downloads. Keil MDK can be used with this toolchain. For more information,
please refer to Keil documentation.

A commercial alternative to MDK is the IAR Embedded Workbench for Arm (EWARM), available at:
www.iar.com/arm

If you are looking for an open-source implementation of an Eclipse-based IDE, you might want to take
a look at GNU MCU Eclipse (https://gnu-mcu-eclipse.github.io/). This enables you to develop your
software using Linux or even Mac OS machines.

287

Chapter 11 | Software development

System-on-Chip Design with Arm® Cortex®-M processors

288

ACE (AXI Coherency Extensions) - ACE provides additional channels and
signaling to an AXI interface to support system-level cache coherency.

ADI (Arm Debug Interface) - The ADI connects a debugger to a device.
The ADI is used to access memory-mapped components in a system,
such as processors and CoreSight components. The ADI protocol
defines the physical wire protocols permitted, and the logical
programmers model.

Advanced eXtensible
Interface

See AXI

Advanced High-
performance Bus

See AHB, AHB5

Advanced Microcontroller
Bus Architecture

See AMBA

Advanced Peripheral Bus See APB

Advanced Trace Bus See ATB

AHB Access Port See AHB-AP

AHB, AHB5 (Advanced High-performance Bus) - An AMBA bus protocol that
supports pipelined operation, with the address and data phases
occurring during different clock periods. This means the address
phase of a transfer can occur during the data phase of the previous
transfer. AHB provides a subset of the functionality of the AMBA
AXI protocol. AHB5 is a specific release of AHB specification defined
in AMBA 5. See also Advanced Microcontroller Bus Architecture
(AMBA) and AHB-Lite.

AHB-AP (AHB Access Port) - An optional component of the DAP that provides
an AHB interface to a SoC. CoreSight supports access to a system
bus infrastructure using the AHB-AP in the Debug Access Port
(DAP). The AHB-AP provides an AHB master port for direct access
to system memory. Other bus protocols can use AHB bridges to map
transactions. For example, you can use AHB to AXI bridges to provide
AHB access to an AXI bus matrix. See also Debug Access Port (DAP).

AHB-Lite A subset of the AMBA 2 AHB protocol specification. It provides all
of the basic functions required by the majority of AMBA AHB slave
and master designs, particularly when used with a multi-layer AMBA
interconnect.

Glossary of terms

289

AMBA (Advanced Microcontroller Bus Architecture) - The AMBA family of
protocol specifications is the Arm open standard for on-chip buses.
AMBA provides solutions for the interconnection and management
of the functional blocks that make up a System-on-Chip (SoC).
Applications include the development of embedded systems with one
or more processors or signal processors and multiple peripherals.

APB (Advanced Peripheral Bus) - An AMBA bus protocol for ancillary or
general-purpose peripherals such as timers, UARTs, and I/O ports.
Using APB to connect to the main system bus through a system-to-
peripheral bus bridge can help reduce system power consumption.

API (Application Programming Interface)

Arm Compiler for DS-5 Arm Compiler for DS-5 is a suite of tools, together with supporting
documentation and examples, that you can use to write and build
applications for the Arm family of processors. Arm Compiler for
DS-5 supersedes RealView Compilation Tools. DS-5 has now been
superseded. See Arm Development Studio entry for information; See
also armasm, armcc, fromelf.

Arm Debug Interface See ADI

Arm instruction An instruction executed by a core that is in AArch32 Execution state
and A32 Instruction set state. A32 is a fixed-width instruction set
that uses 32-bit instruction encodings. Previously, this instruction set
was called the Arm instruction set. Arm instructions are not used in
the Cortex-M processors.

armasm The Arm assembler. This converts Arm assembly language into
machine code.

armcc The Arm compiler for C and C++ code in Arm Compiler 5. See
Development Studio 5 (DS-5) and Keil MDK.

armclang The Arm compiler for C and C++ code in Arm Compiler 6. See
Development Studio 5 (DS-5) and Keil MDK.

ATB (Advanced Trace Bus) - An AMBA bus protocol for trace data. A trace
device can use an ATB to share CoreSight capture resources. Use
AMBA ATB on first use, and ATB thereafter.

ATPG (Automatic Test Pattern Generation) - A method to create a test
vector for chip production testing based on scan chain hardware.

Automatic Test Pattern
Generation

See ATPG

Glossary of terms

System-on-Chip Design with Arm® Cortex®-M processors

290

AXI (Advanced eXtensible Interface) - An AMBA bus protocol that sets up
the rules for how different modules on a chip communicate with each
other, requiring a handshake-like procedure before all transmissions.
Having a protocol such as this allows a true “system” rather than a
“collection” of modules to be established as the protocol connects
and provides an effective medium for transfer of data between the
existing components on the chip. See also AXI Coherency Extensions
(ACE).

AXI Coherency Extensions See ACE

big-endian In the context of the Arm architecture, big-endian is defined as the
memory organization in which the least significant byte of a word is
at a higher address than the most significant byte, for example: A byte
or half-word at a word-aligned address is the most significant byte or
half-word in the word at that address. *A byte at a halfword-aligned
address is the most significant byte in the halfword at that address.

BPU (Breakpoint Unit) - A hardware unit inside the Cortex-M processor to
provide hardware comparators for breakpoint functionality. In early
Cortex-M processors like Cortex-M3 and Cortex-M4, their BPU is
also known as Flash Patch and Breakpoint unit (FPB).

breakpoint A debug event triggered by the execution of a particular instruction.
It is specified by one or both of the address of the instruction and
the state of the processor when the instruction is executed. See
Watchpoint.

Breakpoint Unit See BPU

Bus master multiplexer
(master MUX)

A bus interconnect component that allows several bus masters to
connect to a single bus slave. Typically, it has its own arbitration
logic to decide which bus master can drive the downstream bus. The
output signals are then multiplexed into a single bus by forwarding
the address and control signals from the highest priority master to
downstream AHB slaves.

Bus matrix An on-chip bus interconnect component that allows multiple bus
masters to communicate with multiple bus slaves simultaneously.

Bus slave multiplexer
(slave MUX)

A bus interconnect component that allows a bus master to connect
to multiple bus slaves by multiplexing their return read data and
response signal into a single bus for feedback to the bus master.

cacheable A memory attribute that defines whether the data is allowed to be
cached to enable faster accesses.

Glossary of terms

291

clock gating A design technique for reducing power consumption in an integrated
circuit. Gating a clock signal for a macrocell or functional block with a
control signal and using the modified clock that results to control the
operating state of the macrocell or block.

CMSIS (Cortex Microcontroller Software Interface Standard) - A collection
of software components that enables consistent device support
and simple software interfaces to the processor and its peripherals.
It is designed to simplify reuse, reduce the learning curve for
microcontroller developers, and reduce the time to market for new
devices. CMSIS has several components, including CMSIS-CORE
which contains APIs for the processor core and peripherals.

core Core is used to describe a single processing unit. In the processor
context, we can further define core as something that has exclusive
use of its own Program Counter (PC).

CoreSight ECT A modular system that supports the interaction and synchronization
of multiple triggering events with an SoC. It comprises Cross Trigger
Interface (CTI), and Cross Trigger Matrix (CTM).

Cortex Microcontroller
Software Interface Standard

See CMSIS

CoreSight ETB A Logic block that extends the information capture functionality of
a trace macrocell.

CoreSight ETM A hardware macrocell that, when connected to a processor, outputs
trace information on a trace port. The ETM provides processor driven
trace through a trace port compliant to the ATB protocol. An ETM
always supports instruction trace and might support data trace.

Cross Trigger Interface See CTI

Cross Trigger Matrix See CTM

CPSR (Current Program Status Register) – A register that holds the APSR
(Application Program Status Register) flags, the current processor
mode, interrupt disable flags, current processor state, endianness
state (on ARMv4T and later), execution state bits for the IT block (on
ARMv6T2 and later).

CTI (Cross Trigger Interface) - Part of an Embedded Cross Trigger (ECT)
device. In an ECT, the CTI provides the interface between a processor
or ETM and the CTM. The CTI enables the debug logic, ETM, and PMU,
to interact with each other and with other CoreSight components. This
is called cross triggering. For example, you can configure the CTI to
generate an interrupt when the ETM trigger event occurs.

Glossary of terms

System-on-Chip Design with Arm® Cortex®-M processors

292

CTM (Cross Trigger Matrix) - A block that controls the distribution of trigger
requests.

DAP (Debug Access Port) - A hardware block that acts as a master on
a system bus and provides access to the bus from an external
debugger. It contains a Debug Port interface for handling JTAG or
Serial Wire Debug protocols and Access Port interface, which is the
bus master.

Data Watchpoint and Trace See DWT

Debug Access Port See DAP

Default Slave A bus slave in an AHB system that is used to return a bus error
response to the bus master when a transfer to an illegal address is
detected. If the bus master is a processor, a fault exception is then
triggered, and it can deal with the error accordingly.

Design for Testing/
Testability

See DFT

Arm Development Studio A one suite tool that provides a comprehensive embedded C/C++
dedicated software development solution. Arm Development Studio
includes (1) Arm debugger and Keil µVision debugger; (2) Embedded
C/C++ Arm Compiler 6; (3) Streamline performance analyzer for
system-wide optimization on Linux, Android or bare-metal; (4)
Royalty-free CMSIS-compliant middleware blocks for MCUs; (5)
Armv7 and Armv8 Fixed Virtual Platforms for software development
without a hardware target; and (6) Graphics debugger compatible
with OpenGL ES, Vulkan and OpenCL.

DFT (Design for Testing/Testability) - Various methodologies to enable
a manufactured chip to be tested for manufacturing defects.

DS-5 Debugger An Arm software development tool that enables you to make use
of a debug agent to examine and control the execution of software
running on a debug target. Note: DS-5 has been superseded by the
Arm Development Studio.

DWT (Data Watchpoint and Trace) - A component in the Cortex-M
processors for data watchpoint, and also for processors that support
trace (Armv7-M processors, and Armv8-M processors with Main
Extension). DWT can be used for supporting data trace, event trace,
and profiling trace.

Eclipse An open-source IDE (Integrated Development Environment) that can
be configured to work with various development tools. Note: DS-5
has been superseded by the Arm Development Studio.

Glossary of terms

293

Eclipse for DS-5 Eclipse for DS-5 is based around the Eclipse IDE and provides
additional features to support the Arm development tools provided
in DS-5. See Development Studio 5 (DS-5). Note: DS-5 has been
superseded by Arm Development Studio (see entry).

Embedded Trace Buffer See ETB

Embedded Trace Macrocell See ETM

endianness The scheme that determines the order of the successive bytes of data
in a larger data structure when that structure is stored in memory.

ETB (Embedded Trace Buffer) - A logic block that extends the information
capture functionality of a trace macrocell.

ETM (Embedded Trace Macrocell) - A hardware macrocell that, when
connected to a processor, outputs trace information on a trace
port. The ETM provides processor driven trace through a trace port
compliant to the ATB protocol. An ETM always supports instruction
trace and might support data trace.

exception A mechanism to handle a fault, error event, or external notification.
For example, exceptions handle external interrupts and undefined
instructions.

exception vector When an exception occurs, the processor must execute the handler
code that corresponds to the exception. The location in memory
where the handler is stored is called the exception vector. In Arm
architectures, exception vectors are stored in a table, called the
exception vector table.

Field Programmable Gate
Array

See FPGA

Flash Patch and
Breakpoint

See FPB

FPB (Flash Patch and Breakpoint) - A hardware unit in the Cortex-M processor
that provides hardware comparators for breakpoint functionality (see
breakpoint). In Cortex-M3 and Cortex-M4 processors, these comparators
can also be used for code patching. See also BPU.

FPGA (Field Programmable Gate Array) - An integrated circuit that is
configured by a designer (hence, field-programmable) using a
hardware description language (HDL), which is similar to that used
for an Application-Specific Integrated Circuit (ASIC). FPGAs contain
programmable logic blocks, which can be configured to perform
complex combinational logic functions and reconfigured as required.

Glossary of terms

System-on-Chip Design with Arm® Cortex®-M processors

294

FPU (Floating Point Unit) - A hardware unit inside a processor for handling
floating-point data.

fromelf The Arm image conversion utility. This accepts ELF format input files and
converts them to a variety of output formats. fromelf can also generate
text information about the input image, such as code and data size.

Generic Interrupt Controller See GIC

GIC (Generic Interrupt Controller) - An exclusive block of IP that performs
critical tasks of interrupt management, prioritization, and routing.
GICs are primarily used for boosting processor efficiency and
supporting interrupt virtualization. GICs are implemented based on
Arm GIC architecture, which has evolved from GICv1 to the latest
version GICv3/v4. Arm has a number of multi-cluster CPU interrupt
controllers that provide a range of interrupt management solutions
for all types of Arm Cortex-A and Cortex-R processor systems. For
Cortex-M systems, NVIC is used instead and is integrated inside the
processor rather than as a separated component.

host A computer that provides data and other services to another
computer. In the context of an Arm debugger, a host is a computer
providing debugging services to a target being debugged.

IDAU (Implementation Defined Attribution Unit) - A customer-defined
component in Armv8-M processors system with TrustZone, in the
form of a hardware lookup table that works closely with a Security
Attribution Unit (SAU) to determine the partitioning of Secure and
Non-secure address ranges in the address space.

IDE (Integrated Development Environment) - An application running on a
debug host (e.g., a PC) to provide code editor, easy access to software
project management, the various project flows (e.g., compilation), and
debug control.

IEEE 754 A standard for floating-point data format and operations

Implementation Defined
Attribution Unit

See IDAU

Instrumentation Trace
Microcell

See ITM

Integrated Development
Environment

See IDE

interrupt A signal emitted by hardware or software to the processor, indicating
that an event needs immediate attention.

Glossary of terms

295

IRQ (interrupt requests) – Interrupts are hardware lines over which
devices can send interrupt signals to the microprocessor.

ITM (Instrumentation Trace Microcell) - A component in Armv7-M processors,
and Armv8-M processors with Main Extension, for software to generate
trace data. This can be used for redirecting debug message (e.g., printf)
and for OS awareness in debug.

Joint Test Action Group See JTAG

JTAG (Joint Test Action Group) - An IEEE group focused on silicon chip
testing methods. Many debug and programming tools use a Joint Test
Action Group (JTAG) interface port to communicate with processors.
See IEEE Std 1149.1-1990 IEEE Standard Test Access Port and
Boundary-Scan Architecture specification (available from the IEEE
Standards Association).

LEC (Logic Equivalent Checking) - A formal verification method to ensure
that the output netlist of a design from synthesis matches the original
RTL design.

little-endian In the context of the Arm architecture, little-endian is defined as the
memory organization in which the most significant byte of a word
is at a higher address than the least significant byte. See also big-
endian.

Load/Store architecture A processor architecture where data-processing operations only
operate on register contents, not directly on memory contents. The
Arm architecture is a Load/Store architecture.

Logic Equivalent Checking See LEC

MBIST (Memory Built-In Self-Test) MBIST is the industry-standard method
of testing embedded memories. It writes and reads all locations of
the RAM to ensure that the cells are operating correctly. This process
gives additional test coverage of the address and data paths that
MBIST uses.

MCU (Microcontroller Unit) - A type of general purposed SoC designed for
various types of control applications.

MDK / Keil MDK (Microcontroller Development Kit) - A development toolchain for
microcontroller software development.

Memory Built-In Self-Test See MBIST

Memory Management Unit See MMU

Memory Protection Unit See MPU

Glossary of terms

System-on-Chip Design with Arm® Cortex®-M processors

296

Micro Trace Buffer See MTB

Microcontroller
Development Kit

See MDK / Keil MDK

Microcontroller Unit See MCU

MMU (Memory Management Unit) - An MMU provides detailed control of
the memory system in Arm Cortex-A processors. Most of the control
uses translation tables that are held in memory. An MMU is the major
component of an Arm Virtual Memory System Architecture (VMSA).
Not available in Cortex-M processors, which provide MPU instead.

MPU (Memory Protection Unit) - A hardware unit that controls a limited
number of protection regions in memory. An MPU is the major
component of an Arm Protected Memory System Architecture (PMSA).

MTB (Micro Trace Buffer) - The MTB provides a simple execution trace
capability to M-series processors. It has a low-cost option for
instruction trace requirements for software development. Unlike the
Embedded Trace Macrocell (ETM) or the Program Trace Macrocell
(PTM) trace solutions, the MTB does not require a dedicated trace
connection and trace data can be collected using a JTAG or Serial Wire
Debug connection. However, the amount of trace history provided by
the MTB is limited by the size of SRAM allocated for trace operations.

Nested Vectored Interrupt
Controller

See NVIC

NMI (Non-Maskable Interrupt) - A special type of interrupt request in
Cortex-M processors. Can be used for critical interrupt events from
a watchdog timer, brown-out detector, etc.

Non-Maskable Interrupt See NMI

nTRST Abbreviation of TAP Reset. nTRST is the electronic signal that causes
the target system TAP controller to be reset. This signal is known
as nICERST in some documentation. See also nSRST and Joint Test
Action Group (JTAG).

NVIC (Nested Vectored Interrupt Controller) - A component inside a
Cortex-M processor that deals with interrupts and exceptions handling.

Operating System See OS

OS (Operating System) - Software that provides multitasking capability
and in some cases also provides access APIs for various system
functions. See also RTOS.

Glossary of terms

297

Phase-Locked Loop See PPL

PLL (Phase-Locked Loop) - A component that generates a clock signal with a
frequency ratio based on a reference clock. In microcontrollers, PLLs are
often programmable, so software developers can define the operating
frequency of the system at different stages of program execution.

Program Trace Macrocell See PTM

PTM (Program Trace Macrocell) - A real-time trace module that provides
instruction tracing of a processor.

Real-time Operating
System

See RTOS

register A processor register usually consists of a small amount of fast
storage, which in some designs can be allocated to specific hardware
functions, and may be read-only or write-only. Arm processors
provide general-purpose and special-purpose registers. Some
additional registers are available in privileged execution modes.

RTOS (Real-time Operating System) - A type of OS that can respond to
events (e.g., events caused by peripheral hardware) in a well-defined
time period.

SAU (Security Attribution Unit) - A component in Armv8-M processors
with TrustZone. This unit works together with the Implementation
Defined Attribution Unit (IDAU, configured by SoC designers) to
define the partitioning of Secure and Non-secure address ranges.

SDF back-annotation Using the timing delay values extracted from post-layout data (stored
in a SDF file) to update the netlist (‘back-annotate’ it) during a netlist
simulation.

Security Attribution Unit See SAU

Serial Wire Debug See SWD

Serial Wire Debug Port
(SW-DP):

See SW-DP

SIMD (Single Instruction, Multiple Data) - In the Arm instruction sets,
supported SIMD instructions can perform parallel operations on the
bytes or halfwords of the Arm core registers or vector operations
(i.e., they perform parallel operations on vectors held in multiword
registers). Note: Different versions of the Arm architecture support
and recommend different instructions for vector operations. See the
appropriate Arm Architecture Reference Manual for more information.

Glossary of terms

System-on-Chip Design with Arm® Cortex®-M processors

298

Single Instruction,
Multiple Data

See SIMD

SoC (System-on-Chip) - A SoC combines computer components onto a
complete electronic substrate system (the chip) that may contain
analog, digital, mixed-signal, or radio frequency functions. SoC can
be seen in contrast to motherboard-based PC architecture, which
separates the components based on function and uses a central
interfacing circuit board to connect them. SoCs integrate all these
components into a single integrated circuit that includes both the
hardware and the software. SoC designs are characterized by low-
power consumption, high levels of performance, small footprint, and
reliability when compared to equivalent multi-chip systems.

SRPG (State Retention Power Gating) - A method to reduce leakage power
of a chip design when the system is idle/inactive.

STA (Static Timing Analysis) – A type of analysis used to verify that the
output design from synthesis or placement & routing can meet the
timing requirements.

SP (Stack Pointer) On Arm cores, SP refers to the stack pointer for the
hardware-managed stack.: In AArch32 state, the SP is register R13
in the general-purpose register file. In AArch64 state, there is a
dedicated SP for each implemented Exception level.

Standard Delay Format See SDF

State Retention Power
Gating

See SRPG

Static Timing Analysis See STA

SWD (Serial Wire Debug) - A debug implementation that uses a serial
connection between the SoC and a debugger. This connection
normally requires a bidirectional data signal and a separate clock
signal, rather than the four to six signals required for a JTAG
connection.

SW-DP (Serial Wire Debug Port) - The interface for Serial Wire Debug

SWI (SoftWare Interrupt) - The SWI instruction causes a SWI exception.
This means that the processor mode changes to Supervisor, the CPSR
is saved to the Supervisor mode SPSR and execution branches to the
SWI vector

System-on-Chip See SOC

Glossary of terms

299

SysTick timer (System Tick timer) - A hardware unit in Cortex-M processor that
provides periodic interrupts for OS operations. The SysTick timer
is controlled by software, and CMSIS-Core support for Cortex-M
processor-based devices provide APIs that generate interrupt requests
on a regular basis. Example use of the SysTick timer and its interrupt
include allowing an OS to carry out context switching to support
multiple tasking. For applications where OS is not required, SysTick can
be used for timekeeping, time measurement, or as an interrupt source
for tasks that need to be executed regularly.

TAP (Test Access Port). See also TAP Controller

TAP Controller Logic on a device that enables access to some or all of that device
for debug or test purposes. The circuit functionality is defined in
IEEE1149.1. See also Joint Test Action Group (JTAG).

Target In the context of an Arm debugger, the part of your development
platform to which you connect the debugger, and on which
debugging operations can be performed. A target can be:
(1) A runnable target, such as a core that implements the Arm
architecture. When connected to a runnable target, you can perform
execution-related debugging operations on that target, such as
stepping and tracing.
(2) A non-runnable CoreSight component. CoreSight components
provide a system-wide solution to real-time debug and trace.

TCK (Test Clock) - The electronic clock signal that times data on the TAP
data lines TMS, TDI, and TDO. See also Test Data Input (TDI) and Test
Data Output (TDO).

TCM (Tightly-Coupled Memory) - An area of low latency memory that
provides predictable instruction execution or data load timing, for
cases where deterministic performance is required. TCMs are suited
to holding critical routines such as for interrupt handling scratchpad
data types whose locality is not suited to caching critical data
structures, such as interrupt stacks.

Test Clock See TCK

Tightly-Coupled Memory See TCM

TPIU (Trace Port Interface Unit) - A hardware block to convert trace data
from an ETM or other trace sources into parallel trace protocol for
trace probe to collect the data via top-level pins.

Trace Port Interface Unit See TPIU

Glossary of terms

System-on-Chip Design with Arm® Cortex®-M processors

300

TrustZone technology The hardware and software that enable the integration of enhanced
security features throughout a SoC. It is widely used in Cortex-A
processors and has been introduced to the latest Cortex-M processors
such as Cortex-M23, Cortex-M33, and Cortex-M35P.

Wake-up Interrupt
Controller

See WIC

WIC (Wakeup Interrupt Controller) - An optional component closely
coupled or built into a Cortex-M processor to generate wakeup
requests from interrupt request signal. This is used when the
processor is powered down with (e.g., with State Retention Power
Gating (SRPG)), or when all clocks to the processor logic are stopped.
The wake-up request from WIC can be used to restore power and
clock signals.

Glossary of terms

301

References
The designs in this book are based on the following AMBA specifications:

Other AMBA specifications (including older versions of AHB and APB specifications) were also mentioned:

The Cortex-M3 example system design is based on:

The Keil Microcontroller Development Kit (MDK-ARM) introduction materials in Chapter 11 are based
on version MDK-ARM 5.27. For evaluation and education, you can use Keil MDK Lite for free (code
size limited to 32KB). You can find the latest version here: http://www2.keil.com/mdk5

Several other toolchains are covered in this book:

Specifications Url

AMBA 5 AHB Protocol Specification
(ARM IHI0033B)

https://developer.arm.com/docs/ihi0033/latest/arm-amba-5-ahb-protocol-specification

AMBA APB Protocol Specification
(ARM IHI0024C)

https://developer.arm.com/docs/ihi0024/latest/amba-apb-protocol-specification

Specifications Url

AMBA 2 Specification
(ARM IHI0011A, 1999)

https://developer.arm.com/docs/ihi0011/latest/amba-specification-rev-20

AMBA 3 AHB-Lite Protocol Specification
v1.0 (ARM IHI0033A)

https://developer.arm.com/docs/ihi0033/a/amba-3-ahb-lite-protocol-specification-v10

AMBA 3 APB Protocol Specification
(ARM IHI0024B)

https://developer.arm.com/docs/ihi0024/b

AMBA 4 ATB Protocol Specification
(ARM IHI0032B)

https://developer.arm.com/docs/ihi0032/b

AMBA 3 ATB Protocol Specification
(ARM IHI0032A)

https://developer.arm.com/docs/ihi0032/a

AMBA Low-power Interface Specification
(ARM IHI0068C)

https://developer.arm.com/docs/ihi0068/latest/amba-low-power-interface-specification

Cortex-M Access

Cortex-M3 DesignStart Eval r0p0-02rel0
(functionally same as Cortex-M3 r2p1
with restrictions on configurability and
features)

https://developer.arm.com/ip-products/designstart

Arm Compiler 6 can be downloaded from: https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/
version-6

Arm Compiler 5 can be downloaded from: https://developer.arm.com/docs/ihi0024/latest/amba-apb-protocol-specification

GNU Arm Embedded Toolchain (gcc) https://developer.arm.com/tools-and-software/open-source-software/developer-tools/
gnu-toolchain/gnu-rm

System-on-Chip Design with Arm® Cortex®-M processors

System-on-Chip Design with Arm® Cortex®-M processors

302

Index

Acknowledgments xxi

Address remap 88-89

AHB AHB to APB Bridge
address phase signals
basic operations
decoders
default slave
data phase signals
handshake signals
multiple bus masters
overview of
ROM and RAM
signals
slave design rules
slave multiplexer

159-168
45-51
40-42

146-147
147-148

51
55-57
43-45

38
151-159

38-40
144-145
149-151

AMBA history of
specification
what is

36-37
37
36

APB
additional signals in APB protocol v2.0
overview of
signals and connection
simple timer
values

63-69
68
63
64

186-189
69

Arm Ecosystem xv

Arm processors 4

Arm, a brief history of xiv

ASIC implementation flow 223-224

Beetle test chip 243-248

Beyond the processor system 229-248

Breakpoints 96

Bridging AHB Lite to AHB5 168-169

303

Bus design
infrastructure components
masters

72
141-169

84

Cache integration 21

CDC 222

Clock generation
switching
system design

25-27
231-232

230

CMSIS CMSIS-PACK
CMSIS-SVD
multiple toolchain support

215
215, 252-254

215

CODE bus 79-83

Configuration options 22

Contents (Table of) vii-xiii

Corstone Foundation IP 220-221

Cortex-M processors deliverables
documentation
introduction to
memories for

7
8

11-34
13-17

Cortex-M system design 2

Cortex-M0 73-74

Cortex-M0+ 74-75

Cortex-M1 76-78

Cortex-M3 78-84

Cortex-M4 78-84

DAP 100

Debug authentication
clocks
components discovery
connections protocols
cross trigger interface
integration
interface structure

106-107, 114-116
111-113
104-105

99-100
108

30, 95-116
101-102

Index

System-on-Chip Design with Arm® Cortex®-M processors

304

Debug multi-drop serial wire support
power request
reset request
timestamp
trace connection concept
trace port connections

113-114
107
108
104

102-103
110

Design partitioning 205-206

DesignStart 7-8

DFT 224-227

Digital to analog conversion (DAC) 18, 235-243

Disclaimer xix

Embedded flash memories 91

Event interface 24-25

Exclusive access operations
support

57-60
86-87

Flash programming 91-92

Foreword xiv-xvii

FPGA 3-4

GATECLK 123

Gating clock
power

121-122
122-123

GPIO interface 180-185

Halting 200

ID registers 199-200

Instruction fetch optimizations 134

Interrupt signals 22-24

Keil Microcontroller Development
Kit (MDK) 261-278

Keil RTX (using) 280-285

Index

305

Low-power analog components
caches
clock gating opportunities
clock sources
designs
memories
support

136
135
136
135

133-134
135

119-138

Memory Cache integration
map definition
system design
TCM integration

21
18-20
20-21

21

Microcontroller-like system 204-205

Mixed-signal designs 235-243

Modelsim 217-219

Peripherals common practices
design of
simple APB peripherals

172-173
171-200
173-179

Pin assignment, top-level 31-32

Pin multiplexing 31-32

Platform Security Architecture 4

Power domains (multiple) 232-234

Power gating 232-234

Power management 31

Preface xviii

PSA 4

Putting the system together 203-227

QACTIVE 124-126

Q-channel low-power interface 124-126

QREQn 124-126

QuestaSim 217-219

References 301

Index

System-on-Chip Design with Arm® Cortex®-M processors

306

Reset generation 27-29

ROM and RAM with AHB interface 151-159

RTOS (using a) 279-280

Scope of this book, a note about xix

Security 200

Security by design 4

Simulation environments 206-207

Slave design rules, typical 144-145

Sleep hold interface
mode
status

126-127
137-138

123

Software development 251-286

Software support code based on CMSIS-CORE
compilation with Arm Compiler 6
compilation with gcc
device header file for MCU
device startup file for MCU
Keil Microcontroller Development
Kit (MDK)
Keil RTX
retargeting
system initialization function
UART utilities
toolchains, other

207-210
254-256
256-260
208-210
211-212

262-280
280-283
214-215

213
212
286

SRPG 120, 131-132

STA 223

SWO 109-110

SWV 109-110

System-level design considerations
simulation

135-138
206-215

SysTick 29-30

TBSA-M 115-116

Index

307

TCM 89-91

Trace features on Cortex-M processors 96-98

TRACECLK 110-111

TRACEDATA 110-111

UART 190-198

Verification methodologies 221-222

Wakeup Interrupt Controller (WIC) 120, 126, 128-133

Watchpoints 96

Index

System-on-Chip Design with Arm® Cortex®-M processors

308

Arm Education Media
Online Courses

Our online courses have been developed to help students learn about state-of-
the-art technologies from the Arm partner ecosystem. Each online course contains
10-14 modules, and each module comprises lecture slides with notes, interactive
quizzes, hands-on labs and lab solutions. The courses will give your students an
understanding of Arm architecture and the principles of software and hardware
system design on Arm-based platforms, skills essential for today’s computer
engineering workplace.

Contact: edumedia@arm.com

Available now:

 Efficient Embedded Systems Design and Programming

 Rapid Embedded Systems Design and Programming

 Digital Signal Processing

 Internet of Things

 Graphics and Mobile Gaming

 System-on-Chip Design

 Real-Time Operating Systems Design and Programming

 Advanced System-on-Chip Design

 Embedded Linux

 Mechatronics and Robotics

309

Introduction to System-on-Chip Design
Online Courses

The Internet of Things promises devices endowed with processing, memory,
and communication capabilities. These processing nodes will be, in effect, simple
Systems-on-Chips (SoCs). They will need to be inexpensive, and able to operate
under stringent performance, power and area constraints.

The Introduction to System-on-Chip Design Online Course focuses on building
SoCs around Arm Cortex-M0 processors, which are perfectly suited for IoT
needs. Using FPGAs as prototyping platforms, this course explores a typical SoC
development process: from creating high-level functional specifications to design,
implementation, and testing on real FPGA hardware using standard hardware
description and software programming languages.

Discover more at www.armedumedia.com

Learning outcomes:
Knowledge and understanding of
�� Arm Cortex-M processor architectures

and Arm Cortex-M based SoCs
�� Design of Arm Cortex-M based SoCs in

a standard hardware description language
�� Low-level software design for Arm Cortex-M

based SoCs and high-level application
development

Intellectual
�� Ability to use and choose between different

techniques for digital system design and
capture
�� Ability to evaluate implementation results

(e.g., speed, area, power) and correlate them
with the corresponding high-level design
and capture

Practical
�� Ability to use commercial tools to develop

Arm Cortex-M based SoCs

Course Syllabus:
Prerequisites: Basics of hardware description
language (Verilog or VHDL), Basic C, and
assembly programming.
Modules
1. Introduction to Arm-based System-on-Chip

 Design
2. The Arm Cortex-M0 Processor Architecture:

 Part 1
3. The Arm Cortex-M0 Processor Architecture:

 Part 2
4. AMBA 3 AHB-Lite Bus Architecture
5. AHB SRAM Memory Controller
6. AHB VGA Peripheral
7. AHB UART Peripheral
8. Timer, GPIO, and 7-Segment Peripherals
9. Interrupt Mechanisms
10. Programming an SoC Using C Language
11. Arm CMSIS and Software Drivers
12. Application Programming Interface and

 Final Application

System-on-Chip Design with Arm® Cortex®-M processors

System-on-Chip Design with Arm® Cortex®-M processors

310

Arm Education Media
Books

The Arm Education books program aims to take learners from foundational
knowledge and skills covered by its textbooks to expert-level mastery of
Arm-based technologies through its reference books. Textbooks are suitable
for classroom adoption in Electrical Engineering, Computer Engineering, and
related areas. Reference books are suitable for graduate students, researchers,
aspiring and practicing engineers.

Contact: edumedia@arm.com

Available now:

 Embedded Systems Fundamentals with Arm Cortex-M based
 Microcontrollers: A Practical Approach
 By Dr. Alexander G. Dean
 ISBN 978-1-911531-03-6

 Digital Signal Processing using Arm Cortex-M based
 Microcontrollers: Theory and Practice
 By Cem Ünsalan, M. Erkin Yücel, H. Deniz Gürhan
 ISBN 978-1-911531-16-6

Coming soon:

 Operating Systems Foundations with Linux
 on the Raspberry Pi
 By Wim Vanderbauwhede, and Jeremy Singer
 ISBN 978-1-911531-20-3

System-on-Chip
Design
with Arm® Cortex®-M Processors
Reference Book
The Arm® Cortex®-M processors are already one of the most popular choices for loT
and embedded applications. With Arm Flexible Access and DesignStart™, accessing Arm
Cortex-M processor IP is fast, affordable, and easy. This book introduces all the key topics
that system-on-chip (SoC) and FPGA designers need to know when integrating a Cortex-M
processor into their design, including bus protocols, bus interconnect, and peripheral designs.

9 781911 531197

Arm Education Media is a publishing operation with Arm Ltd, providing a range of educational materials for aspiring and practicing engineers.
For more information, visit: armedumedia.com

Joseph Yiu is an experienced author,
speaker and Arm Distinguished Engineer
for his work in microcontroller and
system-on-chip (SoC) design with
Arm Cortex-M processors. Specifically,
he has extensive expertise in applications

and programming, ASIC/SoC designs, verifications,
FPGA prototyping, low-power design, and production
tests. Joseph’s 20 years’ experience in microcontroller
IP design ranges from accelerated 8-bit processors to
the first Arm-based SoC projects to various Cortex-M
processors and design kits. He has held various senior
engineering roles over the course of his career, and
is currently in the IoT and embedded product team
investigating technologies for the next generation
of products, while still keeping his hand in a number
of embedded engineering projects.

Contents
1 Introduction to Arm Cortex-M
2 System design with Cortex-M
3 AMBA, AHB, and APB
4 Building simple bus systems
5 Debug integration
6 Low-power support
7 Design of bus infrastructure
 components
8 Design of simple peripherals
9 Putting the system together
10 Beyond the processor system
11 Software development

978-1-911531-19-7

