© 2018 Arm Limited
\ -
+ 3

9 Step guide: optimizing high performance applications Ar'M

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

r-—======="

Iouo

+" Discover lines of code spending a long
time in 1/0.
+" Trace and debug slow access patterns.

r——=—=—===="=17 rH——=======7 L o— e e e ——— e
| @ Bugs L |
I +" Correct application. I I +" Measure all performance aspects. I
L o— —— ——_e—_——e—_———a You can't fix what you can't see.
I «" Prefer real workloads over artificial tests. I

Fr———————

——_—_1

@ Workload
| © Communication I

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

L——————————J

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

e —

L———————J

|-°—M— —_——— e — | © Cores | | | | © Verification |

emor

I Y I + Discover synchonization I I +" Understand numerical intensity I I A Validate corrections I

I +" Reveal lines of code bottlenecked I overhead and core utilization. and vectorization Ie:ml. and optimal Performance.
by memory access times. I + Synchronization-heavy code and I + Hot loops, unvectorized code I I I

I +" Trace allocation and use of hot I implicit barriers are revealed. and GPU performance revealed.

L———————J

il
7

Key:
" ArMPERFORMANCE REPORTS
v ArMFORGE

Multithreading and scalability

“I wrote my program to run in parallel with a few OpenMP directives... But the

performance is not really what | expected.”

3

© 2018 Arm Limited

= |deal

Measured

Threads

Example with modified version of Cloverleaf
Multi-threaded version with OpenMP
No MPI, no 10

Number of threads Runtime (seconds)

1 281
2 192
4 144
8 155

Outline

 What are the challenges of multithreaded applications?
* How toidentify issues and act quickly?

* How to understand the performance and optimise the code?

4 ©2018Arm Limited CI rl I\' N

Challenges

* Sequential sections
- Regions outside of parallel sections
- Master or single OpenMP sections

* Synchronisation overhead
- Load imbalance
- Implicitand explicit barriers
- Scheduling policy
- Communications
- Hardware contention

5 © 2018 Arm Limited

Identifying the amount of sequential code

* Arm Performance Reports is an application reporting tool for HPC
« Easy to use: no re-compiling required
 Gives a comprehensibleand readable summary of the application behavior

MADbench2 cry

16 processes, 1 node

arm sandybridge2
PERFORMANCE Mon Nov 4 12:27:50 2013

Summary: MADbench2 is |/O-bound in this configuration

The total wallclock time was spent as follows:

CP U 48% Time spent running application code. High values are usually good.
e I This is low; it may be worth improving I/O performance first.

Time spent in MPI calls. High values are usually bad.
vel oo [N : g :

This is average; check the MPI breakdown for advice on reducing it.
|/O 53.9% Time spent in filesystem 1/O. High values are usually bad.
e - This is high; check the I/O breakdown section for optimization advice.

This application run was |/O-bound. A breakdown of this time and advice for investigating furtheris in the /O section below.

CPU

A breakdown of how the 4.8% total CPU time was spent:

Scalar numericops 4.9% |

below.

Vector numeric ops 0.1% |
Memory accesses 95.0% [N
Other 0.0 |

avery low transfer rate.
This suggests a significant load imbalance is causing
synchronization overhead. You can investigate this further with an
MPI profiler.

per-core ce . a
identify time-consuming loops and check their cache performance.

No time was spent in vectorized instructions. Check the compiler’s
vectorization advice to see why key loops could not be vectorized.

The per-core performance is memory-bound. Use a profiler to

110 Memo . AP . .

' . ‘ Y) identify time-consuming loops and check their cache performance.
A breakdown of how the 53 9% total IO time was spent: Per-process memory usage may also affect scaling:

Time in reads e | Mean process memory usage 160 Mb [N No time was spent in vectorized instructions. Check the compiler's
Time in writes 96.3% _— Peak process memory usage 173 Mb [N
Eetmatod rond rate 272 Mbls Pesknodamamey wege. . 172% B vectorization advice to see why key loops could not be vectorized.

Estimaled write rate 7.06 Mois | The peak nade memory usage is low. You may be able to reduce

the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

Most of the time is spent in write operations, which have a very low
transfer rate. This may be caused by contention for the filesystem or
inefficient access patterns. Use an 1O profiler to investigate which
write calls are affected.

6 © 2018 Arm Limited

"

ar

Sequential sections and scalability

* Running Performance Reports on the example CPU
using 1 thread indicates that: o e e
« Time spent in serial code is 11% OpenMP regions 55.6% [
« Theoretical speedup of 4.5 with 8 threads Scalar numeric ops 6.8% |

Vector numeric ops 44.9% [l
Memory accesses 48.3% HH

The CPU performance appears well-optimized for numerical
H R computation. The biggest gains may now come from running
® Wlth 8 thl"eadS. at larger scales.
« Speedup isonly 1.8

CPU
A breakdown of the 99.8% CPU time:

Single-core code 25.5% W
OpenMP regions 74.5% [N

Scalar numeric ops 2.8% |
Vector numeric ops 14.6% I
Memory accesses 68.2% R

7 © 2018 Arm Limited

e Compute, 10 and MPI

8

here does code run serially?
armmaAP

File Edit View Metrics Window Help

 Arm MAP is a lightweight multi-node Y e e T e

Main thread activity

profiling tool I

123% i g = . Lo~ - " —

- Compilingwith debugging flag required memerysage 7

° ShOWS processes and th reads activity Over time 10:32:13-10:34:57 (164.911s): Main thread compute 0.3 %, OpenMP 19.6 %, MPI 63.2 %, File /0 16.2 %, OpenMP overhead 0.5 %, Sleeping 0.2 %
- See source code is annotated

- Information aggregated by stacks and function

¥
#endif

- hydro_godunov (

1

}

hydro_godunov(2, dt, H, &Hv, &Hw_godunov, &Hvw_godunov);
[hydro_godu: (1, dt, H, GHw, &Hvw);

}

end_iter = declock(};
cellPerCycle = (double) (H.globnx * E.globny) / (end_iter - start_iter) / 1000000.0L;
avgCellPerCycle += cellPerCycle;

nbCycle++;

H.nstep++;
H.t += dt;
1

| input/output | Project Files | Main Thread Stacks | Functions |
Main Thread Stacks

Total core time ~ | MPI Overhead Function(s) on line Source
= & hydro [program]
main main(int argc, char **argv) {
29.9% 29.9% MPI_Allreduce MPI_Allreduce (sflopsAri, &flopsAri_t, 1, MPI_LONG, MPI_SUM, MPI_COMM WORLD);

[T R R AR EREE)
23.7% ke i e el 7.9%
13.3%

sHw_godunov, &Hvw_godun,

hydro_godunov ;
MPI_Allreduce reduce {sflopsSgr, &flopsSgr_t, 1, MPI_LONG, MPI_SUM, MPI_COMM WORLD);

MPI_Allreduce MPI_Allreduce{&dt, &dtmin, 1, MPI_DOUELE, MPI_MIN, MPI_COMM WORLD);

MPI_Allreduce MPI_Allreduce(sflopsMin, &flopsMin_t, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
MPI_Allreduce MPI_Allreduce(&flopsTra, &flopsTra_t, 1, MPI_LONG, MPI_SUM, MPI_COMM WORLD);
s [+ 7 others

Showing data from 16,000 samples taken over 16 processes (1000 per process)

© 2018 Arm Limited CI rnl .

Critical sections

* Profiling our example using 8 threads

with Arm MAP shows

- OpenMP activityin Light Green
- Single thread activity in Dark Green
- Synchronisation in Grey

* The tool shows serial execution happens

in the pdv_module::pdv subroutine

- In a OpenMP single section
- Can be replaced with OpenMP parallel do section

9 © 2018 Arm Limited

F PdV _kernel.fa0 X

i 1
.68 1|
088 [1 [
0.8 [|1 il

RSN TR

I|'|| i L.|"'|""'

1

ALEL R0 LA AL LA 1_-'2‘.

{1 |
L —

[v]

iis line

Synchronization overhead

9

8

7
= 6 — ldeal Theoretical speedup: 4.5
g veasured Measured: 1.8
d = Amdahl

4

3

2 v

1
! 2 3 4 > 6 7 8 Threads

10 © 2018 Arm Limited q rl I] v

Identifying the amount of synchronization

e Performance Reports on the example using 8

threads shows:
« Low amount of computation

e Systemload is only 78% OpenMP
A breakdown of the 74.5% time in OpenMP regions:
. Computation 53.6% N
° POSSIble reasons: Synchronization 46.4% R
* Load imbalance Physical core utilization 100.0% [l
- Implicit and explicit barriers System load 78.0% I

+ Scheduling policy
« Communications
« Hardware contention

11 © 2018 Arm Limited q rl IF v

System Load and thread binding

* Dynamicadjustment of the number of threads is cpu OpenMPp
A breakdown of the 29.9% CPU time: A breakdown of the 70.2% time in OpenMP regions:
ena bled Single-core code 29.8% M Computation 68.0% [N
- OMP_DYNAMl C='TRUF’ OpenMP regions 70.2% [Synchronization 32.0% [
. Physical core utilization 100.0% [l
e Threads are not bound . . System load o6.5% N
- OMP_PROC_BIND="FALSE ey accesses 591% N Sgntcant e s spent syrcvoniing rveads i arle
IThis may be a sign of overly fine-grained parallelism (OpenMP I
. regions in tight loops) or workload imbalance.
* Bindingthe threads and disablingdynamic adjustment
slightly improve performance 9
8
e Performance Reports detects a sign of overly 7 el
fine-grained parallelism a6 No binding
@5
g ——Binding
v 4
e Amdahl
3
2
1
1 2 3 4 5 6 7 8 Threads

12 © 2018 Arm Limited q rl I I \\

Where are threads waiting?

13

Profiling Cloverleaf using 8 threads

(bound to cores) with Arm MAP shows
- Overheadin one OpenMP region

Implicit barriers
- Inner loop parallelization only

© 2018 Arm Limited

File Edit View Metrics Window Help

Profiled: clover leaf on 1 process, 1 node, 8 cores (8 per process) Sampled from: Fri Mar 16 2018 22:41:55 (UTC) for 125.8s

e —I ‘l

22:41:55-22:44:00 (125.788s): Main thread compute 22.1 %, OpenMP 52.9 %, File IfO 0.0 %, OpenMP overhead 24.9 %

F advec_cell_kernel.fao X |

L TYRHITI T e

vkl L g it kol

[T TP
I

ener_flux(j, k)-==

sone_by_six*(sigma3*ABs(diffuw) +sigmad*ABS (diffdwl))

ter-0.0

_flux_x(j, k] * (energyl (donar, k) +limiter)

ner_flux{j+1,k)) /post_mass_s
wol_flux_x{j+1,k]

B

_Flux_y (f, k) +wol_flux_x(j+1,k)-wol_flux_x(j, k)
al_flux_y{j,kl)

val_flux_y{i, k)

y_min, y_max+2

PRIVATE (upwind, donar, downwind, dif, sigmat, sigma3, sigmad, sigmav, sigms, sigmen, &

Input/Output] Project Files } OpenMP Stacks

| OpenMP Regions | Functions |

OpenMP Regions

Total core time Overhead H

24.1%||||||n|.|l.|um.mmmm.|mmmlm
23.28.% 1l i ™T"5 %
5.0%]|{Ly [l ALl il Il subutili 1 ©.5%
4.3% g S L e 0.3%

/home/Tlebeau/Shared/SC16/CustomMetrics/advec_cell kernel.f90:81
24.14% of total core time was in 1 function

& 9.94% of total core time was in OpenMP code

14.20% of total core time was OpenMP overhead (in region)

| This function has been generated by the compiler to implement the contents of an OpenMP region.

Showing data from 1,000 samples taken over 1 precess (1000 per process)

arny.

Understanding resource usage

* Memory accesses

Application activity

Application activity

100

ax
Vg

CPU memory access

o Min
»
bdlaNCeC mpalancec
'F advec_mom_kernel.fa0 X | Time spent on line 177 @ &
0.3% . [N ! END DO [«] Breakdown of the 2.4% time spent on this line:
174 S 5
i 0% I
175 0 min, y_max-1 Executing instructions 100.0%
176 B _min,x_max+1 Calling other functions 0.0%
2.8% | gt ot W sl i;g Emggél (i, k)=(vell (i,k)*node mass_pre (i ,k)+mom flux(j-1,k)-mom flux(,k}) /node mass post (i k) i mlin i R Er i n e mr T s
179 DDO PN
0.9% L o 180 e Scalar ﬂuatl'ng pu{nt U.U%‘a
181 (direction.EQ.2 Vector floating point 72.4% I
182 © (which_vel.EQ. 1) Scalar integer 0.0%
183 Do) -
184 B min-2,y_max:2 Vector integer 0.0%
185 8 min, x_max+1 Memory access® 97.4% I
186 ! Find staggered mesh mass fluxes and nodal masses and volumes. Braneh
0.3% o 187 @ node_flux(j, k) =0.25_8*%(mass_flux_y(j-1,k)+mass flux y(j ,k) & L
1,08 ., L., +mass_flux_y(j-1,k+1) +mass_flux_y(§ ,k+1)) Other instructions 0.0%
190]ENDD“ *27.6% memory access instructions. 69.8% implicit
<0.1% | | ‘ 191 1S0ME END DO — g:el:ncr\{ accesses in other instructions, also counted in
192 1SOMP DO = ir categories
193 H DO _min-1,y_max+2
194 @ DO j=x_min,x_max+1
0.4% 1958 node_mass_post (§,k)=0.25_8* (densityl{j ,k-1)*post_wollj ,k-1) &
. S +densityli(j ,k)*post_wvol(j ,k) &
<0.18]!) 197 +densityl (3-1,k-1) *post_vol (3-1,k-1) &
0.1% | A 1o8 +densityl(j-1,k)*post_vol(j-1,k))
108, 0 o 0oaea . 109 nods_mass_pre (§,k} -node_mass_post (i, k) -nods_flux (§,k-1)-nods_flux(§, k) I
200 ENDNO 3

14 © 2018 Arm Limited

Additional metrics

* PAPI

wer T IR IEInmeartm e

Level 1 total cache misses *°7 o - - - - — — = — — - =

732 M/s — — T e T == = =T = LT e e el LT
o = _ - - _ — s _ = =
Level 2 total cache misses °* g — - _ — N - - — T T — T I - - =
33.0M/s L ——— e~ = =T - =T e— - T = e = e e = -

Level 3 total cache misses % — — - — — -— — — f— — = = —

7.68 M s = - - - e ——— — = - - N - - - —— = - — _

o — - — —

14:09:43-14:10:04 (21.426s, 16.9% of total): Main thread compute 29.1 %, OpenMP 42.4 %, OpenMP overhead 22.6 %

15 © 2018 Arm Limited

Thank You

Danke

Merci

G

HYDES arm
Gracias

Kiitos

ZArg L O}

Joddlq

NTIN

AN
000%%

