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Sequential programs are not 
accelerating like they used to
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running on a platform



Single application: 
Not enough explicit parallelism

• Developing parallel code is hard

• Sequentially-designed code is still ubiquitous

Multiple applications: 
Only a few CPU-intensive applications
running concurrently in client devices

Multicores are underutilized
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Parallelizing compiler:
Exploit unused cores
to accelerate
sequential programs
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Numerical
programs

Non-numerical
programs

Non-numerical programs
need to be parallelized



99% of time is spent in loops

Parallelize loops 
to parallelize a program
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Time

Outermost
loops
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work()

work()

work()

DOALL parallelism

Iteration 0

Iteration 1

Iteration 2

Time
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c=f(c)
d=f(d)
work()

DOACROSS parallelism

c=f(c)
d=f(d)
work()

c=f(c)
d=f(d)
work()

Sequential
segment
Parallel
segment

Time
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c=f(c)
d=f(d)
work() c=f(c)

d=f(d)
work() c=f(c)

d=f(d)
work()

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]
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c=f(c)
d=f(d)
work()

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]
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c=f(c)
d=f(d)
work(x)

HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]

c=f(c)
d=f(d)
work()

c=f(c)
d=f(d)
work()

Seq. 
Segment 0

Seq. 
Segment 1

Wait 0

Wait 1

Signal 0

Signal 1
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HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]
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HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]



99% of time is spent in loops

Parallelize loops 
to parallelize a program
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Time

Innermost
loops

Outermost
loops



Parallelize loops 
to parallelize a program

Outermost
loops
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Innermost
loops

Coverage

Communication

Ease of 
analysis

HELIX
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HELIX: DOACROSS for multicore
[CGO 2012, DAC 2012, IEEE Micro 2012]
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ICC, Microsoft Visual Studio,DOACROSS
HELIX

4-core Intel Nehalem
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Innermost
loops

Coverage

Communication

Easy of 
analysis

HELIX

Outermost
loops

HELIX-RC
HELIX-UP

Small Loop Parallelism 



Small Loop Parallelism and HELIX

HELIX-RC: Architecture/Compiler Co-Design

HELIX-UP: Unleash Parallelization
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[ISCA 2014,
IEEE Top Picks honorable mention 2014,
ACM research highlight 2017]

[CGO 2015]

[CGO 2012
DAC 2012,
IEEE Micro 2012]

Communication

HELIX
Small loops



SLP challenge: short loop iterations
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Clock cyclesDuration of loop iteration (cycles)

SPEC CPU
Int benchmarks



SLP challenge: short loop iterations
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Clock cyclesDuration of loop iteration (cycles)

SPEC CPU
Int benchmarks

90



SLP challenge: short loop iterations
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Clock cyclesDuration of loop iteration (cycles)

Adjacent core
communication
latency



Seq. 
Segment 0

Seq. 
Segment 1

Wait 0

Wait 1

Signal 0

Signal 1

A compiler-architecture co-design
to efficiently execute short iterations
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Compiler
• Identify latency-critical code in each small loop

• Code that generates shared data

• Expose information to the architecture

• Reduce the communication latency
on the critical path

Architecture: Ring Cache



…

Load Y
…
Iter. 1
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Light-weight enhancement of
today’s multicore architecture

Core 0 Core 1

Core 3 Core 2

DL1 DL1

DL1 DL1

Last level cache

Ring node Ring node

Ring node Ring node

Store X, 1

Store Y, 1

Iter. 0

Store Y, 
1

Iter. 2

Store Y, 
1

Iter. 3

Store X, 1 Load X

75 – 260
cycles!



Core 0 Core 1

Ring node Ring node

Ring node Ring node
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Light-weight enhancement of
today’s multicore architecture

…
Wait 0
Load Y
…
Iter. 1

Store X, 1
Wait 0
Store Y, 1
Signal 0

Iter. 0
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98% hit rate



The importance of HELIX-RC
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Non-numerical
programs

Numerical
programs



The importance of HELIX-RC
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Non-numerical
programs

Numerical
programs



Thank you!



Small Loop Parallelism and HELIX

• Parallelism hides in small loops

HELIX-RC: Architecture/Compiler Co-Design

• Irregular programs require low latency

HELIX-UP: Unleash Parallelization

• Tolerating distortions boosts parallelization
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HELIX and its limitations
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Thread 0
Thread 1
Thread 2
Thread 3

Data

Data

Data

Iteration 0

Iteration 1

Iteration 2

Performance:
• Lower than you would like
• Inconsistent across architectures
• Sensitive to

dependence analysis accuracy

What can we do to improve it?
31

4 Cores

1.68

2.77

2.31

1.61

1.19

Nehalem

Bulldozer

Haswell

79% accuracy

78% accuracy

50%

80%



Opportunity:
relax program semantics

• Some workloads tolerate output distortion

• Output distortion is workload-dependent

32



Relaxing transformations remove
performance bottlenecks

• Sequential bottleneck
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Inst 1
Inst 2
Inst 3
Inst 4

Inst 3
Inst 4

Inst 3
Inst 4

Dep

Thread 1            Thread 2              Thread 3

Inst 1
Inst 2

Inst 1
Inst 2

Speedup

Sequential
segment



Relaxing transformations remove
performance bottlenecks

• Sequential bottleneck

• Communication bottleneck

• Data locality bottleneck
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Relaxing transformations remove
performance bottlenecks
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No relaxing transformations
Relaxing transformation 1
Relaxing transformation 2

…

Relaxing transformation k

Max output distortion
Max performance

No output distortion
Baseline performance



Design space of HELIX-UP
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Code
region 2

Code 
region 1

o Performance      
o Energy saved      
o Output distortion

1) User provides output distortion limits
2) System finds the best configuration
3) Run parallelized code with that configuration

Apply relaxing transformation 3
to code region 1

Apply relaxing transformation 5 
to code region 2



Pruning the design space

Empirical observation:
Transforming a code region

affects only the loop it belongs to

50 loops, 2 code regions per loop
2 transformations per code region

Complete space                    =      2100

Pruned space     = 50 * (22) =  200

How well does HELIX-UP perform?
37



HELIX: no relaxing transformations

38

Nehalem 6 cores
2 threads per core

HELIX-UP unblocks extra parallelism
with small output distortions



HELIX-UP unblocks extra parallelism
with small output distortions
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Nehalem 6 cores
2 threads per core
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Performance/distortion tradeoff

%

256.bzip2

HELIX



Run time code tuning

• Static HELIX-UP decides
how to transform the code based on
profile data averaged over inputs

• The runtime reacts to transient bottlenecks
by adjusting code accordingly
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Adapting code at run time
unlocks more parallelism
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256.bzip2

%

HELIX



HELIX-UP improves
more than just performance

•Robustness to DDG inaccuracies

•Consistent performance
across platforms
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Relaxed transformations to be
robust to DDG inaccuracies
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Increasing DDG 
inaccuracies leads to 
lower performance

No impact
on HELIX-UP

HELIX HELIX-UP

256.bzip2



Relaxed transformations for
consistent performance
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Increasing 
communication latency
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Circuit

Architecture

Compiler

Programming
language

Ongoing work

This talk contribution

Ongoing work: application-specific

Parallelism
• Communication
• HW/compiler interface



Irregular data consumption
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Proactively broadcast shared data

Number of consumersDistance of consumers



Subsequent work

•Real system evaluation of HELIX-RC

•Multi programs scenario

• Speculation for SLP
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Small Loop Parallelism opportunity
Code complexity

• Control flow

• Data flow
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Dependences to satisfy

• Actual

• Apparent

Prior works

• Thread Level Speculation (TLS)

Apparent

• TLS overhead         big loops

Benefits of small (hot) loops

• Code complexity

Apparent (only 1.2x more dependences)

• Enable code transformations to recompute shared values

Actual

(10x more dependences!)

No TLS



HELIX: no relaxing transformations
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Nehalem 6 cores
2 threads per core

HELIX-UP unblocks extra parallelism
with small output distortions

Compressed file             100%
Statistics 0 <-> 100%
|correct – output| + 1

correct + 1

Bzip2 has 2 outputs



Compiler: HCC
• Identify and analyze small loops

• For each small loop
• Identify code that may generate

data to be shared between iterations

• Shape the code to minimize
dependence cost
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Breakdown of overhead left
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How to adapt code?Which code to adapt?

When to adapt code?



Setting knobs statically is
good enough for regular workload
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183.equake

HELIX

%



HELIX-UP runtime is
“good enough”
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256.bzip2



HELIX: no relaxing transformations
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Nehalem 6 cores
2 threads per core

HELIX-UP unblocks extra parallelism
with small output distortions



HELIX-UP unblocks extra parallelism
with small output distortions
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Nehalem 6 cores
2 threads per core



Conventional transformations
are still important
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HELIX-UP and Related Work
with no output distortion



HELIX-UP and Related Work
with output distortion



Relaxed transformations remove
performance bottlenecks

• Sequential bottleneck
• A code region executed sequentially

61

No output distortion
Baseline performance

Max output distortion
Max performance

• A knob for each sequential code region



Design space of HELIX-UP
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Code
region 2

Code 
region 1

o Performance      
o Energy saved      
o Output distortion

1) User provides output distortion limits
2) System finds the best configuration
3) Run parallelized code with that configuration

Apply relaxing transformation 3
to code region 1

Apply relaxing transformation 5 
to code region 2



Pruning the design space

Empirical observation:
Transforming a code region

affects only the loop it belongs to

50 loops, 2 code regions per loop
2 transformations per code region

Complete space                    =      2100

Pruned space     = 50 * (22) =  200

How well does HELIX-UP perform?
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HELIX-UP improves
more than just performance

•Robustness to DDG inaccuracies

•Consistent performance
across platforms
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Relaxed transformations to be
robust to DDG inaccuracies
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Increasing DDG 
inaccuracies leads to 
lower performance

No impact
on HELIX-UP

HELIX HELIX-UP

256.bzip2



Relaxed transformations for
consistent performance
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Increasing 
communication latency



Small Loop Parallelism:
a compiler-level granularity
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Circuit

Architecture

Compiler

Programming
language

ILP

TLP

SLP

Frequency of
communication

Frequent

Granularity

Coarse
grain



Future work
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Item = first(list L)
while (item){

x = data(item)
work(x)
item = next(l, item)

}

If (item) 

Item=first(list L)

x = data(item)

work(x)

Item=next(l,item)

If (item) 

x = data(item)

work(x)

Sublists = partitionList(list L)

If (item) 

Item=first(list L)

x = data(item)

work(x)

Item=next(l,item)

If (item) 

x = data(item)

work(x)

L = fetch(Sublists)L = fetch(Sublists)



The HELIX flow
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We’ve made many enhancements 
to existing code analysis, 
e.g., DDG, induction variables, etc.



Sims show single-cycle latency is possible 
for adjacent-core communication
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Item = first(list L)
while (item){

x = data(item)
work(x)
item = next(l, item)

}

Future work: data-centric compiler
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If (item) 

Item = first(list L)

x = data(item)

work(x)

Item=next(l,item)

If (item) 

x = data(item)

work(x)



Simulator overview and accuracy
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Pin

VM

Un-core

Workload

(parallel x86)

Host /

OS

Core

RC



Brief description of SPEC2K 
benchmarks used in our experiments

Non-numerical

• gzip & bzip2 
• compression

• vpr & twolf
• place & route CAD

• parser
• Syntactic parser of English
• XML?

• mcf
• Combinatorial 

optimization; network 
flow, scheduling

Numerical

• art
• Neural network simulation; 

image recognition; machine 
learning

• equake
• Seismic wave propagation

• mesa
• Emulates graphics on CPU

• ammp
• Computational chemistry 

(e.g., atoms moving)
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Characteristics of parallelized 
benchmarks
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HELIX+RC


