
Liberating Threads
from Non-Numerical Programs
with an
Architecture-Compiler Co-Design

Simone Campanoni

2

3

Sequential programs are not
accelerating like they used to

1992 2004

Pe
rf

o
rm

an
ce

 (
lo

g
sc

al
e)

Multicore era

Performance gap

Sequential program
running on a platform

Single application:
Not enough explicit parallelism

• Developing parallel code is hard

• Sequentially-designed code is still ubiquitous

Multiple applications:
Only a few CPU-intensive applications
running concurrently in client devices

Multicores are underutilized

4

Parallelizing compiler:
Exploit unused cores
to accelerate
sequential programs

5

6

Numerical
programs

Non-numerical
programs

Non-numerical programs
need to be parallelized

99% of time is spent in loops

Parallelize loops
to parallelize a program

7

Time

Outermost
loops

8

work()

work()

work()

DOALL parallelism

Iteration 0

Iteration 1

Iteration 2

Time

9

c=f(c)
d=f(d)
work()

DOACROSS parallelism

c=f(c)
d=f(d)
work()

c=f(c)
d=f(d)
work()

Sequential
segment
Parallel
segment

Time

10

c=f(c)
d=f(d)
work() c=f(c)

d=f(d)
work() c=f(c)

d=f(d)
work()

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

11

c=f(c)
d=f(d)
work()

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

c=f(c)
d=f(d)
work()

c=f(c)
d=f(d)
work()

12

c=f(c)
d=f(d)
work(x)

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

c=f(c)
d=f(d)
work()

c=f(c)
d=f(d)
work()

Seq.
Segment 0

Seq.
Segment 1

Wait 0

Wait 1

Signal 0

Signal 1

13

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

14

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

99% of time is spent in loops

Parallelize loops
to parallelize a program

15

Time

Innermost
loops

Outermost
loops

Parallelize loops
to parallelize a program

Outermost
loops

16

Innermost
loops

Coverage

Communication

Ease of
analysis

HELIX

17

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

Sp
ee

d
u

p

SPEC INT baseline

ICC, Microsoft Visual Studio,DOACROSS
HELIX

4-core Intel Nehalem

4

1

16

Innermost
loops

Coverage

Communication

Easy of
analysis

HELIX

Outermost
loops

HELIX-RC
HELIX-UP

Small Loop Parallelism

Small Loop Parallelism and HELIX

HELIX-RC: Architecture/Compiler Co-Design

HELIX-UP: Unleash Parallelization

18

[ISCA 2014,
IEEE Top Picks honorable mention 2014,
ACM research highlight 2017]

[CGO 2015]

[CGO 2012
DAC 2012,
IEEE Micro 2012]

Communication

HELIX
Small loops

SLP challenge: short loop iterations

19
Clock cyclesDuration of loop iteration (cycles)

SPEC CPU
Int benchmarks

SLP challenge: short loop iterations

20
Clock cyclesDuration of loop iteration (cycles)

SPEC CPU
Int benchmarks

90

SLP challenge: short loop iterations

21
Clock cyclesDuration of loop iteration (cycles)

Adjacent core
communication
latency

Seq.
Segment 0

Seq.
Segment 1

Wait 0

Wait 1

Signal 0

Signal 1

A compiler-architecture co-design
to efficiently execute short iterations

22

Compiler
• Identify latency-critical code in each small loop

• Code that generates shared data

• Expose information to the architecture

• Reduce the communication latency
on the critical path

Architecture: Ring Cache

…

Load Y
…
Iter. 1

23

Light-weight enhancement of
today’s multicore architecture

Core 0 Core 1

Core 3 Core 2

DL1 DL1

DL1 DL1

Last level cache

Ring node Ring node

Ring node Ring node

Store X, 1

Store Y, 1

Iter. 0

Store Y,
1

Iter. 2

Store Y,
1

Iter. 3

Store X, 1 Load X

75 – 260
cycles!

Core 0 Core 1

Ring node Ring node

Ring node Ring node

24

Light-weight enhancement of
today’s multicore architecture

…
Wait 0
Load Y
…
Iter. 1

Store X, 1
Wait 0
Store Y, 1
Signal 0

Iter. 0

25

98% hit rate

The importance of HELIX-RC

26

Non-numerical
programs

Numerical
programs

The importance of HELIX-RC

27

Non-numerical
programs

Numerical
programs

Thank you!

Small Loop Parallelism and HELIX

• Parallelism hides in small loops

HELIX-RC: Architecture/Compiler Co-Design

• Irregular programs require low latency

HELIX-UP: Unleash Parallelization

• Tolerating distortions boosts parallelization

29

HELIX and its limitations

31

Thread 0
Thread 1
Thread 2
Thread 3

Data

Data

Data

Iteration 0

Iteration 1

Iteration 2

Performance:
• Lower than you would like
• Inconsistent across architectures
• Sensitive to

dependence analysis accuracy

What can we do to improve it?
31

4 Cores

1.68

2.77

2.31

1.61

1.19

Nehalem

Bulldozer

Haswell

79% accuracy

78% accuracy

50%

80%

Opportunity:
relax program semantics

• Some workloads tolerate output distortion

• Output distortion is workload-dependent

32

Relaxing transformations remove
performance bottlenecks

• Sequential bottleneck

33

Inst 1
Inst 2
Inst 3
Inst 4

Inst 3
Inst 4

Inst 3
Inst 4

Dep

Thread 1 Thread 2 Thread 3

Inst 1
Inst 2

Inst 1
Inst 2

Speedup

Sequential
segment

Relaxing transformations remove
performance bottlenecks

• Sequential bottleneck

• Communication bottleneck

• Data locality bottleneck

34

Relaxing transformations remove
performance bottlenecks

35

No relaxing transformations
Relaxing transformation 1
Relaxing transformation 2

…

Relaxing transformation k

Max output distortion
Max performance

No output distortion
Baseline performance

Design space of HELIX-UP

36

Code
region 2

Code
region 1

o Performance
o Energy saved
o Output distortion

1) User provides output distortion limits
2) System finds the best configuration
3) Run parallelized code with that configuration

Apply relaxing transformation 3
to code region 1

Apply relaxing transformation 5
to code region 2

Pruning the design space

Empirical observation:
Transforming a code region

affects only the loop it belongs to

50 loops, 2 code regions per loop
2 transformations per code region

Complete space = 2100

Pruned space = 50 * (22) = 200

How well does HELIX-UP perform?
37

HELIX: no relaxing transformations

38

Nehalem 6 cores
2 threads per core

HELIX-UP unblocks extra parallelism
with small output distortions

HELIX-UP unblocks extra parallelism
with small output distortions

39

Nehalem 6 cores
2 threads per core

40

Performance/distortion tradeoff

%

256.bzip2

HELIX

Run time code tuning

• Static HELIX-UP decides
how to transform the code based on
profile data averaged over inputs

• The runtime reacts to transient bottlenecks
by adjusting code accordingly

41

Adapting code at run time
unlocks more parallelism

42

256.bzip2

%

HELIX

HELIX-UP improves
more than just performance

•Robustness to DDG inaccuracies

•Consistent performance
across platforms

43

Relaxed transformations to be
robust to DDG inaccuracies

44

Increasing DDG
inaccuracies leads to
lower performance

No impact
on HELIX-UP

HELIX HELIX-UP

256.bzip2

Relaxed transformations for
consistent performance

45

Increasing
communication latency

46

Circuit

Architecture

Compiler

Programming
language

Ongoing work

This talk contribution

Ongoing work: application-specific

Parallelism
• Communication
• HW/compiler interface

Irregular data consumption

47

Proactively broadcast shared data

Number of consumersDistance of consumers

Subsequent work

•Real system evaluation of HELIX-RC

•Multi programs scenario

• Speculation for SLP

48

Small Loop Parallelism opportunity
Code complexity

• Control flow

• Data flow

49

Dependences to satisfy

• Actual

• Apparent

Prior works

• Thread Level Speculation (TLS)

Apparent

• TLS overhead big loops

Benefits of small (hot) loops

• Code complexity

Apparent (only 1.2x more dependences)

• Enable code transformations to recompute shared values

Actual

(10x more dependences!)

No TLS

HELIX: no relaxing transformations

50

Nehalem 6 cores
2 threads per core

HELIX-UP unblocks extra parallelism
with small output distortions

Compressed file 100%
Statistics 0 <-> 100%
|correct – output| + 1

correct + 1

Bzip2 has 2 outputs

Compiler: HCC
• Identify and analyze small loops

• For each small loop
• Identify code that may generate

data to be shared between iterations

• Shape the code to minimize
dependence cost

51

Breakdown of overhead left

52

How to adapt code?Which code to adapt?

When to adapt code?

Setting knobs statically is
good enough for regular workload

54

183.equake

HELIX

%

HELIX-UP runtime is
“good enough”

55

256.bzip2

HELIX: no relaxing transformations

56

Nehalem 6 cores
2 threads per core

HELIX-UP unblocks extra parallelism
with small output distortions

HELIX-UP unblocks extra parallelism
with small output distortions

57

Nehalem 6 cores
2 threads per core

Conventional transformations
are still important

58

HELIX-UP and Related Work
with no output distortion

HELIX-UP and Related Work
with output distortion

Relaxed transformations remove
performance bottlenecks

• Sequential bottleneck
• A code region executed sequentially

61

No output distortion
Baseline performance

Max output distortion
Max performance

• A knob for each sequential code region

Design space of HELIX-UP

62

Code
region 2

Code
region 1

o Performance
o Energy saved
o Output distortion

1) User provides output distortion limits
2) System finds the best configuration
3) Run parallelized code with that configuration

Apply relaxing transformation 3
to code region 1

Apply relaxing transformation 5
to code region 2

Pruning the design space

Empirical observation:
Transforming a code region

affects only the loop it belongs to

50 loops, 2 code regions per loop
2 transformations per code region

Complete space = 2100

Pruned space = 50 * (22) = 200

How well does HELIX-UP perform?
63

HELIX-UP improves
more than just performance

•Robustness to DDG inaccuracies

•Consistent performance
across platforms

64

Relaxed transformations to be
robust to DDG inaccuracies

65

Increasing DDG
inaccuracies leads to
lower performance

No impact
on HELIX-UP

HELIX HELIX-UP

256.bzip2

Relaxed transformations for
consistent performance

66

Increasing
communication latency

Small Loop Parallelism:
a compiler-level granularity

67

Circuit

Architecture

Compiler

Programming
language

ILP

TLP

SLP

Frequency of
communication

Frequent

Granularity

Coarse
grain

Future work

68

Item = first(list L)
while (item){

x = data(item)
work(x)
item = next(l, item)

}

If (item)

Item=first(list L)

x = data(item)

work(x)

Item=next(l,item)

If (item)

x = data(item)

work(x)

Sublists = partitionList(list L)

If (item)

Item=first(list L)

x = data(item)

work(x)

Item=next(l,item)

If (item)

x = data(item)

work(x)

L = fetch(Sublists)L = fetch(Sublists)

The HELIX flow

69

We’ve made many enhancements
to existing code analysis,
e.g., DDG, induction variables, etc.

Sims show single-cycle latency is possible
for adjacent-core communication

70

Item = first(list L)
while (item){

x = data(item)
work(x)
item = next(l, item)

}

Future work: data-centric compiler

71

If (item)

Item = first(list L)

x = data(item)

work(x)

Item=next(l,item)

If (item)

x = data(item)

work(x)

Simulator overview and accuracy

72

Pin

VM

Un-core

Workload

(parallel x86)

Host /

OS

Core

RC

Brief description of SPEC2K
benchmarks used in our experiments

Non-numerical

• gzip & bzip2
• compression

• vpr & twolf
• place & route CAD

• parser
• Syntactic parser of English
• XML?

• mcf
• Combinatorial

optimization; network
flow, scheduling

Numerical

• art
• Neural network simulation;

image recognition; machine
learning

• equake
• Seismic wave propagation

• mesa
• Emulates graphics on CPU

• ammp
• Computational chemistry

(e.g., atoms moving)

73

Characteristics of parallelized
benchmarks

74

HELIX+RC

