

Arm® Platform Security Architecture
Security Model 1.0

Architecture & Technology Group

Document number: DEN 0079

Release Quality: Alpha

Release Number: 2

Confidentiality Non-Confidential

Date of Issue: 21/02/2019

© Copyright Arm Limited 2017-2019. All rights reserved.

Abstract

Summary

This document defines the overall security model for Platform Security Architecture (PSA) compliant devices.

The PSA Security Model (SM) defines the key goals for designing devices with essential security properties. It ties
together the entities, capabilities and processes required to deploy secure services across the IoT.

The PSA SM is primarily concerned with robustness requirements, expressed in this document as robustness
rules. Interfaces and technical implementation requirements for the hardware and software services and
features identified by the PSA SM will be specified in separate technical specifications.

Purpose

There needs to be mutual trust between devices and Cloud Service Providers (CSP).

The PSA Security Model defines the foundation for establishing that trust by:

• Defining the security capabilities that CSPs can rely upon

• Providing technical input for the business commitment between different ecosystem entities

• Establishing common technical definitions and terminology

Target audience

Security communities in service providers, silicon design and manufacture, and end product design and
manufacture

Product security architects

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page ii
1.0 Alpha Release 2 Non-Confidential

Contents

About this document v

Release Information v

Non-Confidential Proprietary Notice vi

Document outline viii

Potential for change viii

Conventions ix
Typographical conventions ix
Numbers ix

Pseudocode descriptions ix

Assembler syntax descriptions ix

Rules-based writing x
Identifiers x
Examples x

Current status and anticipated changes x

Feedback x
Feedback on this book xi

Open issues xi

1 Overview (informative) 12

1.1 PSA overview 12

1.2 PSA ecosystem 13

1.3 PSA SM security goals 15

1.4 Generic PSA device model 18

2 PSA Root of Trust 21

2.1 Overview (informative) 21

2.2 Isolation (mandatory) 23

2.3 Trusted subsystems (mandatory) 24

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page iii
1.0 Alpha Release 2 Non-Confidential

2.4 PSA Root of Trust services (mandatory) 26

2.5 PSA RoT secrets, identities, and other parameters (informative) 27

2.6 Hardware security features (mandatory) 29

2.7 Hardware robustness rules (mandatory) 29

3 PSA security lifecycle 30

3.1 PSA security lifecycle overview (informative) 30

3.2 Manufacture and Factory Provisioning (mandatory) 31

3.3 Debug and Repairs (mandatory) 31

3.4 Generic PSA security lifecycle (mandatory) 34
3.4.1 Main States 35
3.4.2 Rules 36

3.5 Device types and properties (informative) 37

4 Boot 39

4.1 General (informative) 39

4.2 Image signing and validation (mandatory) 40

4.3 Component measurements (mandatory) 42

4.4 System reset (mandatory) 42

4.5 System hibernation (optional) 43

4.6 System suspend (optional) 43

4.7 Anti-rollback (mandatory) 44

4.8 Boot State (mandatory) 46
4.8.1 Temporal Isolation 46
4.8.2 Initial boot state 47
4.8.3 Main boot state 48
4.8.4 Measured trusted subsystems (mandatory) 49

4.9 Validation and supply chains (informative) 49
4.9.1 Single Signer 50
4.9.2 Delegated signers 50
4.9.3 Signer revocation 51

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page iv
1.0 Alpha Release 2 Non-Confidential

5 Initial attestation 51

5.1 General (informative) 51

5.2 Basic attestation (mandatory) 53

5.3 Delegated attestation (optional) 56

5.4 Note on attestation and freshness (informative) 57

5.5 Attested trusted subsystems (mandatory) 58

6 Storage 58

6.1 Overview (informative) 58

6.2 Physical storage (mandatory) 60

6.3 Internal trusted storage (mandatory) 61

6.4 Binding (optional) 62

6.5 Binding root key (mandatory) 64

6.6 Use cases (Informative) 65
6.6.1 Simple data store 65
6.6.2 Simple key store 65
6.6.3 General data store 65
6.6.4 General key store 65

7 Cryptographic services 65

7.1 General (mandatory) 65

7.2 Cryptographic algorithms and key sizes (informative) 66

8 Appendices 67

8.1 Mapping to TMSA security objectives 67

8.2 Hardware example: Implementation based on Armv8-M with CryptoCell based MCU 69
8.2.1 Architecture Description 69
8.2.2 Mapping PSA Isolation 70
8.2.3 Mapping PSA isolation boundaries 71

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page v
1.0 Alpha Release 2 Non-Confidential

About this document

Release Information

The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

June 2018 1.0 Alpha-0 Confidential First alpha release

October 2018 1.0 Alpha-1 Non-Confidential Second alpha release

February 2019 1.0 Alpha-2 Non-Confidential Third alpha release

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page vi
1.0 Alpha Release 2 Non-Confidential

Arm® Platform Security Architecture Security Model

Copyright ©2017-2019 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no
analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed
written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

http://www.arm.com/company/policies/trademarks

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page vii
1.0 Alpha Release 2 Non-Confidential

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page viii
1.0 Alpha Release 2 Non-Confidential

Document outline

Section 1: Overview
Introduces the Platform Security Architecture (PSA) and gives an overview of the PSA Security Model
(PSA SM), with its goals and objectives.

Section 2: PSA Root of Trust
Introduces the PSA Root of Trust, and defines concepts, terms, architecture and requirements.

Section 3: PSA security lifecycle
Defines a generic security lifecycle for the PSA Root of Trust, and associated requirements on processes
for manufacture and debug or repair.

Section 4: Boot

Defines the PSA boot process.

Section 5: Initial attestation

Introduces and defines the initial attestation service, and the associated initial attestation token, and
how they can be used to bind arbitrary attestation protocols to the attested boot state of a PSA-
compliant device.

Section 6: Storage

Introduces and defines the PSA RoT security enablers for storage, and how they can be used to build
arbitrary secure storage solutions at the ARoT level.

Section 7: Cryptographic services

General requirements and recommendations for cryptographic services and algorithms for PSA-
compliant devices.

Section 8: PSA key management

Summary of keys, sizes and algorithms used in the PSA SM.

Section 10: Appendices

Worked examples for reference, and other supporting information.

• Mappings from TMSA security objectives to PSA SM security features

• Example system realization

Potential for change

The contents of this specification are subject to change.

In particular, the following may change:

• Feature addition, modification, or removal

• Parameter addition, modification, or removal

• Numerical values, encodings, bit maps

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page ix
1.0 Alpha Release 2 Non-Confidential

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document

• A URL, for example http://infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode

is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference
Manual.

Assembler syntax descriptions

This book is not expected to contain assembler code or pseudo code examples.

Any code examples are shown in a monospace font.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page x
1.0 Alpha Release 2 Non-Confidential

Rules-based writing

This specification consists of a set of individual rules. In this document, each rule is clearly identified in tables,
together with rationale and notes for context and clarification.

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists,
individual rules are grouped into sections and subsections to provide the proper context. Where appropriate,
these sections contain a short introduction to aid the reader. An implementation which is compliant with the
architecture must conform to all of the rules in this specification.

Some architecture rules are accompanied by rationale statements which explain why the architecture was
specified as it was. In this document, rationale is provided in the rules tables alongside each rule.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements in this
document are provided in the rules tables alongside each rule, or as introductory text in a section.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an

implementation is compliant.

Rules, rationale statements, information statements, implementation notes and software usage statements are

collectively referred to as content items.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001,

0002, . . .).

• Identifiers are volatile: the identifier for a given content item may change between versions of the
document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).

• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

Identifier Rule Rationale Information

R1-1 This a rule statement. This is a rationale statement This is an information statement.

Current status and anticipated changes

First draft, major changes and re-writes to be expected.

Feedback

Arm welcomes feedback on its documentation.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page xi
1.0 Alpha Release 2 Non-Confidential

Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:

• The title (Arm® Platform Security Architecture Security Model).

• The number and release (DEN 0079 1.0 Alpha 2).

• The page numbers to which your comments apply.

• The rule identifiers to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Open issues

Key Description

 Populate remaining chapters and sections

 Reformat rule tables

 Update cross references

mailto:arm.psa-feedback@arm.com

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 12
1.0 Alpha Release 2 Non-Confidential

1 Overview (informative)

1.1 PSA overview

The Platform Security Architecture (PSA) program takes a holistic view of device security, recognizing that
security must be addressed at both hardware and software levels – hardware security alone is not enough.

Premise: Most connected devices contains complex code from multiple sources

Premise: Complex code can be hard or unfeasible to prove to be free from errors, whether
malicious or accidental, even with good design processes

Premise: Compromised software can compromise hardware as well – “hidden secrets” or not,
compromised software can enable full exploit of hardware, including cloning,
impersonation, and access to data, even if underlying hardware protected root secrets
are not directly compromised

PSA assumes that software is buggy, and that reducing risks from potentially unreliable software must be a
corner stone in any device security architecture. This means extending the notion of root of trust from pure
hardware to a combination of hardware and software, and isolating more trusted software components from
less trusted software components.

PSA aims to help partners and industry stakeholders develop and deploy secure products based on formal
security analysis.

Products will be expected to comply with a variety of functional and security requirements, for example
technical, legal, commercial, regulatory, from many ecosystem stakeholders, for example service providers, end
users, industry bodies, and government regulators. These requirements are expected to vary depending on use
cases and ecosystems.

A service provider or an ecosystem is expected to ultimately define the overall requirements for a product,
based on technical, commercial, and regulatory requirements.

PSA defines a common hardware and software security platform, providing a generic security foundation and
allowing secure products and features to be developed on top. It is expected that PSA compliance will be an
essential and required cornerstone towards achieving overall product certification for large classes of products.

Compliance comes in two main forms:

• Functional Compliance

Functional compliance deals with interfaces, functional behavior, and interoperability. Functional
compliance may cover both general product features and security features.

• Robustness Evaluation and Certification

Robustness evaluation and certification deals with implementation security requirements and
governance, based on threat models and security analyses. It defines required measures and processes
ensuring that a functionally compliant product, including its critical assets, is not vulnerable to identified
threats.

Note:

The PSA SM is primarily concerned with robustness requirements, expressed in this document as
robustness rules.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 13
1.0 Alpha Release 2 Non-Confidential

Interfaces and technical implementation requirements for the hardware and software services and
features identified by the PSA SM will be specified in separate technical specifications.

The PSA program recognizes that there will be different security requirements and different cost and security
trade-offs for different applications and ecosystems. This is reflected in specifications by introducing:

• Reference architectures

Different technical reference realizations of security features, intended as design patterns with different
cost and robustness properties

• Range of robustness levels

Defining different robustness properties for different applications and different cost and security trade-
off

1.2 PSA ecosystem

Security Specifications

Device Security Model

Technical Specifications

Reference
Architectures

Device Management

Design and Manufacture

Deployment

Factory Provisioning

Device Verification

Manufacture
Reporting

Provision and
Updates

Enrolment

Attestation
Protocol

Compliance and
Certification

Compliance Testing

Service Providers

Attestation Verifier

Threat Models and
Security Analyses

Certification
Programmes

PSA-compliant devices are expected to be deployed in the context of an ecosystem with supporting security
processes. Examples of such ecosystems could be:

• Vertical models, in which individual device manufacturers (OEM) or service providers create ecosystems
around their own products

• Walled garden models, in which a service provider serves as a single point of entry to end customers,
fronting an ecosystem of partners

• Horizontal or open models, in which a consortium of service providers, OEM, and industry or regulatory
bodies form an open ecosystem of competing entities

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 14
1.0 Alpha Release 2 Non-Confidential

A generic reference model for such ecosystems is outlined in the preceding figure.

• Threat Models and Security Analyses (TMSA)

Threat models and security analyses (a simplified protection profile) identify and motivate security
requirements based on a range of industry use cases. TMSA will be developed and promoted by Arm
together with industry stakeholders.

• PSA Compliance and Certification

Derived security requirements get translated into functional compliance requirements, and robustness
evaluation and certification requirements, for different applications. It is expected that there will be a
range of robustness levels for different use cases and different cost and security trade-offs.

Compliance testing programs and certification programs define the processes for asserting PSA
functional compliance and the PSA robustness level of a product. These may be self-assessment
processes or may require third party audit and testing, depending on use case and ecosystem
requirements.

• Security Specifications

Security specifications define technical architectures and requirements for security features, providing
necessary mitigations identified by TMSA requirements and enabling design and deployment of PSA-
compliant devices.

The PSA SM – this document – can be viewed as the top-level security specification, identifying and
defining a PSA Root of Trust and associated root of trust services and features.

Other specifications provide detailed hardware and software functional and robustness requirements,
and standardized functional interfaces.

• Design and Manufacture

Devices get designed and manufactured against security specifications. It is expected that common
security services, interfaces, and reference implementations will simplify integration tasks.

Device manufacture involves provisioning of root secrets and other sensitive information in factory
provisioning and initialization processes. These processes must be controlled, ensuring that critical
assets always remain protected.

Device manufacture is complex, involving multiple steps and actors, and is in general out of scope of this
document. However this specification does define generic robustness requirements on secure factory
provisioning and manufacture processes.

• Device attestation and verification

Manufacturers enrol devices in a device verification system, supporting attestation verification, and in
doing so make a commitment to an appropriate robustness level and to play by the rules.

Attestation and verification services are expected to be deployed by manufacturers, service providers, or
by industry consortia depending on ecosystem requirements.

• Device Management

Manufacturers provide device manufacture data, firmware updates, provisioning services, and other
support functions through a device management system. Device management caters for devices
throughout their life-time, from factory provisioning, through production use, field debug and repair, to
retirement.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 15
1.0 Alpha Release 2 Non-Confidential

• Deployment

Service providers can deploy secure services by authenticating devices and identifying their security
properties (robustness level) through an appropriate device trust model and device verification service.

Service providers can manage and support deployed devices through appropriate device management
frameworks.

1.3 PSA SM security goals

A primary objective for PSA-compliant devices is to allow deployment of secure services using devices with
known security properties.

A generic device trust model can be summarized in the steps outlined in the table below. The term validating
entity is used here to denote any entity that needs to establish the trustworthiness a device. In the case of PSA,
this is typically a service provider or cloud service, but it could also be, for example, other devices in a mesh or
hive network.

Step Requires Motivation

Allow a validating entity to
identify a device, and attest its
security properties

A unique instance ID and device
attestation

A unique instance ID enables identification of:

• the device instance

• its runtime configuration (software versions,
signer(s), measurements, and security state)

Following completed attestation, the validating entity
will typically have established a secure and
authenticated communications link with an attested
end-point, which can be used for further service
interaction including provisioning of service and user
specific credentials and data as required.

Allow a validating entity to
identify security properties of
device implementations

Robustness certification

A unique implementation ID for the
underlying hardware (immutable
components).

Verified compliance with robustness rules and
certification criteria for different applications and
robustness levels.

A unique implementation ID allows identification of:

• the device origin (for example manufacturer,
model, and version)

• its security implementation and associated
robustness level

Provide assurance to a
validating entity that its
robustness criteria have been
met

Manufacturer commitment before
participating in the ecosystem

An established governance model for an ecosystem.

On-line verification and
attestation services

Trusted verification system Allows verification of devices against robustness
criteria, and ecosystem governance processes, for
example advisories and revocation.

Goal 1: PSA SM requires all devices to be uniquely identifiable.
To have meaning, identities should be issued in the context of a suitable governance
model and a trusted verification system.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 16
1.0 Alpha Release 2 Non-Confidential

Goal 2: PSA SM requires all devices to support attestation.

Application-specific secrets, for example user generated data, user credentials, and service credentials, must be
protected and be stored securely on a device ensuring they cannot be accessed by unauthorized agents, and
cannot be cloned to other devices.

Application level secure storage of data, keys and credentials can be implemented in many ways depending on
application and device requirements, for example blob stores, encrypted file systems and databases. Common to
all is a requirement to uniquely bind stored data to a specific device instance.

Goal 3: PSA SM requires all devices to support unique binding of application data and secrets to a
device and its security configuration.

The device configuration must be protected to ensure that only authorized software can run on a device.
Unauthorized software has unknown properties and hence may leak secrets or data, and otherwise compromise
the security of the device, a user, or a service.

Goal 4: PSA SM requires all devices to support a secure boot process, ensuring that only
authorized software can be executed on the device.

All software can and should be expected to contain errors and design flaws which may be exploited in order to
compromise the security of a device. The more complex the software, the more likely it is to contain exploitable
issues.

Software needs to be separated into more trusted and less trusted components. Less trusted components may
include software that is difficult or impossible to prove to be without exploitable issues. A secure boot process
on its own is not sufficient. Software isolation is required on top to separate software components so that
exploitable issues in a less trusted component cannot compromise a more trusted component.

This document defines several isolation levels, guided by the following security goal:

Goal 5: Isolation must always be provided.
At a minimum between non-secure application software and root of trust software. For
many certification profiles, it is expected that isolation must also be provided between
components implementing the root of trust itself.

Finally, it must be possible to update devices to correct exploitable security issues, and to provide feature
updates. Software updates must not compromise the integrity of the device, and the update process itself must
be robust. Specifically, it must not be possible to abuse the update process to install arbitrary data on a device.
All updates must be validated.

Goal 6: PSA SM requires that all devices support a secure update process.

Goal 7: PSA SM requires that any updates must be validated before being installed.

It is expected that device updates should be progressive in the sense that a more recent version is better than an
older version. An older version may contain known functional or security issues which might compromise the
device in some way. But at the same time, in normal operation, a device might sometimes need to fall back to

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 17
1.0 Alpha Release 2 Non-Confidential

some earlier last known good version should there be a problem with an update. This could be locally if, for
example, an update should cause a device to become unstable. Or it could be global if, for example, a new
feature is rolled out but causes problems for the service.

This means the device must prevent unauthorized rollback, such that it cannot be forced back to some earlier
version with known vulnerabilities but it may roll back to some last known good version.

Goal 8: PSA SM requires that a device must prevent unauthorized rollback– anti-rollback.

The above security goals will ensure a robust device capable of recovering from a wide range of security issues,
and protecting device and user secrets. But in real deployments it must also be possible to support development
and debug of device features, including security features, and to support repairs, service development and
debug. For these kinds of scenarios it may be necessary to enable debug or development modes which may
effectively reduce the trustworthiness of the device.

Goal 9: PSA SM requires that devices support a security life cycle as defined later in this
document.
The current security lifecycle state of a device must be attestable.

In addition to the above core security features of PSA SM, secure devices are also expected to support a minimal
set of trusted cryptography services in support of secure management of secrets and keys.

Goal 10: PSA SM requires that all devices implement a generic cryptographic service at the most
trusted level of the system.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 18
1.0 Alpha Release 2 Non-Confidential

1.4 Generic PSA device model

Device

System

Updateable Components

External Resources

PSA Immutable Root of Trust

PSA Updateable Root of Trust

Application

Untrusted

Trusted
Subsystem

Trusted
Subsystem

Firmware &
Config

Firmware &
Config

DDR External Flash Peripherals

Application Root of Trust

PSA Root of
Trust

The figure above outlines a generic device model for PSA devices. It is a reference model for discussing device
security properties in this document and actual designs are expected to be mappable to this reference model.

PSA has been designed to enable ecosystems of co-operating parties, allowing applications to be developed on
top of a common security framework:

1. Silicon manufacturers provide PSA-compliant hardware

2. A PSA Root of Trust, defined in this document, provides a common security foundation for application
developers

It is expected that PSA-certified implementations of the PSA Root of Trust may be provided by security
specialists, and ported to a range of PSA-compliant hardware.

3. Secure applications, including application-specific root of trust extensions, can now be built on top of a
common PSA Root of Trust supporting a wide range of PSA-compliant hardware

For the purpose of this document, the following terms are used to describe a generic PSA-compliant product:

Component Description Notes

Device Final end product. For example, a networked security camera or a tracking
device for asset management.

System Inseparable component integrating all processing
elements, bus masters, and PSA Immutable Root of
Trust.

Typically an SoC or equivalent.

But could also include, for example, an external SIM or
TPM device which is inseparably bound to the rest of
the system by cryptographic or physical means.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 19
1.0 Alpha Release 2 Non-Confidential

Component Description Notes

PSA Immutable
Root of Trust

Immutable hardware components required to build and
maintain trust chains throughout the device and out to
service providers and users of the device.

For example:

• Boot ROM

• Root secrets and IDs

• Isolation hardware

• Security lifecycle management and
enforcement

PSA Immutable Root of Trust should only be accessible
to the most trusted software on the system (PSA
Updateable Root of Trust).

The PSA Immutable Root of Trust is defined by this
specification.

Trusted
Subsystem

Any trusted component outside of the functional scope
of the PSA Root of Trust (that is, components which are
not defined in this specification) but within the trust
boundary of the PSA Root of Trust:

Their configuration (software and parameters) must be
attestable by the PSA Root of Trust.

For example:

• DDR protection system

• Trusted peripherals

• SE, for example a SIM or TPM

Trusted subsystems are not defined by this specification
(not in the functional scope of the PSA root of trust),
but any such subsystem must be protected by the PSA
Root of Trust and attestable.

External
Resources

Hardware resources provided outside the boundary of
the system, for example DDR, external flash, devices
and peripherals, communications ports.

In the context of the PSA SM, external resources are
defined as untrusted as they are outside the trust
boundary of the PSA Root of Trust.

Updateable components consist of all software, firmware, and other updateable components in the context of
the system. Any PSA device can be said to be made up of the following updateable components:

Component Description Notes

PSA Updateable
Root of Trust

The most trusted software on the system, implementing
generic and self-contained stateless services operating
directly on PSA Immutable Root of Trust, for example:

• Software isolation framework, protecting
more trusted software from less trusted
software

• Generic services for example binding, initial
attestation, generic crypto services, FW
update validation

The purpose of the PSA Root of Trust is to provide a
generic and portable interface for a set of generic
services, which can be provided on top of proprietary
hardware.

Application-specific root of trust services can then be
built on top of a portable interface, rather than having
to be ported directly to proprietary hardware.

Updateable
components
and
configuration of
trusted
subsystems

Any updateable components of a trusted subsystem,
and any configurations of trusted subsystems which
affect their operation.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 20
1.0 Alpha Release 2 Non-Confidential

Component Description Notes

Application
Root of Trust

Any application-specific root of trust services required
by a device, for example remote attestation protocols
or secure storage services required by a service
provider.

Application Root of Trust services should not be able to
directly access immutable hardware.

The Application Root of Trust is likely to be more
complex than the PSA Updateable Root of Trust, and
may include third party code. Its services should be built
on top of the PSA Updateable Root of Trust, enabling
isolation and hence a path to update and recovery.

Application-specific root of trust services are out of
scope of this specification.

Application All untrusted (from the point of view of the root of
trust) application level functions and services,
responsible for managing all application data and
resources.

Application services should not be able to directly
access any root of trust software or PSA Immutable
Root of Trust resources, or any secrets protected by the
root of trust.

Application software can be expected to contain third
party code and libraries, open source code, proprietary
clients, and other components that may be difficult to
certify.

From the point of view of PSA, all application software
should be considered as untrusted. Regular updates can
be expected to fix issues and to add or modify features.

Finally, updateable components are expected to be packaged, distributed, deployed and stored on devices as
images. Depending on use case, device design and operational requirements, packaging may be done in several
different ways, for example:

• A single device image containing all updateable components

• Multiple images containing different sets of updateable components, for example a firmware image
containing root of trust components, and a separate application image containing all application
software

Regardless of packaging, the following generic requirements should always be true:

Identifier Rule Rationale Information

 All updateable components must be
measured and validated.

It must only be possible to load
signed and verified code.

Measurements are calculated during
boot and during updates, and
enforced during boot.

 Root of trust software must be
measured separately from application
software.

This allows root of trust software to
be validated and attested separately
from application software.

This requirement does not imply
separate images or packages, only
that root of trust software must be
measured separately.

Separate attestation of root of trust
software is required to allow the
trustworthiness of the security
implementation to be asserted.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 21
1.0 Alpha Release 2 Non-Confidential

2 PSA Root of Trust

2.1 Overview (informative)

Non-Secure

PSA Immutable Root of Trust

Application Root of Trust

PSA Updatable Root of Trust

Boot ROM

Secure Partition
Manager

Application Root
of Trust Services

Application

Temporal
Isolation

HW Assisted
Isolation

PSA Root of Trust
Services

Root Parameters

PSA Security Lifecycle

Main Boot State

Main Boot

Temporal
Isolation

Runtime
Isolation

Runtime
Isolation

Initial Boot State

The root of trust of a PSA device is a multi-tier root of trust made up of Immutable and updateable components
working together to ensure:

• The integrity of the device and its updateable components

• The integrity of trust chains, both within the device and within an ecosystem

• The privacy and integrity of secrets, and of operations performed using secrets

• Separation and isolation of more trusted components from less trusted components

The central property of PSA isolation is to protect trusted hardware from less trusted software, and to ensure
that a compromise of less trusted software does not automatically compromise more trusted software. On
networked connected devices this property is essential because any access to operations on secrets by
unauthorized software will compromise those secrets, even if the actual values are not exposed.

The PSA Root of Trust acts as a primary root of trust on a PSA-compliant device. Implementations of a PSA Root
of Trust may or may not choose to incorporate secondary roots of trust, for example SE (SIM or TPM) devices, to

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 22
1.0 Alpha Release 2 Non-Confidential

realise some or all of the PSA security properties. This would be an implementation choice and not discussed in
this document (see [TBSA]).

The PSA Root of Trust is itself divided into an Immutable portion and an updateable portion. The Immutable PSA
Root of Trust is the initial root of trust for all PSA Root of Trust services and never changes on a production
device. The Updateable PSA Root of Trust represents all of the most trusted software components, providing a
common trusted platform.

The Application Root of Trust represents any application or use case specific security service implementations on
top of the generic PSA Root of Trust.

For example, the PSA Root of Trust provides a generic attestation token, which can be used to bind any
application-specific attestation protocol implemented in the Application Root of Trust.

Finally, the overall state and functionality of the PSA Root of Trust is governed by a PSA security lifecycle. The
PSA security lifecycle defines rules for when the security lifecycle of the PSA Root of Trust may change, from
manufacture through production use to repairs and debug, and how such lifecycle changes affect secrets
managed by the PSA Root of Trust.

This separation of a generic trusted platform from application-specific features and protocols enables a wide
variety of ecosystems and supply chains to be built around the PSA security model.

The root of trust architecture of PSA has been designed to map to standard root of trust architectures for
example TCG and GP, and this mapping is indicated by the Mapping column in the table.

Component Description Mapping Notes

PSA
Immutable
Root of Trust

Immutable and tamper resistant
hardware security resources, for
example boot ROM and root parameters.

Initial Root of
Trust

PSA
Updateable
Root of Trust

Most trusted software on the system,
implementing generic security services
directly operating on trusted hardware
or device secrets.

No other software on the system should
directly access rusted hardware or
device secrets.

Enhanced
Root of Trust

PSA Updateable Root of Trust services are identified
and defined in this specification, including initial
attestation, binding, FW validation, and isolation.

PSA Root of
Trust

The combination of the Immutable and
Updateable PSA roots of trust.

Primary Root
of Trust

The PSA Root of Trust is expected to be provided by
silicon vendors, or by security specialists and ported to
silicon.

Application
Root of Trust

Implements application-specific security
services, extending the functionality of
the PSA Root of Trust to provide higher
level application-specific security
services.

The Application Root of Trust should not
be able to directly access the PSA
Immutable Root of Trust, and should not
directly access any private resources of
the PSA Updateable Root of Trust.

Enhanced
Root of Trust

Application Root of Trust services represent trusted
services used by application software, for example
secure storage and attestation end points and
protocols.

The Application Root of Trust is expected to be
application-specific and more complex than the PSA
Root of Trust.

The Application Root of Trust is expected to use
interfaces provided by the PSA Updateable Root of
Trust and never directly access the PSA Immutable
Root of Trust.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 23
1.0 Alpha Release 2 Non-Confidential

Component Description Mapping Notes

PSA security
lifecycle

Defines rules for when the security
lifecycle of the PSA Root of Trust may
change, from manufacture through
production use to repairs and debug,
and how such lifecycle changes affect
secrets managed by the PSA Root of
Trust

N/A See PSA security lifecycle.

2.2 Isolation (mandatory)

One of the main goals of PSA is to provide a generic hardware enforced isolation framework, encouraging design
of robust software and ensuring that less trusted software cannot compromise more trusted software in normal
operation.

The PSA Root of Trust relies on two types of isolation boundaries:

Isolation type Description Notes

Temporal Isolation Code running before a temporal boundary must be
the only code executing at that time.

Code running before a temporal boundary is
expected to run once, complete its task in a
predictable and repeatable manner, and then
handover to the next stage after the temporal
boundary.

Code executing before a temporal boundary may
leave state behind for use by the next stage code
executing after the boundary.

Code executing after a temporal boundary should
not access private resources of the code executing
before the boundary, only a well-defined state left
on the boundary by the previous stage.

Temporal isolation boundaries in PSA are used in the
boot stages.

Runtime Isolation In normal operation software executes concurrently.

The PSA isolation model divides code into multiple
secure partitions.

A secure partition provides an isolated execution
environment, protecting the code and data within a
secure partition from access by code executing in
other partitions.

Secure partition access control policy is enforced by
a dedicated PSA RoT service – the secure partition
manager (SPM).

Runtime isolation applies to concurrently executing
components following completed boot (following
initialization of SPM).

See [FF].

Typically, a secure partition is expected to host one or more root of trust services. Related services that share
underlying functionality or data may be implemented within the same secure partition for efficiency, but
unrelated services should be kept in separate partitions.

However, a secure partition must only implement services that are either completely within the PSA Root of
Trust, or completely within the Application Root of Trust, or completely within the Non-secure (NS) space. A
secure partition cannot cross those boundaries.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 24
1.0 Alpha Release 2 Non-Confidential

Depending on the underlying hardware isolation mechanism available, [FF] defines three isolation levels. The
level of isolation supported on a device depends on the level of hardware assisted isolation that can be provided.

Software for PSA devices should always be designed to assume that maximum isolation applies, in order to
provide robust and portable code.

The isolation levels defined by [FF] are:

Isolation level Purpose Description

Level 1 Secure Processing
Environment (SPE) isolation

PSA RoT and ARoT are isolated from non-secure applications, but not from
each other.

Level 2 PSA RoT isolation PSA RoT and ARoT are isolated from each other, and from non-secure
applications.

Level 3 Maximum isolation Individual secure partitions are isolated from each other even within a
particular security domain (PSA RoT, ARoT, NS).

The following general isolation requirements always apply to any PSA device:

Identifier Rule Rationale Information

 The Application Root of Trust should
not be able to directly access internal
resources of the PSA Updateable Root
of Trust, nor directly operate on PSA
Immutable Root of Trust.

The PSA RoT contains the most
trusted security services, and should
be protected from all other code.

Without hardware enforced isolation
at this level, the device may not be
able to recover from a compromise at
the Application Root of Trust level.

 Application software should not be
able to directly access any internal
resources of the Application Root of
Trust, nor of the PSA Root of Trust.

Non-secure applications include the
least trusted code, and should not be
able to compromise the ARoT or the
PSA RoT.

 Any PSA-compliant device must
support at least isolation level 1.

It must always be possible to recover
a device following a compromise of
non-secure application level software.

 Level 2 isolation is a recommended
level whenever possible.

It should be possible to recover a
device following a compromise in
either ARoT or non-secure
applications.

2.3 Trusted subsystems (mandatory)

A system may provide additional hardware security features not defined in this document, for example
cryptographic acceleration, secure time source, trusted graphics. Any such additional hardware security features
can only be considered part of the Immutable PSA Root of Trust if they contain no updateable components or
configurations.

Any additional hardware security features which contain updateable components or configurations must be
treated as trusted subsystems.

Trusted subsystems are defined as any system features which are functionally out of scope of the PSA Root of
Trust, but are within the trust boundary of the PSA Root of Trust – they are functionally separate and cannot

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 25
1.0 Alpha Release 2 Non-Confidential

directly access any PSA Root of Trust resources, but their correct implementation and configuration must be
attestable by the PSA Root of Trust.

A trusted subsystem may itself implement its own secondary root of trust and its own secondary security life
cycle, but it must at all times be subordinate to the PSA Root of Trust in the sense that its configuration and state
must always be attestable by the PSA Root of Trust.

Identifier Rule Rationale Information

 Any system feature which contributes
to the overall security and
trustworthiness of a device must be
attestable by the PSA Root of Trust

A validating entity must be able to
attest the device, including any
trusted subsystems.

 The security status of the PSA
Immutable Root of Trust is implicit,
and asserted by the attestation
identity of the system.

The attestation identity of the system
identifies the implementation of the
immutable root of trust.

system security features may be
considered part of the immutable
root of trust if they are fixed at
manufacture and cannot be modified
or updated on production devices.

Example: A cryptographic accelerator
running from its own ROM may be
considered part of the immutable
root of trust

 Any system security features which
include updateable components must
be treated as trusted subsystems, and
their security status and configuration
must be validated and attestable by
the PSA Root of Trust.

A validating entity must be able to
verify the complete security
configuration of a device.

Example: Graphics hardware or any
other on-system trusted devices
which accept firmware updates must
be treated as a trusted subsystem
and their security configuration must
be included in attestation

 The security configuration of system
security features must only be
directly accessible by the PSA Root of
Trust, and must be attestable.

Where there are options for how
system security features operate,
including enabling or disabling for all
or part of a device, or selecting
operating modes with different
security properties, then such
configurations must be controlled by
the PSA Root of Trust and included in
attestation.

For example, the configuration of a
memory protection engine.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 26
1.0 Alpha Release 2 Non-Confidential

2.4 PSA Root of Trust services (mandatory)

Application Root
of Trust

PSA Immutable
Root of Trust

PSA Updateable
Root of Trust

Update Client

Initial
Attestation

Attestation
Endpoint

Crypto
Operations

Hardware
Crypto

Application

Internal
Trusted
Storage

Secure Storage

Binding
Service

Isolated
Locations

Non-isolated
Locations

Non-Isolated
Storage Devices

Boot ROM

SPM

Shielded
Locations

Isolation
Hardware

This document defines a minimum set of PSA RoT services which must always be present in any PSA-compliant
implementation.

They do represent a minimal set. Implementations may define additional implementation specific services at this
level if required. Future versions of this specifications may mandate additional services.

This document defines these services in terms of their required security properties and functionality. Software
interfaces are defined separately in technical specifications.

Identifier Rule Rationale Information

 A boot ROM must be implemented. Enforce secure boot.

Manage security lifecycle states and
state changes.

Boot

 Secure Partition Manager (SPM) must
be implemented.

Enforce partition level isolation
access control policies.

Isolation

 Crypto must be implemented. Provide general crypto services, with
the ability to hide secret and to keep
actual values of secrets away from
less trusted code.

Cryptographic services

 Binding must be implemented. Allow data and secrets to be bound to
a partition, a device instance, and the
security state of the device.

Storage

 Internal trusted storage must be
implemented.

Manage isolated locations – locations
with physical isolation properties, and
which can only be accessed the PSA
RoT.

Storage

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 27
1.0 Alpha Release 2 Non-Confidential

 Initial attestation must be
implemented.

Issue Initial Attestation Tokens (IAT),
attesting to the current boot state of
the device.

Initial attestation

 Additional implementation specific
PSA RoT services may be provided as
long as:

1. All mandatory PSA RoT
services are always
provided

2. Any such extensions do not
compromise the integrity,
security or function of the
mandatory PSA RoT services

For example, services managing
access control for implementation
specific trusted hardware, for
example a secure time source, or a
power management controller.

2.5 PSA RoT secrets, identities, and other parameters (informative)

PSA RoT ServicesBoot ROM Main Boot

HUK

Shielded
locations

Boot
validation key

Boot
decryption

key

Initial boot
state

Temporal
Boundary

Secured BRK

Derive or
Populate

Debug BRK

IAK

Impl. ID

Instance ID

Impl. ID

Main boot
state

Temporal
Boundary

Protected
RAM

Protected
RAM

Isolated
locations

A PSA-compliant device needs a number of immutable parameters, including identities and secrets, defined at
device manufacture in a secure provisioning process.

For the purpose of the PSA security model, the following security classes of PSA parameters are defined:

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 28
1.0 Alpha Release 2 Non-Confidential

Security class Properties Information

Private Secret values which must not be accessible to
unauthorized agents, including external agents, debug
agents, and unauthorized code.

For example, an attestation private
key.

Public Values which may be shared both inside and outside the
device.

For example, a boot validation key, or
an instance ID.

Depending on implementation such parameters may be either:

• Provisioned directly in isolated locations – storage locations protected by physical isolation and only
accessible to trusted code

• Provisioned directly in shielded locations – isolated locations which also have a degree of tamper
resistance

• Derived at boot from seeds provisioned in shielded locations

Private values should be either provisioned in shielded locations, or derived at boot. Public values should be
either derived at boot, or at least be provisioned to isolated locations to prevent against modification (for
example cloning or substitution).

Depending on certification profile, directly provisioned parameters may be stored using different technologies,
for example:

• In a protected read-only flash section

• In protected separate on-chip OTP

• In an SE, for example a SIM or TPM

Regardless of provisioning model, PSA specifies a boot architecture with defined temporal isolation boundaries,
and defined boot state stored in protected RAM (on-chip, or encrypted) on each temporal boundary.

Code following a temporal isolation boundary should only operate based on boot state left by code running
before the boundary. Only boot code should directly operate on PSA parameters directly provisioned in isolated
or shielded locations, and PSA RoT code should only operate on boot state.

This model provides an additional isolation layer for the PSA RoT itself, and facilitates a variety of strategies for
managing and protecting directly provisioned PSA parameters.

Within this model, PSA defines the following types of PSA parameters:

Parameter type Properties Information

Initial parameters

Parameters directly
provisioned in shielded
locations.

Should only be directly accessible to boot code.

May be used to either directly populate boot state, or as
seeds for derivation of boot state.

Typically boot validation keys, boot
encryption keys (if used), and at least
a Hardware Unique Key (HUK).

PSA RoT parameters

Parameters required by PSA
RoT services.

Either populated in boot state from initial parameters, or
derived from a seed for example a HUK.

For example Initial attestation key,
Instance ID, Implementation ID, and
binding root keys.

This document specifies PSA RoT parameters as required by the PSA RoT services.

The provisioning model – direct provisioning, or a derivation scheme – is largely implementation specific.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 29
1.0 Alpha Release 2 Non-Confidential

In general a derivation scheme may be more flexible and future proof, can support additional strategies for
protecting PSA RoT private parameters, and may reduce the risk of exposure of private parameters during device
manufacture. But it also may require additional computing resources at boot.

2.6 Hardware security features (mandatory)

Any PSA-compliant device must provide at least the following hardware security features:

Service Explanation Notes

Boot ROM Boot ROM is the first software executing on a
device, and as such is the ultimate root of trust for
all software which follows.

Boot ROM may be realized as actual ROM, or
locked on-chip flash, depending on certification
profile.

HW Assisted Isolation All hardware required to implement appropriate
isolation between PSA software components, as
defined in this document.

Examples of hardware assisted isolation include,
TZ-style isolation, and physical isolation (co-
processor, or an SE capable of hosting
applications).

See [TBSA-M].

2.7 Hardware robustness rules (mandatory)

The following general hardware robustness rules apply for the PSA Immutable Root of Trust:

Identifier Rule Rationale Information

 Tamper resistance:

Shielded locations must provide a
degree of tamper resistance.

Shielded locations hold provisioned
secrets, including PSA RoT secrets. A
degree of tamper resistance should
be applied to protect from attempts
to extract such secrets.

Depending on certification profile and
deployment requirements, tamper
resistance may address a number of
issues, including:

• Physical access control (debug
interfaces, external interfaces,
physical tamper proofing)

• Side-channels (for example
power and timing analysis)

• Active probing (for example
physical disassembly, access to
internal buses and interfaces, or
debug interfaces)

• Passive probing (for example x-
ray, or electron microscopes)

 Access control and isolation:

PSA initial parameters should only be
directly accessible by boot code.

PSA RoT parameters should only be
directly accessible to the PSA RoT
(following completed boot).

Protect parameters from
unauthorized access and
modification.

Depending in certification profile and
hardware capabilities this
requirement may be met by either
software convention, PSA isolation
access control, or by lockable
hardware registers.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 30
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 Immutable PSA parameters must be fixed, and
must not change in normal operation.

Depending in certification profile and
hardware capabilities this
requirement may be met by either
software convention, enforced by the
PSA security lifecycle, or by lockable
hardware registers.

 Debug protection Device support for debug and repair
must not compromise PSA
parameters.

3 PSA security lifecycle

3.1 PSA security lifecycle overview (informative)

Device

Updateable Components

System

PSA Immutable Root of Trust

PSA Updateable Root of Trust

Application

Trusted
Subsystem

Trusted
Subsystem

Firmware &
Config

Firmware &
Config

Application Root of Trust

PSA Security Lifecycle Local Lifecycle Local Lifecycle

Application Lifecycle

A lifecycle tracks the state of an object through its life-time – from development and manufacturing, through use
in the field, to debug and repair states. Depending on its lifecycle state an object will have different security
properties, for example:

• In early development and manufacture states, secrets and identities may not have been provisioned and
debug ports may not yet have been locked down

• In some debug and repair states secrets could potentially be compromised, or boot state and attestation
might not be trustworthy any more

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 31
1.0 Alpha Release 2 Non-Confidential

On a device there may be many objects with their own lifecycles, for example:

• Some trusted subsystem, for example SIM and TPM style devices, will have their own local life cycles and
provisioning processes

• The application itself may have an application lifecycle, tracking it through logistics and distribution
chains, service onboarding and activation, to de-activation and re-assignment

For the most part these objects and lifecycles are implementation or application-specific and out of scope of this
specification.

This chapter defines a generic PSA security lifecycle for the PSA Root of Trust on PSA-compliant devices. As such,
all other objects and any associated local or application lifecycles are subordinate to the PSA Root of Trust and
its PSA security lifecycle for the purpose of establishing trust.

Any local or application lifecycle must never be in a state which conflicts with the PSA security lifecycle of
the PSA Root of Trust.

3.2 Manufacture and Factory Provisioning (mandatory)

Manufacture and factory provisioning are activities that take place while a device is in the process of being
assembled and security provisioned, before being packaged and shipped to end customers down the path of
distribution, retail and on-boarding.

For PSA-compliant devices, the PSA RoT must be provisioned and made fully operational as part of this process.
This involves steps including provisioning of PSA RoT parameters, provisioning of PSA RoT firmware, and
lockdown of the system such that debug interfaces are disabled and secure boot is enabled.

Depending on application requirements, additional application level provisioning may also be required either at
the manufacture stage, or later in the distribution and on-boarding chain. Provisioning of application level data
and secrets should only take place once the PSA RoT is fully provisioned and operational, and must always be
protected by the PSA RoT by using PSA RoT services, for example storage and initial attestation.

Identifier Rule Rationale Information

 The PSA RoT must always be made
fully provisioned and operational as
part of the manufacture process.

Only fully secured devices should
enter the distribution, retail and on-
boarding chains.

This is expected to require
manufacture reporting for tracking
and identification of fully secured
devices.

 Application level provisioning should
only take place once the PSA RoT is
fully provisioned and operational.

The device must be attestable and all
PSA RoT security services in a
trustworthy state before additional
application level secrets are
provisioned.

Provisioning of application level
secrets may be done, for example, by
an ARoT level provisioning client.

3.3 Debug and Repairs (mandatory)

As part of repair and servicing scenarios, for example Return Merchandise Authorisation (RMA) processes, a fully
secured device may need to be opened up for debug and repairs. Debug and repairs may be more or less
intrusive depending on the access level made available to the debugging agent. In the most intrusive cases in
which the PSA RoT itself has been compromised it may not be possible to return the device to a secure
operational state.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 32
1.0 Alpha Release 2 Non-Confidential

The PSA security lifecycle does not distinguish between how debug has been enabled, for example by enabling a
hardware debug interface, or by enabling software debug features.

Intrusive debug modes should require a secure authorisation process with appropriate governance. Again, the
PSA security model does not specify the method, although other PSA specification may provide some guidance.

The PSA security lifecycle is concerned with establishing the intrusiveness of any enabled debug, defining how
data and secrets can be protected when debug is enabled, and ensuring debug states are attested so that
validating entities can take appropriate action depending on the actual state of the device.

For the purpose of this document, debug intrusiveness can be classified as follows:

Level Security implications Information

Non-revealing diagnostics Does not reveal any sensitive user data and secrets,
application level secrets, or PSA RoT level secrets.

Does not affect the trustworthy operation of any aspect of
the device software.

Standard logging, basic diagnostics,
and similar device management
functions.

NS debug Intrusive debug which compromises NS-level operation,
including access to NS-level data and secrets.

ARoT, PSA RoT, and boot remain intact and trustworthy.

This level of debug must be attested.

Active debugging of non-secure
application software which does not
cross the ARoT isolation boundary.

ARoT debug Intrusive debug which compromises ARoT operation,
including access to ARoT level data and secrets.

PSA RoT and boot remain intact and trustworthy.

Active debugging which crosses the
ARoT isolation boundary, but does
not cross the PSA RoT isolation
boundary.

PSA RoT debug Intrusive debug which compromises PSA RoT operation, or
compromises secure boot.

Active debugging which crosses the
PSA RoT isolation boundary.

With this level of debug enabled the
device is no longer attestable.

Depending on hardware isolation implementation, a device may support some or all debug levels.

For example, a TrustZone based device may support a debug boundary between NS code and ARoT and PSA RoT
code, but may not support a debug boundary between ARoT and PSA RoT code. In this case it is possible to
support NS-level debug without compromising ARoT and PSA RoT, but enabling debug at the ARoT level will also
expose the PSA RoT.

As long as the PSA RoT is not compromised, the device remains in an attestable state in the sense that the initial
attestation remains valid and trustworthy. The initial attestation must always reflect the true state of the device,
including any enabled debug. This in turn means that the debug state must not change after the boot code has
completed execution, and hence changing a debug state requires a device reset.

Only changing debug state following reset is also important for cases in which sensitive data and secrets should
not be available to a debugging agent. In this case it is essential that such data is made inaccessible by taking
account of debug states in key derivations for storage. If a debug state were to change at runtime without reset
then such data might still be exposed through cached data in memory, for example.

If the PSA RoT itself, or the boot process, would be compromised by enabling a certain level of debug, then all
PSA root parameters must be made inaccessible. Such debug gives unrestricted access to the device and its
capabilities. For example it may compromise attestation, or allow secure boot to be bypassed, leaving the device
in an un-attestable state.

In this case, all PSA root parameters must be made inaccessible, making it impossible to issue a valid attestation
using a production IAK, or derive production binding keys for storage.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 33
1.0 Alpha Release 2 Non-Confidential

Entering a PSA RoT debug state is typically unrecoverable. Once secure boot and attestation have been
compromised it is normally not possible to return the device to a trustworthy state. In this case PSA root
parameters must be made permanently inaccessible, meaning the original PSA RoT levels keys and identities
cannot be recreated or recovered again.

This is a terminal state for that particular set of PSA root parameters. The device may be capable of being given a
new set of PSA root parameters by effectively reusing the hardware and putting it back at the start of the
manufacture process. From a PSA security model point of view such repurposing of hardware must result in a
new device instance.

Some devices with specialised hardware may be able to independently detect if the device enters such a debug
state, protect PSA root parameters while the device is in such a state, and then verify that the device has been
restored to a fully trustworthy state before making PSA root parameters available again. In this case the original
PSA root parameters may be recovered as the device has some other means of ensuring the device – boot and
PSA RoT – have been returned to a trustworthy state.

Identifier Rule Rationale Information

 Non-revealing diagnostics must not
expose any secrets, sensitive data, or
affect the normal operation of a
device.

The device must remain in a fully
secured, attestable state.

 Enabling NS debug, ARoT debug, and
PSA RoT debug must only be possible
following a device reset.

To protect sensitive secrets and data,
the debug state must never change at
runtime.

The attestable state must not change
at run-time, and hence any debug
must only be enabled by boot ROM.

In NS debug or ARoT debug the debug
state must be explicit in the initial
attestation report.

In PSA RoT debug, the debug state is
implicit by any initial attestation
report not being signed by production
keys and identities.

 Enabling intrusive debug should
require a secure authorisation
process with appropriate governance.

Intrusive debug should be restricted
to authorized agents, and user
permission should be obtained.

Depending on certification profile.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 34
1.0 Alpha Release 2 Non-Confidential

3.4 Generic PSA security lifecycle (mandatory)

Device Assembly and Test

PSA RoT Provisioning

Secured

Non-PRoT Debug

Implementation
Verifier

Device Lockdown

Provisioning Lockdown

Terminate

Enrol

Blacklist

Decommissioned

Recoverable PRoT Debug

The generic PSA security lifecycle is outlined in the figure above and is intended to capture the minimum
lifecycle states and transitions for the PSA RoT.

In practice, it is expected that many of the steps identified above will be expanded in any actual process. For
example, factory provisioning may involve separate provisioning of a SIM or TPM style device with its own
processes. Likewise, depending on isolation hardware capabilities, Non-PSA RoT debug may refer to NS debug, or
to either NS debug or ARoT debug. Or even to debug only enabled for specific secure partitions at either level.

As such, the states in the generic PSA security lifecycle are defined as main states, and the security properties of
all main states are defined in this specification as they relate to the PSA RoT, and to the attestable state of the
device.

Implementations may define additional sub states to a main state depending on, for example, isolation
capabilities and application requirements, or certification profile.

A sub state must always retain the properties of its associated main state, but may add finer granularity.

Both main states and sub states must always be attestable while a device is in an attestable state, and when a
device enters an attestable state. This means such state changes must not be possible after the boot code has
completed execution, and hence a device reset is required for such state changes.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 35
1.0 Alpha Release 2 Non-Confidential

3.4.1 Main States

The generic model defines the following main states:

Main State Explanation Notes

Device Assembly and Test During device assembly and test it is expected
that the device will not be in a secure state,
hardware debug and diagnostics interfaces may
be open, and the device will be running
manufacture and diagnostics software which
must not be present on production devices.

PSA RoT provisioning The device must be in a secure state before any
root parameters are provisioned or become
accessible to any device software.

Depending on certification profile and device
capabilities, root parameters may be generated
on device or off device.

If root parameters are generated on device then
care must be taken to ensure the device has
access to sufficient entropy during manufacture.

If root parameters and identities are provisioned
separately, for example on a an SE, then it must
not be possible for any device software to access
or perform any operations on them until the
device has reached this state.

Secured In secured state the PSA Root of Trust is fully
operational and secured.

All PSA root parameters have been provisioned
and locked.

Depending on device capabilities and certification
profile, locking of PSA root parameter values may
be enforced by hardware (hard locking) or by PSA
isolation (soft locking).

Additional application level data and secrets
should only be provisioned after the device gets
to this state.

Non-PSA RoT debug Non-PSA RoT debug is any debug which does not
compromise the PSA Root of Trust.

A device may return from Non-PSA RoT Debug to
secured state as long as the PSA Root of Trust has
not been compromised.

Recoverable PSA RoT
debug

Recoverable PSA RoT Debug is any debug which
compromises the PSA RoT, but protects PSA root
parameters such that they are inaccessible while
the device remains in debug state, but may be
recovered if the device is returned to a verifiable
secured state.

Requires dedicated hardware capable of:

1. Detecting that the device is entering
such a state

2. Hiding PSA root parameters while the
device remains in such a state

3. Detecting and verifying that the device
has been returned to a secured state

A device while in this state is not capable of
generating an initial attestation report signed by
production keys, and hence is not attestable.

Decommissioned Any debug state in which all PSA root parameters
have been made permanently inaccessible.

This is the only state in which PSA RoT debug is
possible on production devices not supporting
recoverable PSA RoT debug.

A device in this state is not capable of generating
an initial attestation report signed by production
keys, and hence is no attestable.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 36
1.0 Alpha Release 2 Non-Confidential

3.4.2 Rules

Identifier Rule Rationale Information

 No production root parameters or
other sensitive data should be
present during device assembly and
test.

During device assembly and test the
device is typically unprotected and
hence no root secrets and identities
can be present.

Hardware debug ports and
diagnostics interfaces may be open.

Test parameters may be used.

 Factory test tools and firmware
should not be signed or validated by
the same authority as final
production images.

Manufacture software may contain
potentially revealing test and
diagnostics modes which should
never be present in any secured
device.

It should not be possible to load such
software on a device other than in
the device assembly and test state.

 When entering PSA RoT Provisioning
state, the following security
properties must be enabled:

1. Secure boot enabled and
boot ROM locked

2. No unsigned manufacture
or diagnostics software
present

3. All hardware debug and
diagnostics interfaces
disabled or locked

4. Only signed production
software present

Depending on certification profile,
debug and diagnostics interfaces may
be locked with password or key, or be
permanently disabled.

Depending on device capabilities and
certification profile, locking of boot
ROM may be enforced by hardware
(hard locking) or by PSA isolation (soft
locking).

 When entering secured state, the
device must have the following
security properties:

1. All PSA root parameters and
identities provisioned

2. All PSA root parameters and
identities locked

Once the device enters the secured
state it must not be possible to
update or modify root parameters.

Depending on device capabilities and
certification profile, locking of PSA
root parameter values may be
enforced by hardware (hard locking)
or by PSA isolation (soft locking).

 A device must only enter a debug
state, or the decommissioned state,
following reset.

A reboot must ensure that all volatile
memory is cleared and reset.

This rule ensures that there is never
any intermediary state, which might
reveal secrets or sensitive user data,
left in memory when entering any
debug mode.

 All PSA root parameters must be
disabled before a device enters the
recoverable PSA RoT debug or the
decommissioned state.

In these states the PSA Root of Trust
is compromised and cannot be
trusted. It must not be possible to
derive production binding keys, or to
sign attestation reports using
production keys.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 37
1.0 Alpha Release 2 Non-Confidential

 It must only be possible to return
from recoverable PSA RoT debug to
secured state if the device has been
returned to a verified attestable
state.

 Typically requires dedicated hardware
capable of detecting and verifying
that the device has been returned to
an attestable state.

 It must not be possible for a device to
leave the decommissioned state.

It must not be possible to recover PSA
root parameters while a device is in
the decommissioned state.

 Depending on hardware capabilities
and certification profile, and with
appropriate governance, it may be
possible to repurpose
decommissioned device hardware by
effectively putting the hardware back
through manufacture and giving it a
fresh set of PSA root parameters (a
new identity).

This is out of scope of the PSA
security lifecycle and such a
repurposed device should be treated
as a new device.

3.5 Device types and properties (informative)

Unlocked Device

Production Device

Debug Device

Device Assembly and Test

PSA RoT Provisioning

Secured

Non-PRoT Debug

Implementation
Verifier

Device Lockdown

Provisioning Lockdown

Terminate

Enrol

Blacklist

Decommissioned

Recoverable PRoT Debug

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 38
1.0 Alpha Release 2 Non-Confidential

Linked to the PSA security life cycle are distinct device types in different security states which may be used for
different purposes:

1. Production device

A production device has been fully provisioned and locked down. In particular, the PSA Root of Trust is
fully provisioned and operational and in full control of security policy on the device, and the device can
be attested.

2. Unlocked device

An unlocked device can be a device taken off the production line before lockdown, a recoverable PSA
RoT debug device, or a device which has been decommissioned.

Typical uses include, for example, device and service development and testing, security development
and testing, and some repair and debug scenarios.

Devices of this type cannot be trusted with production secrets or actual customer data, and should never
be enrolled as trustworthy devices with any implementation verifier. But they may, for example, be
manually enabled by a service provider against dedicated test accounts for test and debug purposes.

3. Debug device

Depending on isolation level and method devices may support active debug in which the PSA Root of
Trust is not compromised.

Since at least the PSA Root of Trust is still operational and in full control of its security policy, the device
remains attestable, and a service can apply its own policy accordingly.

Further, since the PSA security lifecycle state is included in binding key derivation, any production
secrets and actual customer data held on the device and protected by binding keys cannot be revealed
while the device is in debug mode.

A debug device can be returned to a production device state as long as the PSA Root of Trust has not
been compromised.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 39
1.0 Alpha Release 2 Non-Confidential

4 Boot

4.1 General (informative)

Main boot image

Secondary Image(s)

Immutable Main system image

Boot ROM Main Boot

PSA RoT
Application

RoT
Primary

Application

Secondary
Application

Measure

Reset

Measure

Measure

All PSA devices must support a secure boot flow to ensure only authorized software can be loaded on the device.

The figure above outlines a generic secure boot flow for the purpose of this document. This is intended only as a
reference for the purpose of defining security requirements.

In general it is recommended that the boot process is split up in a small, simple and verifiable boot ROM with all
complex steps in the boot process contained in an updateable main boot image. This essentially moves all
complex steps of the boot process into the boot phase of the PSA RoT (SPM), using the boot ROM only as trust
root for the boot validation chain.

Actual implementations may use more complex models. For example, some solutions may support a boot chain
with additional steps, for example an initial boot image loading the RoT code and an initial application loader
(primary application), where the application loader in turn then loads NS side kernel and application images
separately (secondary application images). Or an implementation might support a main system image split into
multiple sub-images to allow for incremental updates rather than updating the whole image, or to support more
complex supply chain models with different signing entities.

Any such variation must still meet the generic security properties as defined in this document.

1. A device must always boot from a Boot ROM following reset

Boot ROM forms part of the PSA Immutable Root of Trust on a system. Being immutable it cannot
change, and hence must be minimal, certifiable and generic.

Boot ROM measures and validates a main boot image before transferring execution to the main boot
code.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 40
1.0 Alpha Release 2 Non-Confidential

2. A main image includes main boot code

Main boot code is responsible for the majority of the boot process, bringing up the primary software of
the device, including root of trust components. The main boot image may be updateable.

Main boot code measures the components of the RoT, and the primary application of the device, before
transferring execution.

3. Typically on a PSA system main boot code will transfer execution to SPM, which then creates and
enforces the isolation environment for the rest of the code on the system.

4. Some devices may include additional boot steps for loading user applications, downloadable
applications, kernel file systems, and other later stage images and components

Any loaded components at any point in the execution chain should be validated, and must not break the
secure boot chain of the device.

4.2 Image signing and validation (mandatory)

All images loaded on a PSA device must be signed using asymmetric keys (RSA or ECC), and must be validated
before installation on a device.

Once installed on a device, images may be locally hash locked to avoid asymmetric validation on each boot
(hybrid validation).

Identifier Rule Rationale Information

 All images loaded on a PSA device
must be signed using asymmetric
keys (RSA or ECC)

A device must be able to ensure that
only authorized software is installed
and loaded.

Symmetric signing is not sufficient for
PSA-compliant devices.

 An image signature must cover at
least:

1. Image size

2. All image content (code and
data)

3. Critical parameters, for example
location and launch address,
where applicable

4. The image manifest, including
component version,
measurement

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 41
1.0 Alpha Release 2 Non-Confidential

 Each software component must
specify a software version.

The software version must cover at
least the following components either
together (release version or image
version), or individually (component
version):

1. Boot ROM

2. Main Boot

3. PSA Root of Trust

4. Application Root of Trust

5. Primary application

6. Any updateable
components for trusted
subsystems

Both the boot process and an
attestation verifier needs to be able
to identify the version of software
currently loaded in the device.

The version should uniquely identify
an iteration of the associated
component(s), where a higher version
represents a more recent iteration of
the component.

Included in initial attestation.

Used to enforce anti-rollback
semantics.

 If individual component versions are
not specified then for the purpose of
attestation and anti-rollback they
shall be reported as having the same
version as the overall image version.

 Captured in boot state.

 Full asymmetric validation must be
performed before an image is
installed on a device.

 For example, during firmware
updates.

 Full asymmetric validation should be
performed before an image is loaded
for execution.

 For example, at boot.

 Images may be locally hash locked
(symmetric) on installation.

Allow a device to only perform full
asymmetric validation of an image
when it is installed (for example,
firmware update), and perform a
simpler local symmetric validation
when it is loaded for execution (for
example, at boot), to improve
performance.

 Any local has locking must be
integrity and replay protected.

It must not be possible to use a local
hash locking mechanism to
circumvent the secure boot chain.

See Storage.

 Boot ROM must be associated with an
immutable root validation key.

The boot ROM must be able to
validate any images it loads against
an immutable root.

The root validation key may be part of
the boot ROM, or stored separately in
protected Storage.

Either way, it must not be possible to
modify or replace the root validation
key on a production device.

 The immutable root validation key
should not be used to directly sign
and validate images.

The immutable root validation key is
a critical asset and should only be
used to sign delegated validation keys
in order to minimise signing events
for the root validation key.

See Validation and supply chains,
and [TBFU].

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 42
1.0 Alpha Release 2 Non-Confidential

4.3 Component measurements (mandatory)

Regardless of packaging in images, software components must be measured when loaded for execution for the
purpose of attestation.

Identifier Rule Rationale Information

 At a minimum, the following
components must be measured
individually when loaded for
execution:

1. Main Boot

2. PSA updateable Root of Trust

3. Application Root of Trust

4. Main application

A validating entity must be able to
determine the full security
configuration of a device.

If either of the listed components are
loaded as multiple sub-components,
then each sub-component must be
measured individually.

 If either of the components listed
above are updated as multiple
individual sub-components, then each
sub-component must be measured
individually.

Some device architectures support
fine grained updates to minimise the
size of updates.

 A measurement for a component
must be calculated as a hash of at
least:

• All loaded content (code and
data)

 Critical parameters, for example
location and launch address are
covered by signature validation and
do not need to be measured
separately.

4.4 System reset (mandatory)

In this document, the term system reset is used to describe a complete system reset, including any trusted
subsystems.

Following system reset, the system and any trusted subsystems should be in a fresh state. No runtime state from
before the reset should be retained or used.

Identifier Rule Rationale Information

 Reset of a PSA system shall include
reset of any trusted subsystem.

The system must start in a fresh state,
including all trusted subsystems.

 The boot state must be freshly
evaluated and verified on every boot.

The boot chain and the
trustworthiness of the system must
be re-established following every
reset.

 The system must only launch from
boot ROM following system reset.

 The boot ROM, and the entry point
following reset, must be immutable
and not updateable or modifiable in
any way on a production device.

 See PSA security lifecycle.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 43
1.0 Alpha Release 2 Non-Confidential

4.5 System hibernation (optional)

The term system hibernation is used to describe a system reset event which can preserve enough state to restart
execution from a known point prior to the reset.

System hibernation is an optional feature. If supported, hibernation typically involves hibernation code saving
runtime state to persistent storage before powering down the system. On system reset, the boot code is then
able to detect and restore the previously saved state as part of the system boot process.

From a security point of view, PSA-compliant devices supporting system hibernation should ensure that any
saved and restored hibernated state is appropriately protected:

• Privacy to protect runtime secrets and confidential data contained in stored state

• Integrity to prevent modification to stored state

• Replay protection to prevent replacement of stored state

Identifier Rule Rationale Information

 Hibernation state must be protected,
including privacy, integrity, and replay
protection.

It must not be possible to extract,
modify, or replace the hibernation
state, including runtime secrets and
data.

Depending on device architecture,
this requirement may be met by using
on-chip storage resources, or through
cryptographic protection. See
Storage.

 A system which has been hibernated
and then restored must be
indistinguishable from if the
hibernation event never took place.

It must not be possible to use a
hibernation function to affect or
modify the runtime state or data of a
system.

Indistinguishable from a security
point of view.

For example, network connections
may have been dropped by the other
side as a result of a hibernation event.

 Hibernation code must be
implemented within the PSA Root of
Trust.

The act of hibernating a system must
be treated as part of the most trusted
code on the device.

General power management code,
including the decision whether to
hibernate or not, may be outside the
PSA RoT.

The actual hibernation code must be
inside the PSA RoT.

4.6 System suspend (optional)

The term system suspend is used to describe any low-power state in which the system has not been reset or
power-cycled but in which most resources have been suspended.

Note: Any power management state requiring the system to be reset or completely powered down must
be treated as system hibernation.

System suspend is an optional feature. If supported, suspend typically involves suspend code ensuring orderly
suspend of the current execution state, and then power management hardware halting and powering down
system resources, maintaining only a small internal power management state and keeping DDR refreshed to
maintain the runtime state of the system.

On resume, power management hardware resumes system resources, and suspend code ensures an orderly
resumption of the suspended execution state.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 44
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 The suspend state should be
protected, as far as possible, including
privacy, integrity, and replay
protection.

The suspend state contains both
runtime state and data held in
memory.

In general, there is a trade-off
between security and suspend
performance, with short expected
suspend and resume times.

Depending on certification profile and
hardware capabilities, suspend
protection may be by physical
inaccessibility, or may cover a partial
critical portion of the execution state.

 A system which has been suspended
and then restored must be
indistinguishable from if the system
suspend event never took place.

It must not be possible to use a
system suspend function to affect or
modify the runtime state or data of a
system.

Indistinguishable from a security
point of view.

For example, network connections
may have been dropped by the other
side as a result of a system suspend
event.

 Suspend code must be implemented
within the PSA Root of Trust.

Any suspend code required to
support system suspend must be
treated as part of the most trusted
code on the device.

General power management code,
including the decision whether to
suspend or not, may be outside the
PSA RoT.

The actual suspend code must be
inside the PSA RoT.

4.7 Anti-rollback (mandatory)

Anti-rollback is a mechanism ensuring that a device only accepts newer versions of software. This is a general
robustness feature ensuring the smooth operation of a service, intended to prevent devices in normal
operations from loading earlier versions of software containing known errors or vulnerabilities.

PSA allows either of the following two methods of anti-rollback protection to be supported on PSA-compliant
devices:

1. Local update with reset function

In this model, the boot ROM automatically updates an anti-rollback counter whenever it has successfully
loaded a new version of software. ‘Successfully’ in this context may be strict, as in using “the image
passed authentication” as the only test.

However, some implementations may have the ability to detect (by boot ROM) at a following reboot
whether the reboot was caused by later code causing a reset (crash). For example, detecting if a
watchdog failure was the cause, or using more elaborate checkpoint schemes. The boot ROM may then
defer updating the anti-rollback counter until at least one successful boot.

In the latter case, and before the boot code has updated the anti-rollback counter, then the boot code
may fall back to an earlier last known good version if a boot error is detected.

In case of an error with the anti-rollback process itself, such that the anti-rollback counter ends up out of
synch leaving the device unable to boot, it may be necessary to support a reset mechanism for the anti-
rollback counter.

For example, a factory reset operation may also reset the anti-rollback counter. Or a device
management protocol may include a secure messaging feature instructing a device to reset its anti-

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 45
1.0 Alpha Release 2 Non-Confidential

rollback counter. In the latter case, supporting both source validation and replay protection for such
messages, enforced by Boot ROM is obviously essential.

2. Update on command

An alternative approach is for the boot R not to update its anti-rollback counter on its own accord, and
only update it when it receives a secure message from the device management service to do so.

This requires a secure messaging feature in the device management protocol, supporting at least source
validation and ideally replay protection as well.

It also requires a secure messaging feature to signal to devices which software version to load out of
potentially a number of possible options (basically any version newer than the current version of the
anti-rollback counter on the device).

Which method to use depends on operational requirements.

The first option may be more robust at the device level but may make it harder to manage roll-back scenarios at
the service level in case there is a service level problem with a newly deployed image – it might boot correctly,
but some aspect of its function is broken and the service provider decides to roll back its population of devices.
Further, if a reset message is used then it may pose a security risk in itself if an appropriate and effective
message replay protection scheme is not in place.

The second option may be more robust at the service level as the service provider decides when to invoke anti-
rollback after rolling out a new software version in its network. But it also potentially leaves devices able to be
rolled back to a previous software version for longer. It requires a secure messaging feature ensuring messages
to update the counter can only come from a trusted source, but it is still potentially (depending on protocol
implementation) susceptible to denial of service attacks by blocking the message to update the anti-rollback
counter, leaving the device exposed to rollback attacks.

Either way, for both types of semantics the following generic features are required:

1. An anti-rollback counter managed exclusively by the boot code – only images that are of the same or a
more recent version than the anti-rollback counter can be loaded on the device

2. The anti-rollback counter may be updated either automatically by the boot code following successful
boot of a new image, or on command from a device management service

3. The anti-rollback counter may be reset, either automatically upon factory reset, or by command from a
device management service

4. In the case of anti-rollback being controlled by command from a remote service (reset, or update), the
command must be protected by source validation and replay protection

Identifier Rule Rationale Information

 The system must only load and install
updates that are of the same or
higher version than the currently
installed version of the same
component.

It must not be possible to install an
older version of any component.

Anti-rollback must be supported on
production devices.

Typically requires securely stored
anti-rollback counters.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 46
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 Anti-rollback must be enforced by
boot ROM.

The device state, including its boot
state, must be attestable at all times
and must not change at runtime.

All firmware updates must require a
device reboot to take effect.

 The anti-rollback mechanism must
only be directly accessible to boot
ROM.

No other code on the device should
be able to directly modify the anti-
rollback state of the device.

Depending on certification profile,
this requirement may be met by
either isolation, or lockable registers,
or similar.

 An anti-rollback mechanism may be
reset following factory reset.

Allow devices to be recovered if the
anti-rollback mechanism gets out of
synch.

 A device may support a mechanism to
control anti-rollback protection by
remote messaging – reset message,
or update message.

Remote device management
messaging.

Such remote mechanisms may also be
used, for example, in some device
management protocols to support
targeted updates. Such additional
features are out of scope of this
document but in general have similar
security requirements.

 Any remote device management
mechanism must be protected by at
least:

1. Authentication of the
command issuer with at
least the same
cryptographic properties as
that used for image signing

2. Replay protection, ensuring
that any issued command
instance can only be acted
on once by a device

It must not be easier to subvert any
such messaging protocol than to
subvert the secure boot mechanism
itself.

It must not be possible to use
previously issued versions of such
commands against a device.

 It must not be possible to use any
remote management feature to force
the anti-rollback counter on a device
to a value beyond the highest version
of any images currently loaded on the
device.

It must not be possible to force a
device into a state in which it can no
longer boot.

4.8 Boot State (mandatory)

4.8.1 Temporal Isolation

The boot stages before SPM is loaded – boot ROM and main boot – should be isolated by temporal isolation:

1. Code in each stage should execute its tasks, complete, and the terminate and hand over execution to the
next stage

2. Code in each stage should leave boot state to carry forward results and data from one stage to the next

3. Private data for one stage should not be directly accessed (or accessible) by later stages

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 47
1.0 Alpha Release 2 Non-Confidential

Note that temporal isolation in this context relates to the execution of the boot tasks. On constrained devices re-
use of generic boot code functionality, for example cryptographic libraries, may be used to reduce the overall
code footprint. Any such reuse must not change or affect the boot state of the system, and must not expose any
private boot code secrets or data.

Identifier Rule Rationale Information

 Code executing during one boot stage
must completely exit before handing
over to the next stage.

Each boot stage (pre SPM) must be in
complete control of its own
environment and execution context.

 Data and results from one boot stage
may be left as boot state for the next
stage.

 Boot state should be left in on-chip
RAM.

Boot state may include root secrets. Using external DDR for holding boot
state may expose root secrets to
probing and other external attacks.

 Code from one boot stage should not
directly access secrets and private
data from a previous boot stage.

A temporal boundary must be
respected.

Ideally enforced by hardware, for
example invalidating certain storage
locations until a full system reset
when exiting a particular boot stage.

May be enforced by software
convention or isolation depending on
certification profile.

4.8.2 Initial boot state

The initial boot state is the secrets and data left by the boot ROM before handing over to main boot.

Identifier Rule Rationale Information

 At least the following component
information must be captured for
each software component validated
by the boot ROM, and for itself:

a. Signer ID (from manifest)

b. Software version (from
manifest)

c. Actual measurement – the
measurement calculated by
the boot ROM for this
instance of the associated
component

Capture the boot state as determined
by the boot ROM.

 Initial parameters should be copied
from shielded locations to the initial
boot state.

Only the boot ROM should directly
access root parameters in shielded
locations.

 The initial boot state should only be
directly accessible to the main boot.

Initial parameters should not be
available to later stages of software.

This may be implemented, for
example, by main boot erasing all or
part of the initial boot state when it
exits.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 48
1.0 Alpha Release 2 Non-Confidential

 The initial boot state should not be
modified once set by the boot ROM.

Make sure that the initial boot state
can be trusted by main boot
components.

Depending on certification profile,
this requirement may be met by
isolation and software convention.

On devices with stricter certification
profiles lockable registers may be
required (only writeable by boot
ROM).

4.8.3 Main boot state

The main boot state is the secrets and data left by the main boot code.

Identifier Rule Rationale Information

 The main boot state must include all
component information captured by
boot ROM.

Retain measurements for all
components loaded by the boot
ROM.

 At least the following component
information must be captured for
each additional software component
validated by the main boot code:

a. Signer ID (from manifest)

b. Software version (from
manifest)

c. Actual measurement – the
measurement calculated by
the boot ROM for this
instance of the associated
component

Add measurements for all additional
components loaded by main boot.

 Boot seed

The boot state must include a boot
seed uniquely generated at each boot
event.

The boot seed may be used by later
services, for example to allow a
validating entity to ensure that
attestations for different attestation
end points were generated in the
same boot session.

It must be large enough to make
global collisions statistically
improbable.

Unique here may be read as
statistically unique. A 256-bit size is
recommended.

This property may be satisfied either
by randomly generated if sufficient
entropy is available in the boot
process, or by generating the seed as
a hash from a monotonic boot
counter.

 The main boot state must include all
PSA RoT root parameters.

All root parameters required by the
PSA RoT must be accessible through
the main boot state.

Either populated from initial
parameters in the initial boot state, or
derived from initial parameters, for
example a HUK.

 The main boot state must only be
accessible to PSA Root of Trust
services.

Only the PSA Root of Trust should be
able to directly access PSA RoT
parameters.

For systems with level 1 isolation this
requirement can only be met by
software convention.

For systems with level 2 isolation or
higher, this requirement must be
enforced by hardware isolation
mechanisms.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 49
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 The main boot state should not be
modified once set by the main boot
code.

Make sure that the boot state can be
trusted by the PSA RoT.

Depending on certification profile,
this requirement may be met by
isolation or by software convention.

On devices with stricter certification
profiles lockable registers may be
required (only writeable by main boot
and the locked).

4.8.4 Measured trusted subsystems (mandatory)

Any updateable components for trusted subsystems must be measured and validated at boot, and included in
the boot state.

Identifier Rule Rationale Information

 Any updateable part of each trusted
subsystem shall be described by a
signed manifest.

Same model as for validated software
components.

Updateable parts include, for
example, software, firmware,
rigidware.

Any updateable component which
affects the function of the trusted
subsystem.

 Each separately updateable
component for each trusted
subsystem must be measured and
validated separately at boot by the
boot ROM.

The state and properties of trusted
subsystems must be verified.

 The boot state must be extended to
include, for each updateable
component of each trusted
subsystem:

1. Signer ID (from manifest)

2. Software version (from manifest)

3. Actual measurement – the
measurement calculated by the
boot ROM for this instance of
the associated component

Same model as for validated software
components.

4.9 Validation and supply chains (informative)

[TBD]

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 50
1.0 Alpha Release 2 Non-Confidential

4.9.1 Single Signer

Firmware Image

Boot ROM

PSA Root of
Trust

Im
age

M
an

ifest

Application
Root of Trust

Application

Measure A Measure B Measure C

Sign

Boot
Validation

Key

Factory
Provisioning

Boot State

Sign Sign

Image
Signer

Im
age

M
an

ifest

Im
age

M
an

ifest

4.9.2 Delegated signers

Firmware Image

Boot ROM

PSA Root of
Trust

Im
age

M
an

ifest

Application
Root of Trust

Application

Measure A Measure B Measure C

Image
Signer

Sign

Signer
Validation

Key

Factory
Provisioning

Boot State

Sign Sign

Image
Signing

Authority

Im
age

M
an

ifest

Im
age

M
an

ifest

Signing Policy

Image
Signer

Signing Policy

Image
Signer

Signing Policy

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 51
1.0 Alpha Release 2 Non-Confidential

4.9.3 Signer revocation

5 Initial attestation

5.1 General (informative)

Device

System

Attested End-
Point

Validating
Entity

Initial Attestation
Key

Instance ID

Implementation
Verifier

Manufacture

Implementation Verification
Protocol

Attestation
Protocol

Initial Attestation

Software Signer
Component Verification

Protocol

IAT

Initial
Attestation

IAT

Enrol
Implementation

Signed
Components

IAT

Implementation
ID

Manufactured
Identities

Attestation in general involves several security processes, working together to build a trusted ecosystem. There
are many protocols for attestation, from proprietary systems to attempted standardisation by groups such as
FIDO, TCG, and Global Platforms.

PSA does not attempt to define or replace any attestation protocol. Instead it provides a framework and the
minimal generic security features providing an interoperable and hardware independent way for OEM and
service providers to integrate any attestation protocol on top of the PSA Root of Trust.

This is done by introducing the initial attestation token (IAT) and the initial attestation service at the PSA RoT
level.

The figure above outlines a generic example for the purpose of identifying typical roles and separations of
concern which apply to virtually any attestation scheme.

A generic workflow for attestation then runs as follows:

1. At manufacture the device is provisioned with immutable hardware root parameters in PSA Immutable
Root of Trust, including a unique initial attestation key (IAK), instance ID, and implementation ID:

a) The IAK must be unique to an instance of an implementation of the PSA Root of Trust

b) The Instance ID uniquely identifies the IAK

c) The Implementation ID uniquely identifies the underlying Immutable PSA RoT

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 52
1.0 Alpha Release 2 Non-Confidential

d)

2. Manufacture reporting must be in place to track issued and manufactured identities, and the status of
associated hardware

a) An implementation verifier must be able to track and verify manufactured identities and their
associated security properties, for example certification status

3. The PSA Root of Trust provides a generic initial attestation service

The initial attestation service produces an initial attestation token (IAT), allowing an attested end point
to bind any attestation protocol to:

a) The boot state of the PSA RoT

b) The security state of the PSA RoT

c) The calling partition (the attested end point)

d) Essential properties of the protocol – an authentication challenge supplied by the attested end
point

4. The attested end point is expected to implement any application-specific attestation protocol

An attested end point represents all application-specific logic required for an attestation protocol. It
could be, for example:

a) A device end point for a device attestation and authentication protocol

b) An application level key attestation service for, for example, user credentials or alias identity
keys

c) An end point for an anonymization service, for example Direct Anonymous Attestation (DAA)

5. A validating entity can take the initial attestation report and:

a) Verify the implementation of the PSA Root of Trust, its manufacture status (for example a
production device or a development device), and its certification status

b) Verify the updateable components currently loaded on the device

c) Verify the security state of the PSA Root of Trust on the particular device instance being attested

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 53
1.0 Alpha Release 2 Non-Confidential

5.2 Basic attestation (mandatory)

Initial Attestation
Initial Attestation

Key
Attested End-

Point
Validating Entity

Attestation request
auth_challenge

Object
Record A

Object
Record B

Challenge
Object record A

auth_challenge =

H(ObjectRecordB|ObjectRecordA)

Object
Record C

digest =

H(auth_challenge|ObjectRecordC)

Sign
digest

IAT=ObjectRecordC|

auth_challenge|sign)

Attestation report
IAT

Response
IAT, ObjectRecordB

ObjectRecordC = (BootState,

 calling partition)

ObjectRecordA =

protocol challenge VE

ObjectRecordB = protocol

challenge AEP

Negotiate session key
(ObjectRecordA, ObjectRecordB)

Verify IAT

The basic attestation model enables attestation of an attested end point on a system, and the state of the
system.

In PSA, an attested end point is a secure partition. This allows a verifier to confirm and be confident that the end
point is not only a known PSA instance in a known state, but is a trusted component of that instance and not any
software.

Any attestation protocol can be represented as starting with a challenge carrying some metadata – Object
Record A – from the validating entity. Depending on protocol this might be nothing at all, or for example some
identity information for the validating entity, or a nonce, a public key or initial DH parameters.

The attested end point is associated with metadata of its own – Object Record B – representing any client side
key exchange information (for example, a public key, or initial DH parameters), and any other metadata
required by the chosen attestation protocol.

The attested end-point then requests an initial attestation from the PSA Root of Trust. The initial attestation is
constructed as follows:

1. The attested end-point calculates an authentication challenge, auth_challenge, constructed as a hash of
object records A and B

The hash needs to include at least all metadata that must be validated by the validating entity as part of
the chosen attestation protocol.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 54
1.0 Alpha Release 2 Non-Confidential

2. The initial attestation service is associated with its own metadata – Object Record C – including:

a) The measured boot state

b) The current security lifecycle state of the PSA Root of Trust

c) The partition ID of the calling partition

3. The initial attestation service calculates a digest as a hash of auth_challenge and its own object record C

4. This digest is then signed using the initial attestation key, only accessible to the PSA RoT

5. An initial attestation token (IAT) can now be constructed by combining Object Record C, auth_token, and
the signature

6. The attestation protocol challenge can now be completed by the attested end point by combining the
initial attestation token with its Object Record B and returning both to the validating entity

7. The validating entity can use the report to validate the trustworthiness of the PSA Root of Trust and its
implementation, validate the authenticity of Object Record B, and validate the context of the original
challenge (Object Record A).

8. A secure connection can now be established to the attested end point using an appropriate session key
negotiation mechanism for the chosen attestation protocol (for example, an SSL or TLS connection, or
completing a DH exchange) based on challenges encoded in object records A and B.

Identifier Rule Rationale Information

 The system must be provisioned at
manufacture with an immutable
initial attestation key.

 The initial attestation key must be an
asymmetric key.

To allow validation by arbitrary
entities in an ecosystem.

RSA or ECC.

 The system must be provisioned at
manufacture with an immutable
Instance ID, uniquely identifying the
initial attestation key.

Serves as a unique secure identifier
for a PSA RoT instance.

A hash of the public part of the initial
attestation key.

 The system must be provisioned with
an immutable Implementation ID,
uniquely identifying the underlying
implementation of the Immutable
PSA RoT.

It must be possible to verify a link
from an initial attestation key to the
underlying implementation of the
Immutable PSA RoT, and its
properties.

 A calling partition must be able to
make a contribution to the initial
attestation – auth_challenge.

Allow a calling partition to bind
additional metadata to an initial
attestation.

A hash of the metadata to be bound
to the initial attestation.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 55
1.0 Alpha Release 2 Non-Confidential

 The object record for the initial
attestation service must include at
least the following security
information from the main boot
state:

a) The boot state for each
updateable component
loaded at boot

b) The current security
lifecycle state of the system

c) A boot seed

d) The Instance ID of the
system

e) The Implementation ID of
the system

 The boot seed may be used by a
validating entity to ensure multiple
reports were generated in the same
boot session. For example, if an
Application Root of Trust provides
multiple attestation end points, or in
extended attestation use cases.

 The initial attestation service shall
produce an initial attestation token
(IAT) containing:

a) Object record C

b) Auth_challenge

c) Calling partition ID

d) Signature using the initial
attestation key

This binds application-specific
attestation protocol parameters
(auth_challenge) to the boot state
and identity of the PSA Root of Trust,
and to the calling partition

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 56
1.0 Alpha Release 2 Non-Confidential

5.3 Delegated attestation (optional)

Object
Record A

Object
Record B

Object
Record C

Initial Attestation
Secondary
Attestation

Attested
End-point

Validating Entity
Initial Attestation

Key

Object
Record D

Attestation request
Auth_challenge3

Secondary
Attestation Key

auth_challenge 1 =

H(SecondaryAttKey)

digest =

H(auth_challenge1|ObjectRecordC)

Sign
(digest)

Attestation report
IAT Challenge

ObjectRecordA

auth_challenge2 =

H(ObjectRecordB|ObjectRecordA)

Attestation request
Auth_challenge1

Sign
digest

digest =

H(auth_challenge1|ObjectRecordD)

Attestation report
IAT,

SecondaryAttestation

IAT=ObjectRecordC|

auth_challenge1|sign)

SecondaryAttestation=ObjectRecordD|

auth_challenge1|sign)

Response
ObjectRecordA,
ObjectRecordB,

IAT,
SecondaryAttestation

The basic attestation model outlined previously can be extended to allow delegated attestation in an attestation
chain. This model is expected to be more common on multi-stage boot devices in which each stage attests its
own state.

The example in the figure above shows outlines the main differences with a basic two stage delegated
attestation for a two-stage boot scenario, but the same pattern can be applied to other configurations. It
extends the basic attestation model already described, so all details are not repeated here.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 57
1.0 Alpha Release 2 Non-Confidential

1. The boot ROM validates and measures the boot state of the PSA Root of Trust and the Application Root
of Trust (SPE) and records the result in the initial boot record (object record C), including the current
boot seed, as defined by the boot ROM

2. A secondary loader stage in the Application Root of Trust validates and measures the application (N-SPE)
and records the result in a secondary boot record (object record D), including the current boot seed as
defined by the boot ROM

3. A secondary attestation service generates its own secondary attestation key at boot (random), and binds
it to the initial attestation token

This binds the secondary attestation key to the initial boot state of the system (Object record C), and to
the partition ID of the secondary attestation service partition (the owner of the secondary attestation
key) – an example of key attestation.

4. Attestation end points now request attestations from the secondary attestation service

a) The secondary attestation service generates a secondary attestation report, covering the
secondary boot state (object record D)

b) The secondary report is signed by the secondary attestation key

c) The secondary attestation service returns both the initial attestation token (key attestation of
the secondary attestation key) and the secondary attestation report (signed by the secondary
attestation key)

5. A validating entity can now:

a) Validate that the boot seeds match in both reports (they were both generated in the same boot
session)

b) Verify the implementation and the root of trust software using the initial attestation token

c) Validate the secondary attestation key using the initial attestation token

d) Validate the secondary report and object records A and B using the secondary attestation key

e) Verify the application software using the secondary attestation report

f) Proceed with the attestation protocol based on object records A and B

The secondary attestation service is now able to produce attestation reports without having to go all the way
back to the PSA Root of Trust. The initial attestation report is valid for an entire boot session, as its security state
can only change following reset, but those reports are still bound to the initial attestation of the PSA Root of
Trust and can be traced to the implementation of the Immutable PSA RoT.

5.4 Note on attestation and freshness (informative)

It is essential for an attestation system to be able to correctly and reliably determine he state of the attested end
up and the state of the underlying root of trust. This includes when a device has entered a debug state.

PSA provides two generic mechanisms which can be used to guarantee freshness of attestation reports:

1. Include a nonce or other freshness data from the validating entity in all attestation reports

Including such a nonce in the authentication challenge guarantees that a report was generated freshly.
This method is illustrated in the basic attestation example above.

If this method is to be applied to a delegated attestation model, then it is essential that the same
freshness nonce is included in the auth_challenge for both the initial attestation token and the
secondary attestation report. Using a freshness nonce in this way precludes caching of the initial
attestation token.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 58
1.0 Alpha Release 2 Non-Confidential

2. In the case of delegated attestation, derive the secondary attestation key from a secured binding root
key

Using this method, it is not possible for the secondary attestation service to gain access to the same
secondary attestation key if the device is not in the secured lifecycle state.

If this method is applied to delegated attestation then the validating entity can be assured that if it can
validate a signature it must have been created by the secondary attestation service while it was in the
secured security lifecycle state. Since the secondary attestation service can be trusted while the device is
in the secured security lifecycle state, the secondary attestation service can cache the initial attestation
token without reducing security.

A freshness nonce may still be included each time a secondary attestation report is generated, if
required by the attestation protocol, but it does not need to be included in the initial attestation token.

5.5 Attested trusted subsystems (mandatory)

Trusted subsystems are additional components and security features provided by a device, required by specific
certification profiles but not defined in this document.

Any updateable components for such subsystems must be measured and included in the boot state, and must be
attested as part of initial attestation.

Identifier Rule Rationale Information

 Boot state recorded by the boot ROM
for any validated and measured
trusted subsystem must be included
in the initial attestation.

Same model as for attesting the boot
state of any other updateable
component.

6 Storage

6.1 Overview (informative)

PSA requires secure storage services to be provided for any sensitive data stored on the device: for example
private data, secrets, keys and key materials. From manufacture provisioned secrets to application generated
and service provisioned secrets, and for user generated private data.

Secure storage services in general need to provide:

1. Access control policies – ownership of sensitive data

2. Privacy and integrity protection – prevent sensitive data from being accessed or modified by an
unauthorized agent

3. Replay protection – prevent a stored set of sensitive data from being replaced by a previously stored
version of the same data set

4. Protection against unauthorized access to sensitive data when the device is in a non-secured state, for
example debug modes

Depending on implementation requirements and certification profile these properties may be enforced by PSA
isolation, or cryptographically, or in many cases in some combination.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 59
1.0 Alpha Release 2 Non-Confidential

Application Root
of Trust

PSA Immutable
Root of Trust

PSA Updateable
Root of Trust

Crypto Services

Application

Secure Storage

Isolated
Locations

Non-isolated
Locations

Non-Isolated
Storage Devices

Internal Trusted
Storage

Binding Service

NS Storage

The PSA security model defines common PSA RoT level building blocks for secure storage:

1. Internal trusted storage – a simple storage model intended as a basic storage service on devices with
limited storage needs, or as storage for root secrets and root metadata for application level (ARoT or
NS) storage services

2. A binding service, allowing ARoT and NS partitions to bind data to a device instance, a partition, and the
security lifecycle state

Using these building blocks, storage services of varying complexity and capability can be built. For example:

• Simple storage, using only Internal Trusted Storage, based on on-chip storage locations protected by PSA
isolation and robustness rules

• Application-specific storage services utilising off-chip storage locations or removable storage devices,
perhaps with application-specific access control policies, for example protected files systems, secure
database or object store.

In this case, Internal Trusted Storage may be used to keep root metadata for integrity trees, and the
binding service used to derive key ladders bound to a device instance and its security lifecycle state.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 60
1.0 Alpha Release 2 Non-Confidential

6.2 Physical storage (mandatory)

Physical storage represents actual persistent storage media. For the purpose of the security model, the PSA
architecture defines the following classes of physical storage:

Storage
type

Isolation Property Use cases (examples) Notes

Isolated
locations

Memory locations which
are inaccessible to any
agent external to the
system.

Only directly accessible by
PSA RoT.

Device configuration data.

Simple persistent key and data
store.

Root metadata for application
level storage services.

Typically on-chip flash or NV memory with
restricted external access (for example, disabled
I2C).

Partition based access control enforced by PSA RoT
provides additional isolation and access control
between secure partitions making use of isolated
locations.

Shielded
locations

An isolated location or
storage device specifically
designed and used for the
purpose of securely storing
and protecting secrets; for
example, a tamper resistant
memory or register.

Only directly accessible by
PSA RoT.

PSA root secrets

Application-specific provisioned
root secrets

For example: inseparable SE, on-chip NV memory,
or dedicated sector of on-chip Flash.

Shielded locations should incorporate a degree of
tamper resistance. The extent of tamper resistance
will depend on certification profile.

Non-isolated
locations

General purpose memory
mapped persistent storage
resources.

No PSA RoT enforced
access control.

Application and user generated
data.

For example, file systems or
object stores.

Typically external flash.

Non-isolated
storage
devices

General purpose storage
devices.

No PSA RoT enforced
access control.

Application and user generated
data.

For example, file systems or
object stores.

For example, USB storage devices or removable
memory cards (other than any devices used to
implement a shielded location).

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 61
1.0 Alpha Release 2 Non-Confidential

The following rules apply to physical storage:

Identifier Rule Rationale Information

 Tamper resistance:

Shielded locations must provide a
degree of tamper resistance.

Shielded locations typically hold
provisioned secrets, including PSA
RoT secrets. A degree of tamper
resistance should be applied to
protect from attempts to extract such
secrets.

Depending on certification profile and
deployment requirements, tamper
resistance may address a range of
issues, including:

• Physical access control (debug
interfaces, external interfaces,
physical tamper proofing)

• Side-channels (for example
power and timing analysis)

• Active probing (for example
physical disassembly, or access
to internal buses and interfaces,
debug interfaces)

• Passive probing (for example x-
ray or electron microscopes)

 Isolation:

Isolated locations and shielded
locations must only be directly
accessible to PSA RoT.

These types of locations typically
relyon inaccessibility for privacy and
integrity protection.

Access control and ownership policies
must be enforced by the PSA RoT.

 Debug interfaces:

Isolated locations and shielded
locations must be inaccessible via any
external interfaces on devices in the
Secured and Non-PSA RoT Debug
security lifecycle states.

These types of locations rely on
inaccessibility for privacy and
integrity protection.

Access control and ownership policies
must be enforced by the PSA RoT
while the device remains in an
attestable state.

External interfaces include, for
example, USB, I2C, JTAG, EJTAG,
Boundary Scan, and serial port
debugging.

6.3 Internal trusted storage (mandatory)

Internal trusted storage is a PSA RoT service providing secure partition level access control for data stored in
isolated locations. Isolated locations should only be accessible through the internal trusted storage service.

Use cases for internal trusted storage include, for example:

1. A simple store for data on devices with limited storage needs

2. Storage of basic device configuration data

3. Storage for root keys and root metadata on devices with more complex Application RoT or NS level
storage services

Individual data objects are associated with an owning partition, and only the owning partition can access or
modify data in a stored data object.

In some cases, internal trusted storage may rely solely on the physical inaccessibility property of isolated
locations, together with PSA isolation, without requiring additional cryptographic protection.

However, cryptographic protection bound to the security lifecycle state of the device (binding) is mandatory if
internal trusted storage is used for sensitive data that should not be accessible to debugging agents.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 62
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 Isolated locations must only be
directly accessible to the PSA RoT.

Ability to enforce partition based
access control rules for isolated
locations.

Enforced by PSA isolation.

 It shall be possible for secure
partitions to store data objects in
isolated locations.

Provide simple storage for devices
with limited storage needs.

Provide root metadata storage for
devices with more complex storage
requirements.

 Each data object stored in isolated
locations shall be associated with an
owning partition.

 Enforced by the PSA RoT.

 Only the owning partition shall be
able to read, modify, or delete a data
object.

Provide access control at secure
partition level for data objects stored
in isolated locations.

Enforced by the PSA RoT.

 Data which should not be accessible
to a debugging agent when the device
is in any debug state in the PSA
security lifecycle, must be
cryptographically protected based on
the binding root key.

Debug states potentially expose any
data or secrets stored on a device to
the debugging agent, either directly
by compromising the internal trusted
storage service, or indirectly by
providing access to stored data from
a debugged partition.

See PSA security lifecycle.

See Binding root key.

6.4 Binding (optional)

Binding is a generic PSA RoT service allowing partition to request one or more partition specific binding keys for
its own unique use.

Partition specific binding keys are intended to be used in cases in which a secure partition needs to store data in
non-isolated storage while ensuring that:

• Other secure partitions on the system cannot directly access its data – partition binding

• Its data and secrets can only be accessed on the device they were created on – device binding

• Debugging agents cannot directly access any of its sensitive data or secrets – security lifecycle binding

Partition specific binding keys are always derived on request and never stored persistently.

A typical example might be a secure storage service managing key ladders and integrity trees for encryption,
integrity protection, and replay protection for the data it manages. This in turn is rooted in some storage root
key, and root metadata. The partition specific binding key may be used to either encrypt or derive such root
state in a way that ensures that no other partition can access that state, that the state can only be recovered on
the same device it was originally created, and that the state can only be recovered in specific security lifecycle
states.

Identifier Rule Rationale Information

 A secure partition shall be able to
request a partition specific binding
key.

Bind data and protocols to the calling
partition, a device instance, and the
security lifecycle state of the device.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 63
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 Partition specific binding keys must
always be derived fresh when first
requested following boot, and must
never be stored persistently.

Partition specific binding keys depend
on lifecycle state, device unique root
keys, and other state that may
change across device reset events.

A derived partition specific binding
key may be cached in volatile
memory private to the PSA RoT.

 It must not be possible to export a
partition specific binding key.

Partition specific binding keys should
only be available for crypto
operations.

 The calling secure partition shall be
able to make the following
contributions:

1. Usage policy

2. Seed

3. Debug policy

The seed is an application-specific
contribution, allowing a calling
partition to derive multiple different
partition specific binding keys for
different use cases.

The policies control how and when a
partition specific binding key can be
used, see below.

 Usage policy shall be one of:

1. Key derivation

2. Encryption

3. Signing

Prevent abuse of a binding key.

For example, preventing a key
intended to be used for key
derivations (key ladders) from being
used for direct
encryption/decryption. Or preventing
a signing key to be used for
encryption/decryption. Either
example potentially leading to
security issues.

Key derivation: The derived key can
only be used to derive other keys.

Encryption: The derived keys can only
be used for encryption/decryption
operations.

Signing: The derived keys can only be
used for signing/validation
operations.

 It shall not be possible to derive the
same partition specific binding key for
different usages.

Prevent abuse of a binding key from
accidentally or maliciously deriving
the same root key for different debug
policies.

Use different binding root keys for
different debug policies, see below.

 Debug policy shall be one of:

1. Secured

2. Non-PSA RoT debug

Secured: The same partition specific
binding key can only be derived in the
secured security lifecycle state.

Non-PSA RoT debug: The same
partition specific binding key can be
derived in the secured security
lifecycle state, and in any debug state
which does not compromise the PSA
RoT.

If no debug policy is specified then it
shall default to Secured.

 It shall not be possible to derive the
same partition specific binding key for
different debug policies.

Always derive different keys for
different debug policies.

Use different binding root keys (see
below) depending on debug policy.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 64
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 The following contributions shall
always be included when deriving a
partition specific binding key:

1. Calling partition ID

2. An appropriate binding root
key (BRK) depending on
debug policy

Calling partition ID: Binds the derived
key to a secure partition

BRK: Binds the derived key to a device
instance, and its security lifecycle
state.

See Binding root key

6.5 Binding root key (mandatory)

The PSA security model defines a generic Binding Root Keys (BRK) to be used as a root keys for deriving other
binding keys.

Two types of BRK are defined in this specification:

1. Secured BRK – the same BRK can only be derived if the device is in the Secured security lifecycle state

2. Non PSA RoT debug BRK – the same BRK can be derived if the device is in the Secured security lifecycle
state, or in any debug state which does not compromise the PSA RoT

In either case, a BRK always depends on:

1. A persistent (immutable) hardware unique identifier (HUK) provisioned at device manufacture – see
Root parameters

BRK are always derived fresh at boot, and form part of the boot state – see Boot State.

Identifier Rule Rationale Information

 Binding root keys (BRK) must be
derived fresh by boot code on every
boot:

1. Secured BRK

2. Non PSA RoT debug BRK

The BRK depends on the PSA security
lifecycle state of the device, and the
HUK, and hence may change
following device reboot.

 Derived BRK shall be included in the
boot state.

Only directly available to PSA RoT,
and derived as part of the boot
process.

 BRK derivation must depend uniquely
on the hardware unique key (HUK).

Including the HUK in a BRK derivation
makes the BRK unique to a specific
instance of the PSA RoT.

 It must only be possible to derive the
same Secured BRK if the device is in
the Secured PSA security lifecycle
state.

Ensure that anything bound to the
Secured BRK is not available in any
debug states.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 65
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 The same Non PSA RoT debug BRK
should be derived both on the
Secured PSA RoT security lifecycle
state, and in any debug state which
does not compromise the PSA RoT.

Allow the same BRK to be derived as
long as the PSA RoT has not been
compromised.

Should only be used where it is
acceptable that data protected by the
BRK is available to debug agents.

 The BRK derivation must be a
cryptographic key derivation function.

The BRK is used for cryptographic
binding and BRK derivation must
result in a cryptographically safe key.

See PSA key management.

 A BRK must only be used for deriving
other keys.

Ensure key diversity by not using root
keys, for example BRK, directly.

6.6 Use cases (Informative)

6.6.1 Simple data store

6.6.2 Simple key store

6.6.3 General data store

6.6.4 General key store

7 Cryptographic services

7.1 General (mandatory)

The PSA RoT provides basic cryptographic services to other code on the device. Implementations of PSA
cryptographic services must be designed with the following essential security properties:

1. Isolation: Provide the ability to manage actual values of keys and other secret cryptographic materials
within the PSA RoT crypto service when appropriate

2. Access control: Manage access to keys and other cryptographic materials at secure partition granularity

3. Policy: Provide the ability to control usage policy for secrets managed by the PSA cryptographic services
such that they can only be use for specific purposes

Isolation allows device code to be designed such that keys and other secrets are not exposed to less trusted
software.

Access control ensures that a partition can neither access values of nor perform operations using keys and other
secrets belonging to a different partition, allowing code to be designed such that keys used by one secure
partition (service) cannot be accessed by other partitions.

Finally, policies allow designers of code running on a device to restrict how individual keys and secrets owned by
a particular partition can be used by that partition, preventing misuse whether deliberate or unintentional.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 66
1.0 Alpha Release 2 Non-Confidential

Identifier Rule Rationale Information

 The PSA RoT cryptographic services
must be able to manage keys and
other secrets on behalf of other less
trusted code, such that less trusted
code cannot directly access values of
such keys and secrets.

Allow code to be designed, where
appropriate, such that less trusted
code does not need to have direct
access to keys and secrets.

 The PSA cryptographic services must
be able to manage persistent keys
and secrets stored in isolated
locations or shielded locations.

For example, support ARoT or NS
level provisioned root keys.

 All keys and secrets managed by the
PSA RoT cryptographic services must
always be assigned a unique owning
secure partition.

A secure partition should not be able
to access or use secrets owned by a
different partition unless explicitly
authorized to do so.

This includes any keys or secrets
originating from isolated locations or
shielded locations, for example
provisioned root keys.

 It must be possible for an owning
partition to delegate the usage of a
key or secret it owns to another
partition.

Allow keys or secrets to be generated
or derived by one (more trusted)
partition, and used by a different (less
trusted) partition.

Allow general application-specific
secure key management services to
be built on top of PSA RoT crypto
services.

Subject to policy.

 All keys and secrets managed by the
PSA RoT cryptographic services must
always be assigned a unique usage
policy.

It must be possible for designers of
code using PSA cryptographic services
to restrict how keys and secrets can
be used.

 The following minimum set of policies
must always be supported:

1. Usage: encryption, signing,
key derivation

2. Export: No export, clear
export, export wrapped

3. Delegation: Usage and
export policies for keys
delegated for use by other
partitions

 Usage and export policies should
include allowing or restricting the use
of specific algorithms with a
particular key or secret.

Note that specific algorithms and
features supported by a particular
implementation may vary.

7.2 Cryptographic algorithms and key sizes (informative)

Required cryptographical algorithms and key sizes will vary depending on use case, and by market and
geographic region.

As a general recommendation, in the absence of specific requirements by application, certification profile, or
regulation, PSA-compliant devices should be designed to comply with NIST recommendations, or local
equivalents depending on target region:

https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines

https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 67
1.0 Alpha Release 2 Non-Confidential

8 Appendices

8.1 Mapping to TMSA security objectives

Threat Models and Security Analyses (TMSA) represent a suite of documents produced by Arm providing use
case specific threat model analysis for a number of target PSA applications.

Each TMSA contains a set of security objectives. A security objective mitigates one or more identified threats
within the TMSA.

The PSA Security Model (this document) defines a security architecture designed to address a generic set of
threats identified in TMSA, providing a security foundation covering all anticipated PSA applications.

This section shows the corresponding generic PSA Security Model goals for each identified TMSA security
objective.

Security objective Explanation PSA security
requirements
chapters(mandatory)

Optional PSA
requirements

Notes

OT.ACCESS_CONTROL The TOE shall
authenticate Remote
and Local Admin
entities before
granting access the
water meter
configuration and logs
and before performing
firmware update.

PSA Root of Trust

Initial attestation

PSA security lifecycle

 The PSA Root
of Trust
provides
protection of
immutable
secrets and
enforces
isolation
between
components.

OT.SECURE_STORAGE The TOE shall protect
integrity and
confidentiality of
Credentials when
stored, and protect
integrity of Firmware
Certificate,
Configuration and Logs
when stored.

Storage

Cryptographic services

PSA security lifecycle

 The PSA Root
of Trust
binding API
and
cryptography
API can be
used to build
a secure
storage
service within
the
Application
RoT.

OT.FIRMWARE_

AUTHENTICITY

The TOE shall
authenticate and
verify integrity of
firmware image during
boot and of new
firmware versions
prior upgrade.

Boot

PSA root of trust

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 68
1.0 Alpha Release 2 Non-Confidential

The TOE shall also
reject attempts of
firmware downgrade.

OT.COMMUNICATION The TOE shall only
accept remote
connections from
configured back-end
servers and be able to
authenticate these
servers.

The TOE shall also
provide authenticity,
confidentiality and
replay protection for
export outside of the
TOE.

Cryptographic services

PSA security lifecycle

Initial attestation

Storage

PSA does not
specify
protocols, but
provides the
security
building
blocks for
storing
secretes and
for binding
protocols to a
device and its
state.

OT.AUDIT The TOE shall maintain
log of all significant
events and allow
access and analysis of
these logs to
authorized users only.

Storage

Cryptographic services

Initial attestation

PSA does not
specify
protocols, but
provides the
security
building
blocks for
storing
secretes and
for binding
protocols to a
device and its
state.

OT.SECURE_STATE The TOE shall maintain
a secure state even in
case of failures, for
instance failure of
verification of
firmware integrity.

Boot

PSA security lifecycle

PSA root of trust

OT.TAMPER PSA does not specify
protocols, but provides the
security building blocks for
storing secretes and for
binding protocols to a device
and its state.

Please see Arm’s Trusted Base
System Architecture (TBSA-M)

 Detailed
tamper
resistance
requirements
are expected
to vary
depending on
robustness
level and
ecosystem
requirements,
and are not
discussed
further in this
document.

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 69
1.0 Alpha Release 2 Non-Confidential

8.2 Hardware example: Implementation based on Armv8-M with CryptoCell based
MCU

The following reference design is based on a simplified Arm Musca-B1 test chip. A high-level diagram of the
architecture is shown below in Figure 1.

Figure 1 Reference Architecture

8.2.1 Architecture Description

CPU

The design uses an Armv8-M CPU with the security package (TrustZone Support) implemented. It implements
two MPUs – one dedicated for the non-secure execution state and the other dedicated to the secure state
(MPU_S). It also implements a Secure Attribution Unit (SAU) with 8 entries. The CPU subsystem includes a 2KB
instruction cache, an Implementation Defined Attribution Unit (IDAU), and a block of Tightly coupled RAM
dedicated to the CPU.

Interconnect

The interconnect uses Arm Corelink SSE-200 interconnect centred on AMBA AHB5 Bus Matrix.

The interconnect is supplemented by TrustZone filters at each slave port which can accept or deny transactions
dependent on their security attribution.

Embedded
Flash

Flash Controller
SRAM
Cntl

Multi-layer AHB5 interconnect

System
SRAM

Always-on
domain

TrustZone
Filters

TrustZone
Filters

TrustZone
Filters

V8-M CPU

Instruction
Cache

ID
A

U Local
SRAM

TrustZone
Filters Power

Control

TrustZone
Filters

Secure
Debug

CoreSight
SoC

Q
SP

I

SP
I

I3
C

e
M

M
C

/
SD

/S
D

IO

G
P

IO
P

W
M

U
A

R
T

I2
C

m
as

te
r

I2
C

sl
av

e

I2
S

R
TC

AHB5 interconnect

Application
Specific

IP

APB Bridge

APB
Peripherals

A
P

B

B
ri

d
ge

OTP Fuses

SCA
Protection

LifeCycle Mgt

True RNG

Key Slots

Provisioning

Asym Crypto

Sym Crypto

Secure Date I/F

C
ryp

to
C

e
ll

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 70
1.0 Alpha Release 2 Non-Confidential

 Non-Volatile Memory

The system on chip integrates several partitions of embedded Flash – the partitions are lockable by fuse enabling
their contents to become immutable. Boot ROM is implemented in this manner. The ROM is written at
manufacture and a permanent fuse is set so that subsequent update is not possible.

In addition there is several kilobits of One-Time-Programmable (OTP) efuses. These are used to store IDs, device
keys and other secrets, and non-volatile device flags.

CryptoCell

The TrustZone CryptoCell is a trusted subsystem providing platform security services and a set of cryptographic
services. It supports the following functions:

• Cryptographic acceleration hardware for the protection of data-in-transit (communication protocols)
and data-at-rest

• Protection of various assets belonging to different (optional) stakeholders (IC vendor or device
manufacturer or service operator or user). These asset protection features include:

o Image verification at Boot or during Runtime

o Authenticated Debug

o Random Number Generation

o Lifecycle Management

o Provisioning of assets

System RAM

This reference architecture integrates a Block of system RAM to support the application. The RAM is situated
behind a TrustZone filter allowing it to be partitioned into secure and non-secure regions. The secure regions are
exclusively accessible to software running in the secure execution state of the processor.

8.2.2 Mapping PSA Isolation

PSA isolation enforces isolation boundaries to separate the device firmware into partitions.

One such mapping onto this reference architecture is shown in Figure 2.

Application

Most of the application runs in the unprivileged mode of the non-secure execution state of the processor. The
RTOS and device drivers are commonly also mapped to the non-secure execution state. The application software
together with its operating system and drivers is mapped into PSA non-secure processing environment.

Updateable Root of Trust

There are two types of updateable roots of trust in a PSA system – the PSA Root of Trust and the Application
Root of Trust. See PSA Root of Trust. Both are mapped into the Secure Processing Environment which executes
in the secure execution state of the CPU.

• The Application Root of Trust implements functions specific to the application – for example TLS
primitives and application level secure storage

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 71
1.0 Alpha Release 2 Non-Confidential

• The PSA Root of Trust implements functions common to all PSA platforms and forms the most trusted
firmware on the device

The PSA Root of Trust has exclusive access to the hardware security systems. Interacting with the
CryptoCell and other root of trust components, for example the TrustZone filters, can only be carried out
by PSA Root of Trust functions.

Immutable Root of Trust

Some of the PSA Root of Trust is defined to be immutable and cannot be updated after manufacture.

In this design, this comprises the Boot ROM, which is provisioned into embedded flash and locked at
manufacture, and also the OTP fuses, which are commonly provisioned in a secure environment with a set of
assets, namely keys and identifiers required by both PSA and the application. The PSA assets are described in the
security model and also TBSA-M for Armv8-M. In this design, the CryptoCell manages OTP fuses in terms of
access and their life-time guarantee. The CryptoCell also uses the OTP fuses to support management of the
device lifecycle, including the PSA security life cycle for the PSA Root of Trust.

Figure 2 Mapping PSA Firmware Framework

Some of the Root of Trust firmware is updateable. The chain of trust anchored in the Immutable RoT measures
and validates all new firmware images. In this reference architecture all RoT firmware is stored in the embedded
flash macro.

8.2.3 Mapping PSA isolation boundaries

A key aspect of all PSA implementation is the hardware support provided for the isolation boundaries. In this
example a level 2 isolation system is realized but higher levels of isolation can also be supported in this hardware
architecture.

Level 1 Boundary

Privileged

Hardware Interfaces

PSA Non-Secure Processing
Environment

PSA Secure Processing
Environment

Device drivers

Unprivileged

RTOS
PSA RoT

Comms stack

Apps/user
TLS/Crypto libs

Immutable RoT
ARM Cortex-M

v8-M
Application
Specific IP

Physical IP

CryptoCell, Boot ROM, OTP
Keys

ROT SERVICES

• F/W validation
• Attestation
• Binding
• F/W Update
• TRNG
• …

C
ryp

to

A
tte

stattio
n

PSA

Application RoT
…

v8-M Non-Secure Execution State v8-M Secure Execution State

DEN 0079 Copyright © 2017 - 2019 Arm Limited or its affiliates. All rights reserved. Page 72
1.0 Alpha Release 2 Non-Confidential

The level 1 boundary between the NSPE and the SPE is implemented with TrustZone. NSPE corresponds to the
Non-Secure state and SPE corresponds to the Secure state. Via use of the NS-bit carried by all interconnect
transactions this isolation boundary is implemented through the device. The SAU, IDAU and TrustZone filters
must be configured appropriately to implement this boundary.

Level 2 Boundary

The level 2 boundary sits between the application RoT and the PSA Root of Trust.

For software running on the Armv8-M processor the boundary is implemented by MPU_S, the memory
protection unit dedicated to processes executing in the secure state.

