
© 2018 Arm Limited

• Florent Lebeau
• 27 March 2018

Optimize HPC - Application
Efficiency on

Many ‐Core Systems

Meet the experts

2 © 2018 Arm Limited

3 © 2018 Arm Limited

Multithreading and scalability
“I wrote my program to run in parallel with a few OpenMP directives… But the
performance is not really what I expected.”

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

Threads

Sp
ee

d
u

p

Ideal

Measured
Number of threads Runtime (seconds)

1 281

2 192

4 144

8 155

Example with modified version of Cloverleaf
• Multi-threaded version with OpenMP
• No MPI, no IO

4 © 2018 Arm Limited

Outline

• What are the challenges of multithreaded applications?

• How to identify issues and act quickly?

• How to understand the performance and optimise the code?

5 © 2018 Arm Limited

Challenges

• Sequential sections
• Regions outside of parallel sections
• Master or single OpenMP sections

• Synchronisation overhead
• Load imbalance
• Implicit and explicit barriers
• Scheduling policy
• Communications
• Hardware contention

A B C D E F

A

B C D

E

F

A

B C D

E

F

sy
n

c

sy
n

c

6 © 2018 Arm Limited

Identifying the amount of sequential code

• Arm Performance Reports is an application reporting tool for HPC
• Easy to use: no re-compiling required
• Gives a comprehensible and readable summary of the application behavior

7 © 2018 Arm Limited

Sequential sections and scalability

• Running Performance Reports on the example
using 1 thread indicates that:
• Time spent in serial code is 11%
• Theoretical speedup of 4.5 with 8 threads

• With 8 threads:
• Speedup is only 1.8

8 © 2018 Arm Limited

Where does code run serially?

• Arm MAP is a lightweight multi-node
profiling tool
• Compiling with debugging flag required
• Shows processes and threads activity over time
• See source code is annotated
• Information aggregated by stacks and function

• Compute, IO and MPI

9 © 2018 Arm Limited

Critical sections

• Profiling our example using 8 threads
with Arm MAP shows
• OpenMP activity in Light Green
• Single thread activity in Dark Green
• Synchronisation in Grey

• The tool shows serial execution happens
in the pdv_module::pdv subroutine
• In a OpenMP single section
• Can be replaced with OpenMP parallel do section

10 © 2018 Arm Limited

Synchronization overhead

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

Threads

S
p

e
e

d
u

p Ideal

Measured

Amdahl

Theoretical speedup: 4.5
Measured: 1.8

11 © 2018 Arm Limited

Identifying the amount of synchronization

• Performance Reports on the example using 8
threads shows:
• Low amount of computation

• System load is only 78%

• Possible reasons:
• Load imbalance
• Implicit and explicit barriers
• Scheduling policy
• Communications
• Hardware contention

12 © 2018 Arm Limited

System Load and thread binding

• Dynamic adjustment of the number of threads is
enabled

– OMP_DYNAMIC='TRUE’

• Threads are not bound
– OMP_PROC_BIND=‘FALSE’

• Binding the threads and disabling dynamic adjustment
slightly improve performance

• Performance Reports detects a sign of overly
fine‐grained parallelism

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

Threads

S
p

e
e

d
u

p

Ideal

No binding

Binding

Amdahl

13 © 2018 Arm Limited

Where are threads waiting?

• Profiling Cloverleaf using 8 threads
(bound to cores) with Arm MAP shows
• Overhead in one OpenMP region

• Implicit barriers
• Inner loop parallelization only

14 © 2018 Arm Limited

Understanding resource usage

• Memory accesses

Avg
Min

Max

Balanced Imbalanced

15 © 2018 Arm Limited

Additional metrics

• PAPI

1616

Thank You
Danke
Merci
谢谢
ありがとう
Gracias
Kiitos
감사합니다
धन्यवाद
תודה

© 2018 Arm Limited

