

Creating a Python Data Science Distribution for ARM with Conda

Jonathan Helmus, Software Engineer

Motivation

Installing software can be difficult

- especially scientific software
- even more so on ARM

Common solutions:

- system package managers
 - limited number of packages
 - often provide older versions
- language specific package managers
 - support for ARM is limited
 - requires compilers, libraries and other tools to be installed

CONDA

- Conda is a cross platform package and environment management system
- Written and maintained by Anaconda, Inc.
- Open Source, BSD licensed
- Creates reusable, relocatable packages for software written in any language
- Many Python and R data science, machine learning and Al frameworks
- Typically available by installing the <u>Anaconda Distribution</u> or <u>Miniconda</u>

package management with conda

- Packages are binaries, no compiler or libraries are needed
- Does not require administrator privileges
- Uses a <u>SAT solver</u> for dependency resolution

Typical commands:

- conda install: install one or more package(s)
- conda remove : remove a package
- conda update : update a package
- conda list: list the installed packages

conda environments

Conda can create isolated environments that have their own set of packages.

- conda create : create a new conda environment
- conda activate : activate a conda environment
- conda deactivate : deactivate the current conda environment

Great when you need to work with different versions of a library or application.

Environment specification can be exported to a file and recreated.

package tools: conda-build and constructor

conda-build is a tool to create conda packages.

Packages are built from **recipes** which specify package metadata and build steps.

Process

- create an isolated build environment
- execute build steps
- bundle files
- create a test environment
- execute tests

constructor is a tool for creating **installers** from conda packages

conda channels

- Conda packages are provided from different repositories, called channels.
- Out of the box, conda installs packages from the "defaults" channel.
- Other channels can be enabled to access additional collections of packages
- Channels are hosted for free on Anaconda Cloud (anaconda.org)

Some key channels are:

- defaults: packages from Anaconda, Inc.
- conda-forge: large community led collection of packages
- bioconda: community specializing in bioinformatics packages

conda-forge

- Numfocus-affiliated community organization made up of volunteers
- One GitHub repository per recipe
- Fine granularity over permissions
- Heavy use of automation for building, deploying, and updating recipes
- Packages built on public CI services (TravisCI, CircleCI, Appveyor, Azure)
- https://conda-forge.org/

conda on ARM

For conda to support ARM:

conda itself must recognize the platform

- linux-armv6l <u>supported</u> in conda 1.5.0 (2013)
- linux-armv7l <u>supported</u> in conda 3.15.0 (2015)
- linux-aarch64 <u>supported</u> in conda 4.3.18 (2017)

Installers and **packages** must be available for the platform.

Conda on 32-bit ARM (armv6l and armv7l)

My initial interest in ARM started with a Raspberry Pi

Anaconda (then Continuum Analytics) provided Miniconda and a small collection of packages for these SBCs

I wanted more packages and up-to-date versions

Berryconda was born!

Berryconda

- A conda based Python distribution for the Raspberry Pi
- Installers and packages for:
 - armv6l: RPi Zero and 1
 - **armv7I**: RPi 2, 3 and 4
- Designed to work on Raspbian
- Over 300 packages in the <u>rpi channel</u> on Anaconda Cloud
- Python 2 and 3
- Recipes derived from conda-forge
- Testing ground for noarch packages and NumPy pinning now widely used

https://github.com/jjhelmus/berryconda

Berryconda

Works on other 32-bit ARM systems

But **not** a general purpose 32-bit ARM distribution

- uses compilers and libraries from Raspbian
- targets Raspberry Pi specific floating point instructions (e.g. neon-vfpv4)

conda for 64-bit ARM (AArch64)

Many Raspberry Pi clones have 64-bit ARMv8 processors

Can we run conda on these systems?

- No packages available
- No installer available

Need to **bootstrap** a new platform, create an **installer** and then build **packages**

Bootstrapping a new platform in conda

Installing Miniconda is not an option for new platforms.

To bootstrap a new platform:

- install or build Python dependencies (bzip2, zlib, etc) from source
- compile Python from source
- pip install conda dependencies (six, tqdm, requests, etc)
- install/compile non-pip conda dependencies from source (cph, libarchive)
- install conda (and conda-build) from source

Docker containers are great for bootstrapping, for example:

https://github.com/jjhelmus/conda_from_scratch

Build an AArch64 installer

Constructor can be used to build an AArch64 installer.

~130 packages needed:

- compilers : gcc 7.3.0, binutils 2.29.1
- build tools: make, autotools, ...
- libraries : zlib, sqlite, readline, ...
- Python and Python libraries
- conda, conda-build, constructor, ...

Packages built on a ROCKPro64, available in the <u>c4aarch64</u> channel

Recipes, build tools, and an installer: https://github.com/jjhelmus/conda4aarch64

Building AArch64 packages on conda-forge

To build packages for the linux-aarch64 platform on conda-forge:

- Create a <u>docker image</u> for the platform
- <u>Teach</u> conda-smithy about linux-aarch64
- Define a <u>migrator</u> for the platform

With the migrator defined a conda-forge bots submits pull requests to the feedstocks adding builds for the new platform.

Packages are built and uploaded to the conda-forge channel

conda-forge AArch64 status

Conda-forge AArch64 migration was started in January, 2019

Currently 289 AArch64 packages are available along with 4260 noarch packages Migrator Status: https://conda-forge.org/status/

Contributing

Interesting in conda on ARM?

- Participate in conda-forge discussions:
 https://gitter.im/conda-forge/conda-forge.github.io
- Help with the aarch64 migration: https://conda-forge.org/status/
- Write documentation: https://conda-forge.org/docs/
- Champion building armv7l packages on conda-forge
 - https://github.com/jjhelmus/berryconda/pull/40
 - https://github.com/jjhelmus/conda4armv7l/

