

PSA Storage API 1.0
Architecture & Technology Group

Document number: ARM IHI 0087

Release Quality: Release

Issue Number: 0

Confidentiality: Non-Confidential

Date of Issue: 17/06/2019

© Copyright Arm Limited 2018-2019. All rights reserved.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page ii
1.0 Release (issue 0) Non-Confidential

Contents

About this document iv

Release Information iv

Proprietary Notice v

Potential for change vii

Conventions vii
Typographical conventions vii
Numbers vii

Pseudocode descriptions vii

Assembler syntax descriptions viii

Current status and anticipated changes viii

Feedback viii
Feedback on this book viii

1 Introduction 9

1.1 Use Cases and Rationale 9

1.2 Technical Background 9

1.3 The PSA Protected Storage API 9

1.4 The PSA Internal Trusted Storage API 10

1.5 UIDs 10

1.6 Atomicity of Operations 11

1.7 Components 11

2 Requirements 12

2.1 PSA Protected Storage Requirements 12

2.2 PSA Internal Trusted Storage Requirements 12

3 Theory of Operation 13

3.1 PSA Internal Trusted Storage API 13

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page iii
1.0 Release (issue 0) Non-Confidential

3.2 PSA Cryptographic API Implementation 14

4 Reference Implementation 14

5 API Reference 14

5.1 General Definitions 14
5.1.1 psa_storage_info_t (struct) 14
5.1.2 psa_storage_create_flags_t (type) 14
5.1.3 psa_storage_uid_t (type) 15
5.1.4 PSA_STORAGE_FLAG_NONE (macro) 15
5.1.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro) 15
5.1.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro) 15
5.1.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro) 15
5.1.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro) 15
5.1.9 PSA_ERROR_INVALID_SIGNATURE (macro) 15
5.1.10 PSA_ERROR_DATA_CORRUPT (macro) 15

5.2 Internal Trusted Storage API 16
5.2.1 PSA_ITS_API_VERSION_MAJOR (macro) 16
5.2.2 PSA_ITS_API_VERSION_MINOR (macro) 16
5.2.3 psa_its_set (function) 16
5.2.4 psa_its_get (function) 17
5.2.5 psa_its_get_info (function) 17
5.2.6 psa_its_remove (function) 18

5.3 Protected Storage API 18
5.3.1 PSA_PS_API_VERSION_MAJOR (macro) 18
5.3.2 PSA_PS_API_VERSION_MINOR (macro) 18
5.3.3 psa_ps_set (function) 19
5.3.4 psa_ps_get (function) 19
5.3.5 psa_ps_get_info (function) 20
5.3.6 psa_ps_remove (function) 21
5.3.7 psa_ps_create (function) 21
5.3.8 psa_ps_set_extended (function) 22
5.3.9 psa_ps_get_support (function) 23

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page iv
1.0 Release (issue 0) Non-Confidential

About this document

Release Information

The change history table lists the changes that have been made to this document.

Date Changes

2019-02-25 Release 1.0 Beta 2

2019-06-19 Release 1.0 Rel

• The protected storage API now supports flags PSA_STORAGE_FLAG_NO_CONFIDENTIALITY and
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION

• Error values now use standard PSA error codes, which are now defined in <psa/error.h>.

• Input parameters are now separate from output parameters. There are no longer any
in/out parameters.

• Size types have been replaced with size_t instead of uint32_t.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page v
1.0 Release (issue 0) Non-Confidential

PSA Storage API

Copyright ©2018-2019 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Proprietary Notice

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of the document
accompanying this Licence (“Document”). Arm is only willing to license the Document to you on condition that
you agree to the terms of this Licence. By using or copying the Document you indicate that you agree to be
bound by the terms of this Licence. If you do not agree to the terms of this Licence, Arm is unwilling to license
this Document to you and you may not use or copy the Document.

This Document is NON-CONFIDENTIAL and any use by you is subject to the terms of this Licence between you and
Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to you under the intellectual property in
the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free,
worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the

Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)

above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

You hereby agree that the licences granted above shall not extend to any portion or function of a product that
is not itself compliant with part of the Document.

Except as expressly licensed above, you acquire no right, title or interest in any Arm technology or any intellectual
property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt,
Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope
and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page vi
1.0 Release (issue 0) Non-Confidential

EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS
OF THIS LIMITATION.

This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights,
if you are in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to you. You may terminate this Licence at any time. Upon termination of
this Licence by you or by Arm, you shall stop using the Document and destroy all copies of the Document in your
possession. Upon termination of this Licence, all terms shall survive except for the licence grants.

The Document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of the Document complies fully with any relevant export laws and regulations to assure that the
Document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.

If any of the provisions contained in this Licence conflict with any of the provisions of any click-through or signed
written agreement with Arm relating to the Document, then the click-through or signed written agreement
prevails over and supersedes the conflicting provisions of this Licence. This Licence may be translated into other
languages for convenience, and you agree that if there is any conflict between the English version of this Licence
and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm (or its
subsidiaries) in the EU, US and/or elsewhere. All rights reserved. No licence, express, implied or otherwise, is
granted to you under this Licence, to use the Arm trade marks in connection with the Document or any products
based thereon.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page vii
1.0 Release (issue 0) Non-Confidential

Potential for change

The contents of this specification are subject to change.

In particular, the following may change:

• Feature addition, modification, or removal

• Parameter addition, modification, or removal

• Numerical values, encodings, bit maps

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document

• A URL, for example http://infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font. The pseudocode language is described in the Arm Architecture
Reference Manual.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page viii
1.0 Release (issue 0) Non-Confidential

Assembler syntax descriptions

This book is not expected to contain assembler code or pseudo code examples.

Any code examples are shown in a monospace font.

Current status and anticipated changes

First draft, major changes and re-writes to be expected.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:

• The title (PSA Storage API).

• The number and release (ARM IHI 0087 1.0 Release 0).

• The page numbers to which your comments apply.

• The rule identifiers to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements

mailto:arm.psa-feedback@arm.com

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 9
1.0 Release (issue 0) Non-Confidential

1 Introduction
Arm’s Platform Security Architecture (PSA) is a holistic set of threat models, security analyses, hardware and
firmware architecture specifications, an open source firmware reference implementation, and an independent
evaluation and certification scheme. PSA provides a recipe, based on industry best practice, that allows security
to be consistently designed in, at both a hardware and firmware level.

The PSA Storage APIs described in this document are important components of the PSA that provide key/value
storage interfaces for use with device-protected storage. They describe the interface for the storage provided by
the PSA Root of Trust (the PSA Internal Trusted Storage API), as well as an interface for external protected
storage (the PSA Protected Storage API).

The PSA Internal Trusted Storage API (PSA ITS) must be implemented in the PSA Root of Trust as described in the
PSA Security Model specification.

If there are no Application Root of Trust (ARoT) services that rely on it, the PSA Protected Storage API (PS API)
may be implemented in the NSPE. Otherwise, the PS API must be implemented in the ARoT.

1.1 Use Cases and Rationale

There are two use cases covered here: secure storage for device intimate data (PSA Internal Trusted Storage),
and protection for data-at-rest (PSA Protected Storage).

PSA Internal Trust Storage aims at providing a place for devices to store their most intimate secrets, either to
ensure data privacy or data integrity. For example, a device identity key requires confidentiality, whereas an
authority public key is public data but requires integrity. Other critical values that are part of PSA services, such
as secure time values, monotonic counter values or firmware image hashes, will need trusted storage as well.

PSA Protected Storage is meant to protect larger data sets against physical attacks. It aims to provide the ability
for a firmware developer to store data onto external flash, with a promise of data-at-rest protection, including
device-bound encryption, integrity, and replay protection. It should be possible to select the appropriate
protection level, e.g. encryption only, or integrity only, or all three, depending on the threat model of the device
and the nature of its deployment.

1.2 Technical Background

Modern embedded platforms have multiple types of storage, each with different security properties.

Most embedded MCUs have on-chip flash storage that can be made inaccessible except to software running on
the MCU. If the storage is made inaccessible to software other than that of the PSA Root of Trust (PRoT), then it
can be used to store key material, replay protection values, or other data critical to the secure operation of the
device.

In addition, many platforms also have external storage that requires confidentiality, integrity, and replay
protection from attackers with physical access to the device.

By providing consistent APIs for accessing storage, NSPE and SPE software can be written in a platform-
independent manner, improving portability between PSA-supported platforms.

1.3 The PSA Protected Storage API

The PSA Protected Storage API (PS API) is the general-purpose API that most developers should use. It is
intended to be used to protect storage media that are external to the MCU package.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 10
1.0 Release (issue 0) Non-Confidential

On platforms using external storage for this API that do not provide hardware protection (such as remote
locations or tamper proof enclosures), implementations of this API should provide authenticated encryption of
the data, as well as replay protection values stored using the PSA Internal Trusted Storage API.

The API provides flags, PSA_STORAGE_FLAG_NO_CONFIDENTIALITY and PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION,
enabling the caller to request a lower level of protection.

PSA_STORAGE_FLAG_NO_CONFIDENTIALITY requests integrity but not confidentiality. For example, this might be
selected when storing other party’s public keys. This flag does not affect replay protection.

PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION requests confidentiality and integrity protection of the data as
controlled by PSA_STORAGE_FLAG_NO_CONFIDENTIALITY, but does not require the implementation to store data that
would detect replacement with a previously valid value. For all other data objects, the implementation must
ensure that the version returned is the most recently stored version.

Note This is usually achieved by creating a hash table or tree of all the file tags and storing the root in ITS.
Some implementations may only store the root and recreate the tree at boot - in which case when it
detects and error it cannot tell which file has been tampered with and must reject all attempts to
read replay protected files.

The implementation is permitted to treat these flags as indicative and to apply a higher level of protection if it
does not implement every protection class. It MUST NOT apply a lower level of protection than that selected.

However, it MUST treat the PSA_STORAGE_FLAG_WRITE_ONCE flag as definitive if it is supported.

When reporting meta data, psa_ps_get_info() should report the actual protection level applied and not the
requested level.

1.4 The PSA Internal Trusted Storage API

The PSA Internal Trusted Storage API (PITS API) is a more specialized API. Uses of this API will be less common. It
is intended to be used for assets that must be placed inside internal flash. Some examples of assets that require
this are replay protection values for external storage and keys for use by components of the PSA Root of Trust.

Storing assets that don’t fit this requirement is permissible. In fact, it is expected that many platforms will have
the PSA Protected Storage API call directly into the PSA internal Trusted Storage API. This can be done on
platforms that do not have external flash, for example.

While this document makes no requirements about the size of the storage available by this API, it is expected to
be limited, and therefore should be used for small, security critical, values.

As the Internal Storage is implicitly confidential and protected from replay, the implementation can ignore the
flags requesting lower levels of protection. However, it must honor the PSA_STORAGE_FLAG_WRITE_ONCE flag.

1.5 UIDs

uids in this API are defined as uint64_t. This is obviously much larger than would be used on any system. This
large namespace was chosen to allow Trusted Services to easily manage assets on behalf of other services.

For example, consider a PSA Crypto service running as a Trusted Service. When a service running in another
Trusted Partition requests key storage from the PSA Crypto service, the PSA Crypto service can concatenate the
partition ID of the requesting service (which is int32_t) with the key identifier (which is uint32_t) to generate
the uid of the PSA ITS entry for the key. This allows the PSA Crypto service to easily manage isolation between
the key namespaces of its various clients.

Requirements for uid:

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 11
1.0 Release (issue 0) Non-Confidential

• The value zero (0) is reserved for uids and will result in an error if passed to any of the storage API
functions.

• Each partition can use any of the non-zero uid in the full 64-bit range.

• uid namespaces are independent. Using a uid in partition A has no impact on the UIDs or data assets in
partition B.

• Data assets are always private. There is no mechanism that enables partition A to access a data asset
owned by partition B.

The implication is that the implementation cannot divide the uid range between partitions, but it must use the
partition ID in addition to the uid to identify a specific data asset.

1.6 Atomicity of Operations

In the event of power failure or other interruption of operations that modify storage, implementations of these
APIs must maintain the following properties:

Atomicity:

After the operation, the data assets of the storage service either contain the new data or are unchanged.
Atomicity should be guaranteed in all situations - such as invalid request, software crash or power cycle -
and must not result in corruption of the data assets. The only exceptions to this are situations involving
storage failures or corruption.

Consistency:

In this API, each operation is individually atomic. A multi-threaded application using this API must not be
able to observe any intermediate state in the data assets. If thread B calls the API while thread A is in the
middle of an operation that modifies a data asset, thread B must either see the state of the asset before
or the state of the asset after the operation requested by thread A.

Isolation:

A partition using the storage service cannot cause a change in the data assets belonging to a different
partition.

Durability:

When an operation that modifies storage returns to the caller, the data is persisted. System reset or
power fail at this point will not revert the data assets to the previous state.

1.7 Components

Component Description

PSA Internal Trusted
Storage API

The storage API described in this document intended for access to internal flash
memory

PSA Internal Trusted
Storage Service

A PSA Root of Trust (PRoT) Service that implements the PSA Internal Trusted
Storage API

PSA Protected Storage
API

The general-purpose storage API described in this document.

PSA Protected Storage
Service

A service, implemented either in the Application Root of Trust (ARoT) or the
NSPE, that implements the PSA Protected Storage API

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 12
1.0 Release (issue 0) Non-Confidential

Secure Partition Manager The entity in the PSA Secure Processing Environment responsible for marshalling
between the various secure services

2 Requirements

2.1 PSA Protected Storage Requirements

1. The technology and techniques used by the PSA Protected Storage Service MUST allow for frequent
writes and data updates

2. If writing to external storage, the PSA Protected Storage Service MUST provide confidentiality - unless
the caller specifically requests integrity only.

3. Confidentiality for a PSA Protected Storage service may be provided by cryptographic ciphers using
device-bound keys, a tamper resistant enclosure, or an inaccessible deployment location, depending on
the threat model of the deployed system. If using counter-based encryption, the service must ensure a
fresh key and nonce pair is used for each object instance encrypted.

4. If writing to external storage, the PSA Protected Storage Service MUST provide integrity protection
5. Integrity protection for a PSA Protected Storage service may be provided by cryptographic Message

Authentication Codes (MAC) or signatures generated using device-bound keys, a tamper resistant
enclosure, or an inaccessible deployment location, depending on the threat model of the deployed
system.

6. If writing to external storage, the PSA Protected Storage Service MUST provide replay protection by
writing replay protection values through the PSA Internal Trusted Storage API, unless the caller
specifically requests no replay protection.

7. If providing services to secure partitions, and the PSA Isolation level is 3, the PSA Protected Storage
Service MUST provide protection from one PSA partition accessing the storage assets of a different
partition

8. The PSA Protected Storage Service MUST use the partition ID information associated with each request
for its access control mechanism

9. If the PSA Protected Storage Service is providing services to other ARoT services, it MUST be
implemented inside the ARoT itself

10. If implemented inside the ARoT, the PSA Protected Storage Service MAY use helper services outside of
the ARoT to perform actual read and write operations through the external interface or file system

11. In the event of power failures or unexpected flash write failures, the implementation must attempt to
fallback to allow retention of old content.

12. The creation of a uid with value 0 (zero) must be treated as an error.

2.2 PSA Internal Trusted Storage Requirements

1. The storage underlying the PSA Internal Trusted Storage Service MUST be protected from read and
modification by attackers with physical access to the device.

2. The storage underlying the PSA Internal Trusted Storage Service MUST be protected from direct read or
write access from software partitions outside of the PSA Root of Trust (PRoT).

3. The technology and techniques used by the PSA Internal Trusted Storage Service MUST allow for
frequent writes and data updates.

4. The PSA Internal Trusted Storage Service MAY provide confidentiality using cryptographic ciphers.
5. The PSA Internal Trusted Storage Service MAY provide integrity protection using cryptographic Message

Authentication Codes (MAC) or signatures.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 13
1.0 Release (issue 0) Non-Confidential

6. The PSA Internal Trusted Storage Service MUST provide protection from one PSA partition accessing the
storage assets of a different partition.

7. The PSA Internal Trusted Storage Service MUST use the partition ID information associated with each
request for its access control mechanism.

8. The medium and methods utilized by a PSA Internal Trusted Storage Service must provide confidentiality
within the threat model of the system.

9. The medium and methods utilized by a PSA Internal Trusted Service must provide integrity within the
threat model of the system.

10. If the device supports the RECOVERABLE_PSA_ROT_DEBUG Lifecycle State, then the PSA Internal Trusted
Storage Service MUST provide confidentiality and integrity using cryptographic primitives with keys
unavailable in the RECOVERABLE_PSA_ROT_DEBUG state.

11. In the event of power failures or unexpected flash write failures, the implementation must attempt to
fallback to allow retention of old content.

12. In the extreme case of storage medium being completely non-accessible, no assurances can be made
about the availability of the old content.

13. The PSA_STORAGE_FLAG_WRITE_ONCE must be enforced when the PSA RoT Lifecycle of the device is
SECURED or NON_PSA_ROT_DEBUG. It must not be enforced when the device is in the
PSA_ROT_PROVISIONING state.

14. The creation of a uid with value 0 (zero) must be treated as an error.

3 Theory of Operation

3.1 PSA Internal Trusted Storage API

The PSA Trusted Storage Service that implements this API is not expected to replace the need for a filesystem
that resides on external storage. Instead, it’s intended to be used to interface to a small piece of storage that is
only accessible to software that is part of the PSA Root of Trust. The API can be made accessible to the Non-
Secure Processing Environment as well as the Secure Processing Environment.

Internally the PSA Trusted Storage Service should be designed such that one partition cannot access the data
owned by another partition. The method of doing this is not specified here, but one method would be to store
metadata with the data indicating the partition that owns it.

A simple use-case is described below. This is illustrative and not prescriptive.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 14
1.0 Release (issue 0) Non-Confidential

3.2 PSA Cryptographic API Implementation

Sample Storage

4 Reference Implementation
A reference implementation of PSA Internal Trusted Storage is being developed by the Trusted Firmware-M
project. The integration guide is available at https://git.trustedfirmware.org/trusted-firmware-
m.git/tree/docs/user_guides/services/tfm_sst_integration_guide.md. The reference code is available at
https://git.trustedfirmware.org/trusted-firmware-m.git/tree/secure_fw/services/secure_storage/.

5 API Reference

5.1 General Definitions

These definitions MUST be defined in the header file psa/storage_common.h.

5.1.1 psa_storage_info_t (struct)

A container for metadata associated with a specific uid.

struct psa_storage_info_t {
 size_t capacity;
 size_t size;
 psa_storage_create_flags_t flags;
};

Fields:

capacity The allocated capacity of the storage associated with a uid.

size The size of the data associated with a uid.

flags The flags set when the uid was created.

5.1.2 psa_storage_create_flags_t (type)

Flags used when creating a data entry.

typedef uint32_t psa_storage_create_flags_t;

https://git.trustedfirmware.org/trusted-firmware-m.git/tree/docs/user_guides/services/tfm_sst_integration_guide.md
https://git.trustedfirmware.org/trusted-firmware-m.git/tree/docs/user_guides/services/tfm_sst_integration_guide.md
https://git.trustedfirmware.org/trusted-firmware-m.git/tree/secure_fw/services/secure_storage/

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 15
1.0 Release (issue 0) Non-Confidential

5.1.3 psa_storage_uid_t (type)

A type for uid used for identifying data.

typedef uint64_t psa_storage_uid_t;

5.1.4 PSA_STORAGE_FLAG_NONE (macro)

#define PSA_STORAGE_FLAG_NONE 0u

No flags to pass.

5.1.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro)

#define PSA_STORAGE_FLAG_WRITE_ONCE (1u << 0)

The data associated with the uid will not be able to be modified or deleted. Intended to be used to set bits in
psa_storage_create_flags_t.

5.1.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro)

#define PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (1u << 1)

The data associated with the uid is public and therefore does not require confidentiality. It therefore only needs
to be integrity protected.

5.1.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro)

#define PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (1u << 2)

The data associated with the uid does not require replay protection. This may permit faster storage - but it
permits an attacker with physical access to revert to an earlier version of the data.

5.1.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro)

#define PSA_STORAGE_SUPPORT_SET_EXTENDED (1u << 0)

Flag indicating that psa_ps_create and psa_ps_set_extended are supported.

PSA storage specific error codes.

5.1.9 PSA_ERROR_INVALID_SIGNATURE (macro)

A PSA storage specific error code.

#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)

The signature on the data is invalid.

5.1.10 PSA_ERROR_DATA_CORRUPT (macro)

A PSA storage specific error code.

#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

The data on the underlying storage is corrupt.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 16
1.0 Release (issue 0) Non-Confidential

5.2 Internal Trusted Storage API

These definitions MUST be defined in the header file psa/internal_trusted_storage.h.

5.2.1 PSA_ITS_API_VERSION_MAJOR (macro)

#define PSA_ITS_API_VERSION_MAJOR 1

The major version number of the PSA ITS API. It will be incremented on significant updates that may include
breaking changes.

5.2.2 PSA_ITS_API_VERSION_MINOR (macro)

#define PSA_ITS_API_VERSION_MINOR 0

The minor version number of the PSA ITS API. It will be incremented in small updates that are unlikely to include
breaking changes.

5.2.3 psa_its_set (function)

Create a new, or modify an existing, uid/value pair.

psa_status_t psa_its_set(psa_storage_uid_t uid,
 size_t data_length,
 const void * p_data,
 psa_storage_create_flags_t create_flags);

Parameters:

uid The identifier for the data.

data_length The size in bytes of the data in p_data.

p_data A buffer containing the data.

create_flags The flags that the data will be stored with.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was already created
with PSA_STORAGE_FLAG_WRITE_ONCE.

PSA_ERROR_NOT_SUPPORTED The operation failed because one or more of the flags provided in
create_flags is not supported or is not valid.

PSA_ERROR_INSUFFICIENT_STORAGE The operation failed because there was insufficient space on the storage
medium.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_INVALID_ARGUMENT The operation failed because one of the provided pointers (p_data) is invalid,
for example is NULL or references memory the caller cannot access.

Description:

Stores data in the internal storage.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 17
1.0 Release (issue 0) Non-Confidential

5.2.4 psa_its_get (function)

Retrieve data associated with a provided UID.

psa_status_t psa_its_get(psa_storage_uid_t uid,
 size_t data_offset,
 size_t data_size,
 void * p_data,
 size_t * p_data_length);

Parameters:

uid The uid value.

data_offset The starting offset of the data requested.

data_size The amount of data requested.

p_data On success, the buffer where the data will be placed.

p_data_length On success, this will contain size of the data placed in p_data.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found in the
storage.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_INVALID_ARGUMENT The operation failed because one of the provided arguments(p_data,
p_data_length) is invalid, for example is NULL or references memory the
caller cannot access. In addition, this can also happen if data_offset is larger
than the size of the data associated with uid.

Description:

Retrieves up to data_size bytes of the data associated with uid, starting at data_offset bytes from the beginning
of the data. Upon successful completion, the data will be placed in the p_data buffer, which must be at least
data_size bytes in size. The length of the data returned will be in p_data_length. If data_size is 0, the contents
of p_data_length will be set to zero.

5.2.5 psa_its_get_info (function)

Retrieve the metadata about the provided uid.

psa_status_t psa_its_get_info(psa_storage_uid_t uid,
 struct psa_storage_info_t * p_info);

Parameters:

uid The uid value.

p_info A pointer to the psa_storage_info_t struct that will be populated with the
metadata.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 18
1.0 Release (issue 0) Non-Confidential

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found in the
storage.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_INVALID_ARGUMENT The operation failed because one of the provided pointers (p_info) is invalid,
for example is NULL or references memory the caller cannot access.

Description:

Retrieves the metadata stored for a given uid as a psa_storage_info_t structure.

5.2.6 psa_its_remove (function)

Remove the provided key and its associated data from the storage.

psa_status_t psa_its_remove(psa_storage_uid_t uid);

Parameters:

uid The uid value.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_INVALID_ARGUMENT The operation failed because one or more of the given arguments were
invalid (null pointer, wrong flags and so on).

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided key value was not found in the
storage.

PSA_ERROR_NOT_PERMITTED The operation failed because the provided key value was created with
PSA_STORAGE_FLAG_WRITE_ONCE.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

Description:

Deletes the data from internal storage.

5.3 Protected Storage API

These definitions MUST be defined in the header file psa/protected_storage.h.

5.3.1 PSA_PS_API_VERSION_MAJOR (macro)

#define PSA_PS_API_VERSION_MAJOR 1

The major version number of the PSA PS API. It will be incremented on significant updates that may include
breaking changes.

5.3.2 PSA_PS_API_VERSION_MINOR (macro)

#define PSA_PS_API_VERSION_MINOR 0

The minor version number of the PSA PS API. It will be incremented in small updates that are unlikely to include
breaking changes.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 19
1.0 Release (issue 0) Non-Confidential

5.3.3 psa_ps_set (function)

Create a new or modify an existing key/value pair.

psa_status_t psa_ps_set(psa_storage_uid_t uid,
 size_t data_length,
 const void * p_data,
 psa_storage_create_flags_t create_flags);

Parameters:

uid The identifier for the data.

data_length The size in bytes of the data in p_data.

p_data A buffer containing the data.

create_flags The flags indicating the properties of the data.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was already created
with PSA_STORAGE_FLAG_WRITE_ONCE.

PSA_ERROR_INVALID_ARGUMENT The operation failed because one or more of the given arguments were
invalid.

PSA_ERROR_NOT_SUPPORTED The operation failed because one or more of the flags provided in
create_flags is not supported or is not valid.

PSA_ERROR_INSUFFICIENT_STORAGE The operation failed because there was insufficient space on the storage
medium.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

Description:

The newly created asset has a capacity and size that are equal to data_length.

5.3.4 psa_ps_get (function)

Retrieve data associated with a provided uid.

psa_status_t psa_ps_get(psa_storage_uid_t uid,
 size_t data_offset,
 size_t data_size,
 void * p_data,
 size_t * p_data_length);

Parameters:

uid The uid value.

data_offset The starting offset of the data requested.

data_size The amount of data requested.

p_data On success, the buffer where the data will be placed.

p_data_length On success, will contain size of the data placed in p_data.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 20
1.0 Release (issue 0) Non-Confidential

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_INVALID_ARGUMENT The operation failed because one of the provided arguments(p_data,
p_data_length) is invalid, for example is NULL or references memory the
caller cannot access. In addition, this can also happen if data_offset is larger
than the size of the data associated with uid.

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found in the
storage.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

PSA_ERROR_DATA_CORRUPT The operation failed because of an authentication failure when attempting
to get the key.

PSA_ERROR_INVALID_SIGNATURE The operation failed because the data associated with the uid failed
authentication.

Description:

Retrieves up to data_size bytes of the data associated with uid, starting at data_offset bytes from the beginning
of the data. Upon successful completion, the data will be placed in the p_data buffer, which must be at least
data_size bytes in size. The length of the data returned will be in p_data_length. If data_size is 0, the contents
of p_data_length will be set to zero.

5.3.5 psa_ps_get_info (function)

Retrieve the metadata about the provided uid.

psa_status_t psa_ps_get_info(psa_storage_uid_t uid,
 struct psa_storage_info_t * p_info);

Parameters:

uid The identifier for the data.

p_info A pointer to the psa_storage_info_t struct that will be populated with the
metadata.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_INVALID_ARGUMENT The operation failed because one or more of the given arguments were
invalid (null pointer, wrong flags and so on).

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found in the
storage.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

PSA_ERROR_DATA_CORRUPT The operation failed because of an authentication failure when attempting
to get the key.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 21
1.0 Release (issue 0) Non-Confidential

PSA_ERROR_INVALID_SIGNATURE The operation failed because the data associated with the uid failed
authentication.

Description:

Retrieves the metadata stored for a given uid as a psa_storage_info_t structure.

5.3.6 psa_ps_remove (function)

Remove the provided uid and its associated data from the storage.

psa_status_t psa_ps_remove(psa_storage_uid_t uid);

Parameters:

uid The identifier for the data to be removed.

Returns: psa_status_t

A status indicating the success/failure of the operation.

PSA_SUCCESS The operation completed successfully.

PSA_ERROR_INVALID_ARGUMENT The operation failed because one or more of the given arguments were
invalid (null pointer, wrong flags and so on).

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found in the
storage.

PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was created with
PSA_STORAGE_FLAG_WRITE_ONCE.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

Description:

Removes previously stored data and any associated metadata, including rollback protection data.

5.3.7 psa_ps_create (function)

psa_status_t psa_ps_create(psa_storage_uid_t uid,
 size_t capacity,
 psa_storage_create_flags_t create_flags);

Parameters:

uid A unique identifier for the asset.

capacity The allocated capacity, in bytes, of the uid.

create_flags Flags indicating properties of the storage.

Returns: psa_status_t

PSA_SUCCESS The storage was successfully reserved.

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatal error).

PSA_ERROR_INSUFFICIENT_STORAGE capacity is bigger than the current available space.

PSA_ERROR_NOT_SUPPORTED The function is not implemented or one or more create_flags are not
supported.

PSA_ERROR_INVALID_ARGUMENT uid was 0 or create_flags specified flags that are not defined in the API.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 22
1.0 Release (issue 0) Non-Confidential

PSA_ERROR_GENERIC_ERROR The operation has failed due to an unspecified error.

PSA_ERROR_ALREADY_EXISTS Storage for the specified uid already exists.

Description:

Reserves storage for the specified uid. Upon success, the capacity of the storage is capacity, and the size is 0.

It is only necessary to call this function for assets that will be written with the psa_ps_set_extended function. If
only the psa_ps_set function is needed, calls to this function are redundant.

This function cannot be used to replace an existing asset, and attempting to do so will return
PSA_ERROR_ALREADY_EXISTS.

If the PSA_STORAGE_FLAG_WRITE_ONCE flag is passed, psa_ps_create will return PSA_ERROR_NOT_SUPPORTED.

This function is optional. Consult the documentation of your chosen platform to determine if it is implemented,
or perform a call to psa_ps_get_support. This function must be implemented if psa_ps_get_support returns
PSA_STORAGE_SUPPORT_SET_EXTENDED.

5.3.8 psa_ps_set_extended (function)

psa_status_t psa_ps_set_extended(psa_storage_uid_t uid,
 size_t data_offset,
 size_t data_length,
 const void * p_data);

Parameters:

uid The unique identifier for the asset.

data_offset Offset within the asset to start the write.

data_length The size in bytes of the data in p_data to write.

p_data Pointer to a buffer which contains the data to write.

Returns: psa_status_t

PSA_SUCCESS The asset exists, the input parameters are correct and the data is correctly
written in the physical storage.

PSA_ERROR_STORAGE_FAILURE The data was not written correctly in the physical storage.

PSA_ERROR_INVALID_ARGUMENT The operation failed because one or more of the preconditions listed above
regarding data_offset, size, or data_length was violated.

PSA_ERROR_DOES_NOT_EXIST The specified uid was not found.

PSA_ERROR_NOT_SUPPORTED The implementation of the API does not support this function.

PSA_ERROR_GENERIC_ERROR The operation failed due to an unspecified error.

PSA_ERROR_DATA_CORRUPT The operation failed because the existing data has been corrupted.

PSA_ERROR_INVALID_SIGNATURE The operation failed because the existing data failed authentication (MAC
check failed).

PSA_ERROR_NOT_PERMITTED The operation failed because it was attempted on an asset which was
written with the flag PSA_STORAGE_FLAG_WRITE_ONCE.

Description:

Sets partial data into an asset based on the given identifier, data_offset, data length and p_data.

ARM IHI 0087 Copyright © 2018 - 2019 Arm Limited or its affiliates. All rights reserved. Page 23
1.0 Release (issue 0) Non-Confidential

Before calling this function, the storage must have been reserved with a call to psa_ps_create. It can also be
used to overwrite data in an asset that was created with a call to psa_ps_set.

Calling this function with data_length = 0 is permitted. This makes no change to the stored data.

This function can overwrite existing data and/or extend it up to the capacity for the uid specified in
psa_ps_create, but cannot create gaps. That is, it has preconditions:

• data_offset <= size
• data_offset + data_length <= capacity

and postconditions:

• size = max(size, data_offset + data_length)
• capacity unchanged.

This function is optional. Consult the documentation of your chosen platform to determine if it is implemented,
or perform a call to psa_ps_get_support. This function must be implemented if psa_ps_get_support returns
PSA_STORAGE_SUPPORT_SET_EXTENDED.

5.3.9 psa_ps_get_support (function)

uint32_t psa_ps_get_support(void);

Returns: uint32_t

Description:

Returns a bitmask with flags set for all of the optional features supported by the implementation.

Currently defined flags are limited to:

• PSA_STORAGE_SUPPORT_SET_EXTENDED

	About this document
	Release Information
	Proprietary Notice
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Pseudocode descriptions
	Assembler syntax descriptions
	Current status and anticipated changes
	Feedback
	Feedback on this book

	1 Introduction
	1.1 Use Cases and Rationale
	1.2 Technical Background
	1.3 The PSA Protected Storage API
	1.4 The PSA Internal Trusted Storage API
	1.5 UIDs
	1.6 Atomicity of Operations
	1.7 Components

	2 Requirements
	2.1 PSA Protected Storage Requirements
	2.2 PSA Internal Trusted Storage Requirements

	3 Theory of Operation
	3.1 PSA Internal Trusted Storage API
	3.2 PSA Cryptographic API Implementation

	4 Reference Implementation
	5 API Reference
	5.1 General Definitions
	5.1.1 psa_storage_info_t (struct)
	5.1.2 psa_storage_create_flags_t (type)
	5.1.3 psa_storage_uid_t (type)
	5.1.4 PSA_STORAGE_FLAG_NONE (macro)
	5.1.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro)
	5.1.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro)
	5.1.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro)
	5.1.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro)
	5.1.9 PSA_ERROR_INVALID_SIGNATURE (macro)
	5.1.10 PSA_ERROR_DATA_CORRUPT (macro)

	5.2 Internal Trusted Storage API
	5.2.1 PSA_ITS_API_VERSION_MAJOR (macro)
	5.2.2 PSA_ITS_API_VERSION_MINOR (macro)
	5.2.3 psa_its_set (function)
	5.2.4 psa_its_get (function)
	5.2.5 psa_its_get_info (function)
	5.2.6 psa_its_remove (function)

	5.3 Protected Storage API
	5.3.1 PSA_PS_API_VERSION_MAJOR (macro)
	5.3.2 PSA_PS_API_VERSION_MINOR (macro)
	5.3.3 psa_ps_set (function)
	5.3.4 psa_ps_get (function)
	5.3.5 psa_ps_get_info (function)
	5.3.6 psa_ps_remove (function)
	5.3.7 psa_ps_create (function)
	5.3.8 psa_ps_set_extended (function)
	5.3.9 psa_ps_get_support (function)

