
© 2018 Arm Limited

John C. Linford <john.linford@arm.com>
6 December 2018

Tips and Tricks for
Porting HPC Apps

Webinar

2 © 2018 Arm Limited

Arm is changing the game in HPC
Sandia’s Astra supercomputer is the first Arm-based system in the Top500

• Arm has arrived in HPC!
The recent debut of Astra
is solid proof of the value
of Arm-based HPC systems.

• Unprecedented speedups
for mission-critical apps.
But what’s the catch?

• What’s special about Arm-
based CPUs? What do I
need to know to port my
applications?

3 © 2018 Arm Limited

Presentation outline
25 minutes of slides ; 5-10 minutes of Q&A

Enablement

Co-designPartnership

Who are Arm and what
can we do for you?

Porting HPC applications to
Arm-based systems

Q&A

4 © 2018 Arm Limited

CPU Engagement Models With Arm

Architecture
license

Core license

Architecture License

Partner designs complete CPU
microarchitecture from scratch

• Clean room – no reference to Arm
core designs

Freedom to develop any design
• Must conform to the rules &

programmers model of a given
architecture variant

• Must pass Arm architecture
validation to preserve software
compatibility

Long term strategic investment

Core License

Partner licenses complete

microarchitecture design

▪ Wide choices available

▪ Many different A, R & M products

CPU differentiation through:

▪ Flexible configuration options

▪ Wide implementation envelope with

different process technologies

Range of licensing & engagement

models possible

Standard CPU Proprietary CPU

5 © 2018 Arm Limited

Take-and-bake Pizza Engagement Models

Architecture
license

Core license

Architecture License

Partner assembles pizza

according to recipe but from

their own ingredients
• Inspired recipe – with a familiar

flavour

Freedom to develop any pizza
• Must conform to the rules, e.g. pan

shape and and crust thickness

• Must taste like a pizza

Long term strategic investment

Core License

Partner buys a complete

take-and-bake pizza

▪ Wide choices available

▪ Many different P, I, & E products

Pie differentiation through:

▪ Custom toppings

▪ Different baking times

Range of licensing &

engagement models possible

Standard Pie Proprietary Pie

6 © 2018 Arm Limited

OpenFOAM and ParaView across the Arm ecosystem
Cross-platform ecosystem and standards make this possible

© 2018 Arm Limited

Arm Allinea Studio
Cross-platform and Arm-optimized tools

8 © 2018 Arm Limited

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP

FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

9 © 2018 Arm Limited

C/C++

Frontend

Fortran

Frontend

Optimizer
Armv8-A

Backend

SVE

Backend

Clang based LLVM based

PGI Flang based

Enhanced optimization for

ARMv8-A and SVE

C/C++ Files

(.c/.cpp)

Fortran Files

(.f/.f90)

Arm C/C++/Fortran Compiler

Armv8-A

binary

SVE

binary

LLVM IR LLVM IR
IR Optimizations

Auto-vectorization

LLVM based

LLVM based

Language specific frontend Architecture specific backendLanguage agnostic optimization

Arm Compiler – Building on LLVM, Clang and Flang projects

10 © 2018 Arm Limited

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries

• Commonly used low-level math routines - BLAS, LAPACK and FFT
• Provides FFTW compatible interface for FFT routines
• Batched BLAS support

Best-in-class serial and parallel performance

• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Marvell ThunderX2 in collaboration with

silicon vendors

Validated and supported by Arm

• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard

Best in class performance

Validated with
NAG test suite

Commercially supported
by Arm

11 © 2018 Arm Limited

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development

• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

• Powerful and in-depth error detection mechanisms (including memory
debugging)

• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

12 © 2018 Arm Limited

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data

• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows

• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous

integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

© 2018 Arm Limited

Step 0: Make it run
Porting applications to Arm

14 © 2018 Arm Limited

Check your dependencies… and their dependencies…
“A maze of twisty little passages, all alike” -- ADVENT, 1976

• Scientific software may be quite monolithic, but it is rarely self-contained.

• Use of external libraries is increasingly common
• IO libraries: HDF5, NetCDF
• Linear solvers: PETSc, HYPRE, Trilinos, BLAS, LAPACK, and ScaLAPACK...*
• FFTs: FFTW...*
• Some applications utilize a separate communications layer or parallel execution environment:

– OpenMPI, OpenUCX, Charm++, GA...

• Some go even further to try and deliver performance portability and memory abstraction:
– Kokkos, RAJA...
– The physics kernels can end up being abstracted some way from the hardware.

• As more apps are ported to Arm, the more dependencies are ported.

• Look to the Arm Packages Wiki for recipes to build libraries and dependencies.

*Arm Performance Libraries (ArmPL) provide optimized BLAS, LAPACK and FFT routines. Use the –larmpl compiler flag to link against ArmPL.

15 © 2018 Arm Limited

Try this first: Arm HPC Packages wiki
www.gitlab.com/arm-hpc/packages/wikis

• Dynamic list of common HPC packages

• Status and porting recipes

• Community driven

• Anyone can join and contribute

• Provides focus for porting progress

• Allows developers to share and learn

263 packages ported…
and counting!

16 © 2018 Arm Limited

Use the right compiler
My compiler binary is defined in several different ways?!?

• During configuration, be explicit about what compilers you want to use:

• gcc, icc, etc hard-coded into a Makefile somewhere!
• Very difficult to spot, and the build system silently soldiers on and selects GCC. Ouch!

• And since your architecture didn’t match I’ll just accumulate some random flags that didn’t get
overridden - and then I’ll continue to compile…

Arm Compiler for HPC GNU Compilers

CC=armclang
CXX=armclang++
FC=armflang
F77=armflang

CC=gcc
CXX=g++
FC=gfortran
F77=gfortran

17 © 2018 Arm Limited

Use the right compiler flags
General guidance for all Arm architectures when building with Arm HPC compilers.

1. Start with -Ofast -mcpu=native.

2. If Fortran application runs into issues with -Ofast, try
-Ofast -fno-stack-arrays to force automatic arrays on the heap.

3. If -Ofast is not acceptable and produces wrong results due to reordering of math
operations, use -O3 -ffp-contract=fast.

4. If -ffp-contract=fast does not produce correct results, then use -O3.

• Power users: armflang -### shows the expanded compile line.

• For a full list of compiler options, see the Arm C/C++ Compiler reference
guide and Arm Fortran Compiler reference guide.

https://developer.arm.com/docs/101458/latest?_ga=2.241142595.1580358655.1543854245-1430765296.1541957381
https://developer.arm.com/docs/101380/latest

18 © 2018 Arm Limited

Use the right MPI compiler
Trick question: what’s the best MPI?

• Just as on other architectures, there is no “best” MPI!

• OpenMPI, MVAPICH, and MPICH are all well-tested on Arm.
• Visit www.gitlab.com/arm-hpc/packages/wikis for build recipes

• Use the “-show” compiler flag to see what your MPI compiler wrapper is doing:

$ mpicc -show
armclang -I/opt/openmpi/openmpi-3.1.2_ThunderX2CN99_RHEL-7_arm-hpc-compiler_18.4.1/include -
pthread -Wl,-rpath -Wl,/opt/openmpi/openmpi-3.1.2_ThunderX2CN99_RHEL-7_arm-hpc-compiler_18.4.1/lib
-Wl,--enable-new-dtags -L/opt/openmpi/openmpi-3.1.2_ThunderX2CN99_RHEL-7_arm-hpc-
compiler_18.4.1/lib -lmpi

http://www.gitlab.com/arm-hpc/packages/wikis

19 © 2018 Arm Limited

Use Arm Performance Libraries (ArmPL)
DGEMM – ArmPL 19.0 vs BLIS vs OpenBLAS : Parallel

• Starting with Arm Compiler for HPC 19.0,
just use the -armpl flag to link your
application against ArmPL
• Include the -mcpu=native flag
• Use for both compile and link

0

200

400

600

800

1000

0 2000 4000 6000 8000

Pe
rf

o
rm

an
ce

, G
FL

O
P

S

Matrix size, M=N=K

DGEMM - 56 threads on
Marvell ThunderX2

ArmPL 19.0

BLIS

OpenBLAS

20 © 2018 Arm Limited

ArmPL 19.0 FFT 3D complex-to-complex vs FFTW 3.3.7

0

0.5

1

1.5

2

2.5

3

1 101 201 301 401 501

Sp
e

ed
-u

p
 o

ve
r

FF
TW

Length of side for FFTW transform, size NxNxN

Complex-to-complex double precision 3D transforms

Arm Perf Libs
better than

FFTW
(speed-up > 1)

Performance parity
(speed-up = 1)

21 © 2018 Arm Limited

Use Arm-optimized math routines

Normalised runtime

0

0.2

0.4

0.6

0.8

1

1.2

WRF Cloverleaf OpenMX Branson

GCC Arm Arm + libamath

Arm PL provides libamath

• With Arm PL module loaded, include
-mcpu=native -lamath in the link line.

• Algorithmically better performance than
standard library calls

• No loss of accuracy
• single and double precision implementations of:

exp(), pow(), and log()
• single precision implementations of:

sin(), cos()

...more to come.

Distribution of https://github.com/ARM-software/optimized-routines

22 © 2018 Arm Limited

Use Compiler Optimization Remarks
Let the compiler tell you how to improve vectorization

Flag Description

-Rpass=<regexp> What was optimized.

-Rpass-analysis=<regexp> What was analyzed.

-Rpass-missed=<regexp> What failed to optimize.

For each flag, replace <regexp> with an expression for the type of remarks you wish to view.
Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\)\
• -Rpass-missed=\(loop-vectorize\|inline\)
• -Rpass-analysis=\(loop-vectorize\|inline\)

where loop-vectorize will filter remarks regarding vectorized loops, and inline for remarks regarding
inlining.

To enable optimization remarks, pass the following -Rpass options to armclang:

23 © 2018 Arm Limited

Optimization remarks in action

example.c:8:4: remark: vectorized loop (vectorization width: 4, interleaved count: 2)
[-Rpass=loop-vectorize]

for (int i=0;i<K; i++)
^ example.c:7:1: remark: 28 instructions in function

[-Rpass-analysis=asm-printer]
void foo(int K) { ^

armclang -O3 -Rpass=.* -Rpass-analysis=.* example.c

armflang -O3 -Rpass=loop-vectorize example.F90 -gline-tables-only

example.F90:21: vectorized loop (vectorization width: 2, interleaved count: 1)
[-Rpass=loop-vectorize]

END DO

24 © 2018 Arm Limited

Improve vectorization with compiler directives
OpenMP and clang directives are supported by the Arm Compiler for HPC

C/C++ Fortran Description

#pragma ivdep !DIR$ IVDEP Ignore potential memory dependencies
and vectorize the loop.

#pragma omp simd !$OMP SIMD Indicates that a loop can be
transformed into a SIMD loop.

#pragma vector always !DIR$ VECTOR ALWAYS Forces the compiler to vectorize a loop
irrespective of any potential
performance implications.

#pragma novector !DIR$ NO VECTOR Disables vectorization of the loop.

Clang compiler directives for C/C++ Description

#pragma clang loop vectorize(assume_safety) Assume there are no aliasing issues in a loop.

#pragma clang loop unroll_count(_value_) Force a scalar loop to unroll by a given factor.

#pragma clang loop interleave_count(_value_) Force a vectorized loop to interleave by a factor

25 © 2018 Arm Limited

Stick to the standard
Don’t rely on non-standard extensions. Just don’t. Seriously, stop.

• For example ISNAN, COSD, or very very long lines...

• Or compiler-specific intrinsics, mm_prefetch, SSE calls etc.

• There may be an alternate code path that can be used already. Of possibly the code isn’t
critical and can be deactivated for now, or an equivalent call can be used, or you could
write one?

...I’m relying on a very forgiving, and non-pedantic compiler!

some compilers let you get a away with an awful lot.

A developer can get used to that.

26 © 2018 Arm Limited

Do you support language feature X?
Yes! Well, probably…

For example, armflang has excellent support for Fortran 2003:

https://developer.arm.com/products/software-development-
tools/hpc/arm-fortran-compiler/fortran-2003-status

Support for the 2008 standard is being developed:

https://developer.arm.com/products/software-development-
tools/hpc/arm-fortran-compiler/fortran-2008-status

https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/fortran-2003-status
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/fortran-2008-status

27 © 2018 Arm Limited

./configure && make && sudo make install … almost
If root has a minimal environment, using sudo can break compiler license verification

If your application uses libtool during installation, you may see something like this:

/home/user.0004/johlin02/openmpi-3.1.0/build/libtool: line 10554: armclang: command
not found

Or maybe this:

clang-5.0: error: Failed to check out a license. See below for more details.

Don’t panic! Break it into steps. Instead of `sudo make install` just do:

$ sudo -i
$ module load <compiler module>
$ make install

28 © 2018 Arm Limited

What is this armclang of which you speak?
My ancient, outdated libtool knows nothing of this “Arm compiler”

configure may not correctly identify the Arm compiler. It may not set the correct flags for
libtool to use for position independent code and passing arguments through to the linker.
When building libraries, this can cause problems down-the-road.

Following configure, patch libtool as follows:

$./configure ...

$ sed -i -e 's#wl=""#wl="-Wl,"#g' libtool

$ sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

$ make

29 © 2018 Arm Limited

Older autotools need an update
My config.guess that’s way out-of-date!

• Often, the config.guess supplied with an application and used by configure will not
correctly identify the platform.

• This can be true for a config.guess already installed on the system and used by some
configure scripts.

• Obtaining up-to-date versions will fix this problem:
• wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess

• wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub

30 © 2018 Arm Limited

Test your tests; talk to the expert
My test suite never passes, everyone knows that!

Often the test suites are a work in progress.

For example, out-of-the-box test appears to have the wrong reference solution. Earlier
commits give the conditions used for reference solutions (intel, IEEE etc.), repeating gives
a new reference solution, for which Arm and GCC agree!

...I’ve got some Arm support, but no one is looking after it!

Someone had a go, a while back, possibly just-for-fun.

Committed it to the repo and moved on.

Hasn’t been maintained, and doesn’t actually work.

...but looks like it might, briefly.

31 © 2018 Arm Limited

Arm uses a weak memory model
I’m not doing anything wrong but seemingly get a weird race condition!

• Some codes assume reads and writes
cannot be reordered, but on Arm they can!
• AArch64 uses a weakly ordered memory system
• Multi-threaded codes may require a detailed

investigation into the implementation
– Problems are almost always down to a lock-free

thread interaction implementation
– Key symptom: correct operation on a strongly

ordered architecture, failure on weakly ordered

• This is rare in application code. In fact, it’s
impossible in languages that specify a
memory model (e.g. C++)

• Usually seen in MPI or thread library
implementations.

Done!

In Use

Memory Pool

In Use

Free

In Use

In Use

Core 1

Waiting for
Memory...

Core 2

In
c
o
m

in
g

 W
ri

te

In
c
o
m

in
g

 W
ri

te

M
a

rk
 F

re
e

In Use

Memory Pool

In Use

In Use

In Use

Core 1

Allocated

Core 2

In
c
o

m
in

g
 W

ri
te

M
a

rk
 F

re
e

In
c
o

m
in

g
 W

ri
te

Weakly

Ordered

In Use
Done!

32 © 2018 Arm Limited

Psst! 1/0 == 0 on ARM
Results are all zero, but tests for division by zero never fail?

For example…

#include <stdio.h>

int main(int argc, char ** argv)

{

int x = argc - 1;

printf("%d\n", 1 / x);

return 0;

}

Skylake

$ gcc x.c && ./a.out

Floating point exception: 8

ThunderX2

$ gcc x.c && ./a.out

0

33 © 2018 Arm Limited

Summary: Arm Porting Cheat Sheet
Ensure all dependencies have been ported.

•Arm HPC Packages Wiki: https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages

Update or patch autotools and libtool as needed

•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess

•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub

•sed -i -e 's#wl=""#wl="-Wl,"#g' libtool

•sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

Update build system to use the right compiler and architecture

•Check #ifdef in Makefiles. Use other architectures as a template.

Use the right compiler flags

•Start with -mcpu=native -Ofast.

•See slides further on for details.

Avoid non-standard compiler extensions and language features

•Arm compiler team is actively adding new “unique” features, but it’s best to stick to the standard.

Update hard-wired intrinsics for other architectures

•https://developer.arm.com/technologies/neon/intrinsics

•Worst case: default to a slow code.

Update, and possibly fix, your test suite

•Regression tests are a porter’s best friend.

•Beware of tests that expect exactly the same answer on all architectures!

Know architectural features and what they mean for your code

•Arm’s weak memory model.

•Division by zero is silently zero on Arm.

https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/technologies/neon/intrinsics

© 2018 Arm Limited

Additional
Resources

35 © 2018 Arm Limited

Arm HPC Ecosystem website: www.arm.com/hpc
Starting point for developers and end-users of Arm for HPC

Latest events, news, blogs, and collateral including
whitepapers, webinars, and presentations

Links to HPC open-source & commercial SW packages

Guides for porting HPC applications

Quick-start guides to Arm tools

Links to community collaboration sites

Curated and moderated by Arm

36 © 2018 Arm Limited

Arm HPC Community: community.arm.com/tools/hpc/
HPC Community-driven Content

Blogs by Arm and our HPC community

Calendar of upcoming events such as
workshops and webinars

HPC Forum with questions & posts curated
and moderated by Arm HPC technical
specialists

Ask, answer, share progress and expertise

37 © 2018 Arm Limited

Related Resources

• Get started on Arm

• Porting and Tuning Guides

• Packages Wiki

• Latest additions to the
Arm-v8A architecture

• Develop on Arm

General

• Arm Performance Libraries

• Arm Forge User Guide

• Arm Compiler for HPC

• Arm C/C++ Compiler
Command Line Options

• Arm Fortran Compiler
Command Line Options

• Fortran 2003 standard

• Fortran 2008 standard

• Fortran OpenMP 4.0 and 4.5

• C/C++ OpenMP 4.0 and 4.5

Arm Allinea Studio and
Arm Forge

Compiler Support Status

https://cms.developer.arm.com/hpc/resources/get-started-on-arm
https://cms.developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning
https://gitlab.com/arm-hpc/packages/wikis/home
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture?_ga=2.99726616.789863187.1541409335-41496089.1541080864
https://cms.developer.arm.com/hpc/develop
https://cms.developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
https://developer.arm.com/docs/101136/latest/
https://cms.developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc
https://developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler/compiler-options
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/compiler-options
https://cms.developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/fortran-2003-status
https://cms.developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/fortran-2008-status
https://cms.developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/openmp-support
https://cms.developer.arm.com/products/software-development-tools/hpc/arm-cpp-compiler/openmp-support

© 2018 Arm Limited

john.Linford@arm.com
6 December 2018

Questions?

