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Multithreading and scalability
“I wrote my program to run in parallel with a few OpenMP directives… But the 
performance is not really what I expected.”
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Example with modified version of Cloverleaf
• Multi-threaded version with OpenMP
• No MPI, no IO
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Outline

• What are the challenges of multithreaded applications?

• How to identify issues and act quickly?

• How to understand the performance and optimise the code?
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Challenges

• Sequential sections
• Regions outside of parallel sections
• Master or single OpenMP sections

• Synchronisation overhead
• Load imbalance
• Implicit and explicit barriers
• Scheduling policy
• Communications
• Hardware contention
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Identifying the amount of sequential code

• Arm Performance Reports is an application reporting tool for HPC
• Easy to use: no re-compiling required
• Gives a comprehensible and readable summary of the application behavior
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Sequential sections and scalability

• Running Performance Reports on the example 
using 1 thread indicates that:
• Time spent in serial code is 11%
• Theoretical speedup of 4.5 with 8 threads

• With 8 threads:
• Speedup is only 1.8
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Where does code run serially? 

• Arm MAP is a lightweight multi-node 
profiling tool
• Compiling with debugging flag required
• Shows processes and threads activity over time
• See source code is annotated
• Information aggregated by stacks and function

• Compute, IO and MPI



9 © 2018 Arm Limited 

Critical sections

• Profiling our example using 8 threads 
with Arm MAP shows
• OpenMP activity in Light Green
• Single thread activity in Dark Green
• Synchronisation in Grey

• The tool shows serial execution happens 
in the pdv_module::pdv subroutine
• In a OpenMP single section
• Can be replaced with OpenMP parallel do section
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Synchronization overhead
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Theoretical speedup: 4.5
Measured: 1.8
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Identifying the amount of synchronization

• Performance Reports on the example using 8 
threads shows:
• Low amount of computation

• System load is only 78%

• Possible reasons:
• Load imbalance
• Implicit and explicit barriers
• Scheduling policy
• Communications
• Hardware contention



12 © 2018 Arm Limited 

System Load and thread binding

• Dynamic adjustment of the number of threads is 
enabled

– OMP_DYNAMIC='TRUE’ 

• Threads are not bound 
– OMP_PROC_BIND=‘FALSE’

• Binding the threads and disabling dynamic adjustment 
slightly improve performance

• Performance Reports detects a sign of overly 
fine‐grained parallelism
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Where are threads waiting?

• Profiling Cloverleaf using 8 threads 
(bound to cores) with Arm MAP shows
• Overhead in one OpenMP region

• Implicit barriers
• Inner loop parallelization only
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Understanding resource usage 

• Memory accesses
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Additional metrics

• PAPI
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