
Debug and Trace for Multicore SoCs
How to build an efficient and effective debug and trace

system for complex, multicore SoCs

William Orme September 2008

Abstract
As SoC designs become ever more complex with levels of system integration increasing, multi-
functional, multicore SoC are now the fastest growing section of ASIC/ASSP design starts.
Hence, designers are faced with three debug and trace options:

i. Bury your head in the ground, hope it will all be alright (it won't! Software will take forever
to get qualified, products will be less reliable and perform worse than the competition).

ii. Follow the old route used for simple, single core designs (massive and unnecessary cost
in gates, pins and tools and no overall system visibility).

iii. Use a joined up SoC debug and trace IP and tools solution that gives the software
developer just what he had before (nice ‘n' easy) but utilizing massive amounts of
improvements "under the hood” (work ARM has already done for designers).

This article will discuss how to implement debug and trace solutions for simpler single core
systems and more complex multicore solutions, explaining the trade-off decisions between device
costs (silicon area and pin count) and debug and optimization functionality. The article will show
the resulting benefits to the developer by example of ARM CoreSight IP on-chip.

Keeping visibility despite rising complexity

The embedded community, those that put microprocessors in everyday things such as cars,
phones, cameras, TVs, MP3 players, printers as well as the communications infrastructure the
public doesn’t get to see, knows how important it is that these products should “just work” and
preferably better than the competitors’ products. But as the SoC systems behind these continue
to increase in complexity that simple goal gets harder and harder. The challenge increases with
the rise of multicore systems.

To get systems to work well means giving engineers, all the way along the design and test cycle,
visibility in to what their systems are doing. At the modeling stage visibility is provided in the
modeling tool, however, once you move to a physical implementation the designer must include
mechanisms to provide visibility. Choosing which mechanism to provide should be a direct
response to the needs of the different engineers doing hardware bring-up, low level system
software, RTOS and OS porting, application development, system integration, performance
optimization, production test, in-field maintenance, returns failure analysis, etc. All need to be
satisfied and although their respective tools may handle and present the data in different ways,
they all rely on getting debug and trace data from the target SoC.

Making trade off decisions

The easy answer is to fit everything, give full visibility to everything happening on-chip in real
time. Most processors offer good debug and trace capabilities as do the interconnect fabrics and
if you have custom cores they can have custom debug capabilities added. A system such as the
ARM® CoreSight™ Architecture (Fig. 1) can be used to integrate all these together, handling
many of the issues of multicore SoCs. However, the costs in IP design time or licensing fees,



silicon area, pins and tools may need strong justification to fit in to tight budgets. This article takes
you through the options and reasons for fitting each element so that you, the ASIC designer or
product specifier, can decide what is obligatory or highly beneficial and what is only a-nice-to-
have or simply not needed for the engineers (listed above) working on your product over its
lifetime.

Fig.1 An SoC using the CoreSight Architecture

Run control debug

Almost all SoC designs will need to enable basic run control debug, where the core can be halted
at any instruction or data access and system state examined and changed if required. This
‘traditionally’ uses the JTAG port. However, the number of pins can now be reduced to two, using
technology such as the ARM Serial Wire Debug (one bi-directional data pin plus an externally
provided clock overlaid on TMS and TCK). Where boundary scan test is not employed or
separate debug and test JTAG ports are implemented this can save 2-5 pins (TDO, TDI, nTRST,
nSRST and RTCLK). Where boundary scan test is employed, the redundant pins can be re-
assigned when not in test mode. Where re-assignment occurs to pins for a trace port this does
not even cast a “test shadow”.

For multicore SoCs where cores are placed in multiple clock and power domains (mainly for
energy management) a traditional JTAG daisy-chain should be replaced with a system able to
maintain debug communications between the debug tool and the target, despite any individual
core being powered down or in sleep mode. The CoreSight Debug Access Port (DAP) is an



example of a bridge between the external debug clock and multiple domains for cores in the SoC
(Fig. 2). This has the secondary advantage of being able to maintain debug communications with
any core at the highest frequency supported rather the slowest frequency of all cores on a JTAG
daisy-chain. For those requiring ultra fast code download or access to memory-mapped
peripheral registers while the core is running, the ASIC designer should connect up a direct
memory access from the DAP to the system interconnect, so that the debug tool can become a
bus master on the system bus. For remote debug of in-field products or large batch testing where
a debug tool seat per device under test is unrealistic, the designer can also connect the DAP into
a processor’s peripheral map allowing the target resident software to set up its own debug and
trace configurations.

Fig.2 – Debug Connectivity for Multicore SoC

A common criteria for the debug of embedded systems is to be able to debug from reset and
through partial power cycles. This requires careful design of power domains and reset signals.
Critically, reset of the debug control register should be separated from that of the functional (non-
debug) system. Power-down can be handled in different ways such as ignoring power-down
signals when debugging or maintaining the debug logic in different power domains which are not
powered down while debugging.

For multicore systems where there is any form of inter process communication or shared memory
the ability to stop and start all cores synchronously is extremely valuable. To ensure this
synchronization is within a few cycles, a cross trigger matrix should be fitted (Fig. 2). If on the



other hand the cores have widely separated and non-interfering tasks it may be sufficient to
synchronize stopping and starting of cores with the debug tools, which will inevitably lead to 100s
of cycles of skid between cores stopping. Synchronous starting of cores can be achieved with
either a cross-triggering mechanism or via the TAP controller of each core.

Fitting multiple debug ports, one for each core, has obvious silicon and pin overheads, and leaves
the synchronization and power-down issue to be managed by the tools (which most likely they
don’t). This approach only has merit where completely different cores with separate tool chains
are employed and the re-engineering cost of sharing a single debug port with a single JTAG
emulator box are substantial higher than the costs of duplicating debug ports and debug tool
seats. This may be sufficient where two separate systems co-reside on the same piece of silicon,
but debugging both systems simultaneously is rare. An example might be an MCU plus a
dedicated DSP or data engine, where the DSP or data engine is not re-programmed by
applications, but a set of fixed functions developed independently.

How to size your trace subsystem

After run-control debug, trace is the next most important debug feature, by which I mean the
passive recording of the system execution while it is executing. This is obligatory in hard real-
time, electro-mechanical systems where halting the control system is just not an option, e.g. hard
disk drives and engine/motor control systems. However, it is also highly beneficial for debugging
any system that reacts with another system (e.g. the real world) in a data dependent or
asynchronous manner. And that covers just about any complex embedded system! Trace allows
the capture of errant corner cases that system validation pre-tapeout just could not cover. Three
other very important usage cases for trace are: performance optimization of an application;
efficiency of software and system development; and accountability – hard evidence as to the
cause, and thus responsibility for, a product failure. Choosing the level of trace has the largest
impact on the cost of implementing the on-chip debug system. The good news is that for
multicore SoCs the cost per CPU can actually be reduced. The first question to ask is: who is
going to use the trace data and with what tool?

Software trace

The simplest and cheapest form of trace is that generated by the software executing on the cores
themselves. Traditionally this data was written to an area of system memory, while a separate
task emptied and sent back the data to the debug tools via any available communication channel,
the ARM Debug Comms Channel (DCC) over JTAG being a common choice. Recent
optimizations on this approach write to a peripheral such as the CoreSight Instrumentation Trace
Macrocell (ITM) (Fig. 3) which streams the trace data direct to a trace buffer, with the benefit of
minimizing, and making deterministic, the number of cycles taken to instrument the code. It also
provides a higher bandwidth channel to allow more instrumentation points and enables very deep
off-chip buffers. The biggest drawbacks of this approach are the intrusiveness on the application
execution time and limited trace bandwidth. However, it is a good approach where all the target
resident software and the debug tools to interpret the trace data have been written with this
mechanism in mind. For multi-processing systems, instrumentation trace has the advantage of
understanding its own context (e.g. which thread am I?) and can add a higher level semantic that
is extremely useful to a software application developer. Additionally, the processor has access to
registers, such as the Performance Monitor Unit (PMU) of an ARM core, which can provide
valuable system performance profiling data. Given the relatively low implementation costs and
high potential benefits, instrumentation trace is an obvious candidate to fit in any multicore SoCs.



Fig.3 – Multiple Trace Sources Combined with a CoreSight Trace Funnel

Hardware Trace

Where more detail is required or code instrumentation is not adopted, hardware trace, such as
ARM Embedded Trace Macrocells (ETM™) is extremely popular (uptake amongst licensees of
both ARM11 and Cortex families of processors is >90%). Hardware trace, by which I mean logic
that watches the address, data and control signals within the SoC compresses that information
and emits to a trace buffer, itself can be subdivided in to three main categories:
program/instruction trace; data trace; and bus (or interconnect fabric) trace. Each of these
functions has different usage models and different costs.

Program trace is highly valuable for both hardware and software debugging and the main source
data required for many profiling tools. In terms of implementation costs program only trace
macrocells can be quite small, the ARM Cortex-M3 processor has a program trace only ETM of
~7K gates, and the data compresses well, requiring only ~1 bit/instruction/CPU thus the
bandwidth requirements for a trace port are not too high, even for a 4xCPU multicore SoC with
500 MHz - 1GHz CPU clock. Where on-chip trace buffers are implemented, a 4K RAM can hold
over 30,000 lines of assembler code execution, that’s a lot of code for an embedded developer to
review! Additionally profiling tools, such as the ARM RealView® Profiler, can continuously
process program trace data in real-time for cores up to 450 MHz for runs off several hours, even
days, if required. The addition of cycle-accurate instruction trace, useful for close correlation of
the interaction of multiple processors, increases the bandwidth to ~4 bits/instruction, substantially
increasing the required frequency and width of a trace port.



However, there are some classes of bug, where it is necessary to see the data (data addresses
and/or data values). Many process control algorithms are driven by the data and watching
parameters over time is important. Some, difficult to replicate system bugs are the result of data
coherency errors (in hardware, system configuration or software) where a trace of the data
values, or who has accessed a shared location and when, can soon track down the problem.
Several debug tools contain a powerful feature where all windows of the debugger, including
processor register and memory values, can be re-created from the trace data, allowing a
programmer to step forwards (or backwards) through code actually executed in real-time in the
real environment, showing it real (mis)behavior. Unfortunately, the cost of implementing data
trace is the highest of all: trace macrocells need to be larger, data is more difficult to compress
(data trace from an ARM ETM typically requires 1-2 bytes/instruction); trace buffers need to be
larger and trace ports faster. However, the upside of higher levels of SoC integration is that the
gates required can be squeezed in to ever smaller areas, so even high performance, multicore
systems can have data trace capabilities if required. Multiple on-chip trace buffers can be
implemented or trace ports using high speed PHYs can now support multiple gigabit lanes.
Today’s technology supports up to 6 lanes at 6 Gbit/s, enough for full, cycle-accurate
simultaneous program and data trace of three ARM cores running at ~600 MHz.

Sizing the trace port, is another key task for the ASIC designer and another trade-off decision
derived from understanding the cost of implementation versus the level of trace functionality
(described above). For multicore SoCs the best approach may be a combination of solutions. For
example by fitting three parallel Trace Funnels any subset of trace data may be sent to one of
three destinations: a very high bandwidth interface to on-chip trace buffers; a medium bandwidth
trace port to a very deep off-chip buffer; a very narrow (even single pin) interface for continuous
monitoring. This gives a trace solution that can provide for almost any usage case from hardware
fault analysis where the instruction-by-instruction code and data is recorded over a period of
1000s of cycles, through software debug and profiling of multicore code over trillions of
instructions, to a high-level application-generated trace available even from the most connectivity-
challenged end product.

Multiple Trace Sources

As with debug ports, fitting multiple trace ports, one for each core, has obvious silicon and pin
overheads. One solution is to use a CoreSight Trace Funnel that combines multiple,
asynchronous, heterogeneous trace streams into one for output via a single trace port or trace
buffer (Fig. 3). This provides better visibility, a higher bandwidth port or deeper buffer, for single
core use as well as while reducing the implementation overhead (area, pins and tools)
substantially when simultaneous trace of multiple cores is required. Furthermore this is an ideal
mechanism for extending support to any source of trace data. Other sources of trace data may
come from trace macrocells for DSPs, bus monitors, embedded logic analyzers or in-silicon
validation logic, such as synthesized assertions. The essence of the system is to provide a data
path from trace data generation through to a file on the developer’s workstation for use by the tool
that configures and displays the data for the respective trace generator,

Copyright © 2008 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd. All other trademarks are the property of their respective owners and are

acknowledged


