Enabling Architecture Research for Augmented and Virtual Reality

Muhammad <u>Huzaifa</u>, PhD Candidate

Advisor: Sarita Adve

University of Illinois at Urbana-Champaign

AR/VR's Crazy Requirements

SAMSUNG ODYSSEY

2.3 Mpixels/eye

90 Hz

110° FoV

Latency?

250 W

500 mm2

700 grams

200x perf!

2500x power!

5x area!

10x weight!

IDEAL HEADSET

100 Mpixels/eye

144 Hz

175° FoV

20 ms or less

100s mW

100 mm2

10s grams

Why AR/VR?

Up and coming killer application

Challenges span entire system

Great driver for hardware specialization
Several AR/VR kernels are shared across domains

Challenges

State-of-the-art closely guarded by industry

No open-source benchmarks, no models, no simulators

Where do we start?

VR Pipeline

Developed aspirational VR pipeline to capture key components and key system interactions

VR Pipeline

Really just an assortment of asynchronous pipelines!

VR Pipeline

Really just an assortment of asynchronous pipelines!

Challenges: Many domains, difficult to integrate multiple code bases, modeling graphics

7

Adaptive display

Time warp

Space warp

Approach Rendering Input Post-processing Optimizations Output Head tracking Stereoscopic rendering Contrast preservation Foveated rendering Eye tracking Chromatic aberration correction Adaptive display Time warp Hand tracking 3D audio Lens distortion correction Space warp **Ambisonics** 3D video Depth Temporal anti-aliasing

Step 1: Collect state-of-the-art codes for each component

SLAM

Networking

Input

Rendering

Post-processing Optimizations

Output

Head tracking Eye tracking Hand tracking Depth Networking

Stereoscopic rendering Foveated rendering 3D audio 3D video SLAM

Contrast preservation Chromatic aberration correction Lens distortion correction Temporal anti-aliasing

Time warp Space warp

Adaptive display **Ambisonics**

- Step 1: Collect state-of-the-art codes for each component
- Step 2: Analyze each component in isolation
- Step 3: Create intermediate mini VR pipelines to understand interactions
 - This talk: [SLAM + Renderer] → Adaptive Display
- Step 4: Use analysis to drive scalable hardware specialization

SLAM

Simultaneous Localization and Mapping: where am I in the world and what the world looks like

ELASTICFUSION

Dense

Directly uses pixel intensities and depths for tracking

Dense reconstruction

Computationally expensive

Pose estimation + optimization + deformation graph

Computationally less expensive

Computer vision + RANSAC + BA

Lens & Chromatic Distortion Correction

Pincushion distortion and chromatic aberrations caused by curved lenses

Six different mathematical models implemented in OpenGL

All models perform similarly

Bound by irregular texture accesses

Asynchronous Time Warp

Warping frame to account for head movement

Still under development pthreads + OpenGL

Insights so far
Matrix multiplication heavy
Locking on framebuffer and eye textures

Hologram

Mapping images to multi-focal displays

Two different algorithms implemented in CUDA Algorithm choice based on number of depth planes

~1.8 ms/iteration & ~10 iterations – not real time for 144 Hz!

Compute bound: reductions + transcendentals

Ambisonics

Mapping sound from virtual channels to a given speaker configuration

Five different decoders
Implemented in CUDA
Simple and low fidelity to complex and high fidelity

Most complex decoder takes ~180 ms on a Pascal GPU

Bound by irregular accesses + atomics

Mini VR Pipeline

Rendering Post-processing Optimizations Input Output Head tracking Stereoscopic rendering Contrast preservation Foveated rendering Eye tracking Chromatic aberration correction Time warp Adaptive display 3D audio Hand tracking Lens distortion correction **Ambisonics** Space warp 3D video Depth Temporal anti-aliasing Networking SLAM Rendering Output Simple renderer Adaptive display **SLAM**

Mini VR Pipeline Findings

No longer real time on <u>Titan Xp</u> at Vive's resolution (2160x1200) at 30 fps ElasticFusion (20 ms) + Renderer (5 ms) + Hologram (18 ms) = 43 ms Deadline: 33 ms

Common compute pattern: reductions

~50% of CUDA execution time in ElasticFusion; ~63% in Hologram Reductions are on custom data-structures!

But different data layouts for each kernel

Need communication specialization techniques such as Spandex!

Vanilla ElasticFusion

ElasticFusion + Hologram

Architectural Challenges

Ever changing algorithms => programmable hardware

Limited die area => shared hardware

Memory, the destroyer of worlds => dynamic partitioning, allocation, scheduling

Tons of sensors => on-sensor computing

Distribution of work between glasses, phone, and cloud

Human brain is not perfect => approximate computing

We hope that our benchmark suite can help answer these questions!

```
Finish application
```

Aberration shaders between ElasticFusion and hologram (easy medium)

Head & eye tracking + time & space warping combo (medium)

Integrate audio pipeline (medium)

Replace simple renderer with stereoscopic & foveated renderers (hard)

Repeat experiments on embedded platform; e.g., NVIDIA Jetson TX2

```
Finish application
```

Aberration shaders between ElasticFusion and hologram (easy medium)

Head & eye tracking + time & space warping combo (medium)

Integrate audio pipeline (medium)

Replace simple renderer with stereoscopic & foveated renderers (hard)

Repeat experiments on embedded platform; e.g., NVIDIA Jetson TX2

```
Finish application
```

Aberration shaders between ElasticFusion and hologram (easy medium)

Head & eye tracking + time & space warping combo (medium)

Integrate audio pipeline (medium)

Replace simple renderer with stereoscopic & foveated renderers (hard)

Repeat experiments on embedded platform; e.g.,

Finish application

Aberration shaders between ElasticFusion and hologram (easy medium)

Head & eye tracking + time & space warping combo (medium)

Integrate audio pipeline (medium)

Replace simple renderer with stereoscopic & foveated renderers (hard)

Repeat experiments on embedded platform; e.g.,

Use analysis to guide accelerator and memory system development **Spandex** is a promising platform: unified shared memory, flexible coherence and communication

Release application!

Thank you for your time!

Questions?

Muhammad Huzaifa | Sarita Adve | UIUC

Joint University Microelectronics Program

www.src.org/program/jump

Semiconductor Research Corporation

@srcJUMP