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Caches, Security, and Embedded Systems

 Embedded systems are prevalent in today’s world
* Processors are key part of any embedded system
* In 2017 there were 100 billion Arm-based chips deployed
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Recent Uses of Cache Timing Attacks

« There is renewed interest in timing attacks due to Transient Execution Attacks
« Most of them use transient executions and leverage cache timing attacks

 Variants using cache timing attacks (side or covert channels):

Variant 1: Bounds Check Bypass (BCB) Spectre
Variant 1.1: Bounds Check Bypass Store (BCBS)  Spectre-NG
Variant 2: Branch Target Injection (BTI) Spectre
Variant 3: Rogue Data Cache Load (RDCL) Meltdown
Variant 3a: Rogue System Register Read (RSRR) Spectre-NG
Variant 4. Speculative Store Bypass (SSB) Spectre-NG
Variant 5: Return Mispredict SpectreRSB
* NetSpectre, Foreshadow, SGXSpectre, or SGXPectre
» SpectrePrime and MeltdownPrime (both use Prime+Probe instead of
original Flush+Reload cache attack)
 And more...
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Classical Channels —which do not
require speculative execution

Speculative Channels —which are
based on speculative execution

Root cause of the both types

remains the same

» Defending classical attacks
defends speculative attacks as
well, but not the other way around



Three-Step Model for Cache Timing Attacks
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Timing Attack Example: Prime-Probe Attacks

Osvik, D. A., Shamir, A., & Tromer, E, “Cache attacks and countermeasures: the case of AES”. 2006.
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Timing Attack Example: Flush-Reload Attack

Yarom, Y., & Falkner, K. “FLUSH+ RELOAD: a high resolution, low noise, L3 cache side-channel attack”, 2014.

CPU1 CPU2
2- Victim accesses Victim Attacker 1- Attacker flushes
critical data L1-1 [L1-D | 11 [L1-D each line in the cache
| 2 | 2 3- Attacker reloads critical
data by running specific
Shared L3 process (measure time)
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A Three-Step Model for Cache Timing Attack Modeling

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

Observation:
 All the existing cache timing attacks equivalent to three memory operations - three-step model

« Cache replacement policy the same to each cache block - focus on one cache block

The Three-Step Single-Cache-Block-Access Model

Stepl w Step?2 s  Step3 (fast/slow)
The initial state of Memory Final memory
the cache block operation alters operations and
set by a memory the state of the timing observation
operation cache (fast/slow)

» Analyzed possible states of the cache block + used cache three-step simulator and reduction rules
derive all the effective vulnerabilities

« Thereare72 possiblecachetiming attack types
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17 States in the Model

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

[ State | Description |

A memory location u belonging to the victim is accessed and is placed in the cache

Th e re are 1 7 pOSSi b I e States for eac h Ste p i n block by the victim (V). Attacker does not know u, but u is from a set x of memory

V. locations, a set which is known to the attacker. It may have the same index as a
u alias

h d I . ora , and thus conflict with them in the cache block. The goal of the attacker
t e I I l O e . is to learn the index of the address u. The attacker does not know the address u,
hence there is no A, in the model.

Vu’ Aa’ Va’ Aaallsa, Vaallas, Adl Vd’ Alnv’ Vlnv’ Aalnv, Valnv, The cache block contains a specific memory location a. The memory location is

o placed in the cache block due to a memory access by the attacker, A,, or the victim,
aIIaSInV aIIaSInV InV Inv InV * ;'/“0 Va. lhe attacker knows the address a, indepcndcnt'of \:vh(':thcr the access wa.s 'by
a , a y d y d ) u ’ the victim or the attacker themselves. The address a is within the range of sensitive

locations z. The address a is known to the attacker.

The cache block contains a memory address a®*°. The memory location is placed
Aﬂﬂ“a, in the cache block due to a memory access by the attacker, Aa,,“,,,, or the victim,
or V,atias. The address a®'*%® js within the range z and not the same as a, but it has

° V re presentS that the State iS a reSU|t Of the V_atias | the same address index and maps to the same cache block, i.e. it “aliases” to the
same block. The address a®'*** is known to the attacker.
H H ) H 1 The cache block contains a memory address d. The memory address is placed in
VICtI m S O pe rat|0 n, er" Ie A re prese ntS that the A:/ or the cache block due to a memory access by the attacker, A4, or the victim, V4. The
g address d is not within the range z. The address d is known to the attacker.

State iS a reSUIt Of the attaCker,S Operation At The cache block is now invalid. The data and its address are “removed” from the

or cache block by the attacker, A'™¥, or the victim, V™", as a result of cache block

H yiny being invalidated, e.g., this is a cache flush of the whole cache.
b X de notes the Set Of VI rtual me mo ry addresses The cache block state can be anything except a in this cache block now. The data
. a s A;"" and its address are “removed” from the cache block by the attacker, A"", or the
Storlng addresses Of SenSItlve data or victim, V;"". E.g., by using a flush instruction such as clflush that can flush
v specific address, or by causing certain cache coherence protocol events that force a

° u de notes the ViCti m’S Secret add reSS Withi n X to be removed from the cache block. The addres:htzﬂis known to the attacker.

The cache block state can be anything except a in this cache block now. The
data and its address are “removed” from the cache block by the attacker, A’}

. . — Vs
which is unknown to the attacker AlSlias | o the victim, Vins... oo
yinv flush specific ad‘:iress, or by causing certain cache coherence protocol events that

[ ] a’ aallas and d de note knOWn me mo ry addresses aalias force a®*%* to be removed from the cache block. The address a®'*** is known to

the attacker.

E.g., by using a flush instruction such as ¢l flush that can

th t t th h I' The cache block state can be anything except d in this cache block now. The
a. I I Iap 0 e Sa.l I Ie CaC e Ine A;’"‘ data and its address are “removed” from the cache block by the attacker A"V or
or the victim V;"". E.g., by using a flush instruction such as ¢l flush that can flush

) d refers to an address OutSIde Of X’ Whl |e the Vi specific address, or by causing certain cache cohcrcn.cc protocol events that force d
to be removed from the cache block. The address d is known to the attacker.

Othe rS are the address Vvithi n X The cache block state can be anything except u in the cache block. The data and its

. address are “removed” from the cache block by the victim V™" as a result of cache

block being invalidated, e.g., by using a flush instruction such as el flush, or by

certain cache coherence protocol events that force u to be removed from the cache

block. The attacker does not know u. Therefore, the attacker is not able to trigger

J I - t bt H this invalidation and A}"" does not exist in the model.
The attaCker S goa IS O O aln u ‘ i Any data, or no data, can be in the cache block. The attacker has no knowledge of

the memory address in this cache block.

inv
Vu
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States of the Cache Block

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

There are 17 possible states for each step in the model:
Vua Aa’ Va’ Aaalisa’ Vaalias, Ad’ Vd’

memory region memory region
possible Gachie Entriss e a possible states: Cache Entries a0 [ a
siates: LMo bHES 00 e o
|4 : 174 2 e sensm\ze_ """" Ag Or Vg
E I A Y I 99‘10'1 . g i A jatias qalias
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V' — non' =
u sensitive sensitive
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There are 17 possible states for each step in the model:
VU’ Aa’ Va’ Aaalisa, Vaa"as, Ad1 Vd, Ainv, Vinv, Aainv’ Vainv’ Aaanasinv’ Vaanasinv’ Adinv’ Vdinv’

possible
states:

memory regior

Cache Entries

Ainv or Vinv

sensitive

regionx" |

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019
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Deng, S., Xiong, W., Szefer, J.,

“Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

There are 17 possible states for each step in the model:
Vua Aa’ Va’ Aaalisa’ Vaalias, Ad’ Vd, Ainv, Vinv, Aainv, Vainv’ Aaanasinv’ Vaanasinv’ Adinv’ Vdinv’ Vuinv’ *

possible
states:

inv
Vi

Cache Entries
Vuinv
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Strong and Weak Vulnerabilities

“Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, S. Deng, et al., 2019
“Cache Timing Side-Channel Vulnerability Checking with Computation Tree Logic”, S. Deng, et al., 2018

« Exhaustively evaluate all 17 (stepl) * 17 (step2) * 17 (step3) = 4913 three-step patterns
« Used cache three-step simulator and reduction rules to find all the strong effective vulnerabilities
* Intotal 72 strong effective vulnerabilities were derived and presented

. . Vulnerability Types Reduction
Classification v P Vulnerability Types
Step Preliminary Strong Step Strong @
Exhaustive List Cache Vulnerability @@ — [ Reduction Vulnerability
oftzllllrlepe(;s:lble Three-Step Prehmmary_ Weak _ | Rules |_,  JWeak
combinatie(?ns Simulator IVHJ;}:erabd}i g Vulnerability
neffective [ hree-Step
>
Victim’s Attacker’s Victim’s Attacker’s Victim’s Attacker’s
Behavior () Observation Behavior (#) Observation Behavior () Observation
Q&
R
a a N a —
o‘\q T fast _ fast & _ fast
%ié q@lias —_ q%lias 0{& qalias /
P slow slow & / slow
NIB NIB > NIB
Example 7754 Example 555 maid Example [}~ 7 imaiid ~ |/
e d u a Vul bilitv: u a - d u d
Vulnerability: ulnerability: Vulnerability:
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Exhaustive List of Cache Timing Side- Channel Attacks

Deng, S., Xiong, W., Szefer, J., “Analysis of Secure Caches and Timing-Based Side-Channel Attacks”, 2019

S?:;:u:k Vulnerability Type Macro . S?:;:‘;:gky Vulnerability Type Macro Attack
&y Stepl | Step2 | Step 3 Type ac Stepl | Step2 | Step 3 Type
AT Vu Vo (last) 1H (2) AT Vu V2T (slow)
Tnv v
vrne Vu Va (fast) I1H (2) Cache Internal v Vy Va@nu (slow)
Cache Ag Vu Va (fast) TH (2) Collision Adg Vu Va (slow)
Internal Va Vu Va (fast) IH (2) Invalidation Va Vu V" (slow)
Collision Agatias Vi Va (fast) 1H (2) A _alias Vu ViU (slow)
Vaa.l':'.as Vu Va (fast) IH (2) V. aliag Vi ViU (S_luw)
A Vu Va (fast) IH (2) A Vy V" (slow)
Tnv inv inv
o e - T Flush 4 Fluch o v e
a u a a u a slow)
vinv Va A, (fast) EH () VinT Va A" (slow) EH
AT Va A, (fast) BH (5) AT Va AT (Slow) EH New
Flush TRU nu inu
% Vv A, (fast EH 5 |4 Vi A slow EH
+ Reload 3 a (fast) (5) Flush + Reload u o (slow) attacks not
A, Va A, (fast) EH 5) + Re Aq Va A" (slow) EH .
Vi Va A, (fast) EA &) Invalidation v, v, AT (slow) A considered
A _alias Vu Ag (fast) EH (5) A_atias Vu A (slow) EH prior to
V o1 . Vau:liag Vu A"q“” (slow) EH our Work
Reload VI:"'“ Ag Vu (fast) EH new Reload + Time Vt':"’v Ag V;"U (slow) EH
+ Time v Va V., (fast) TH new Invalidation Vi Va VI (slow)
Ay Voo Ag (slow) BN o) A, vinv A7 (fast) EM
TS Ao Va Va (siow) INT e Flush + Probe Ag v, V™Y (fast)
+ Frobe Va v, Aa (slow) EM new | Invalidation Va vanv A (fast) EM
V, VinU Vo _(slow) IM new Va v, V2T (fast)
Evict Vu Ag Vi (slow) EM Evict + Time Vu Ag VITY (fast) EM
+ 'I.‘1me v, Ag V,, (slow) EM 1 Invalidation Ve A, VU (fast) EM
Prime Ag Vu Ag (slow) EM 4 Prime + Probe A Vy A;’“’ (fast) EM
+ Probe Ag Ve, A, (slow EM [E3] I Invalidation Aq Vu A"V (fast) EM
Vu Vo Vy (slow) IM (3) Bernstein’s Vi Va Vé:: (fast)
Bernstein’s Vu Va Vy (slow) M (3) Invalidation :'H :ﬂl :t%nv (tf'aSt)
Attack Va Va vV, (slow) ™ 3) Attack d u i (fast)
- Vo Vi Vo _(slow) IM (3) i Va Vay V%nu (fast)
Evict Va Vu Ay (slow) EM new Bvict + PTObE Va Va A" (fast) EM
+ Probe Va Vu Ag (slow) EM new Invalidation Va Vy Agﬂu (fast) EM
Prime Ay Vi V4 (slow) IM new Prime + Time Ag Vay ViU (fast)
+ Time Aq Vu Va (slow) IV new Invalidation Ag Vu V,}"" (fast)
Flush Vu Ainv Vu (slow) EM new Flush + Time Vu ALmY VInY (fast) EM
+ Time Vu vanv Vy (slow) IM new Invalidation Vu v2mr V2TV (fast)
(1) Evict + Time attack [31]. (1) Flush + Flush attack [14].
(2) Cache Internal Collision attack [4].
(3) Bernstein’s attack [2].
(4) Prime + Probe attack [31,33], Alias-driven attack [16]. Arm Research Summit 2019, Austin, TX, 13

(5) Flush + Reload attack [50,49], Evict + Reload attack [15]. © Jakub Szefer 2019
(6) SpectrePrime, MeltdownPrime attack [41].



Three-Step Model for TLB Timing Attacks
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A Three-Step Model for TLB Timing Attack Modeling

Deng, S., Xiong, W., Szefer, J., “Secure TLBs”,ISCA 2019

Observation:
 All the existing TLB timing attacks can be modeled using three memory operations

« TLB replacement policy applies to each TLB block equally: can model only one block

The Three-Step TLB Model

Stepl w Step?2 s  Step3 (fast/slow)
The initial state of Memory Final memory
the cache block operation alters operations and
set by a memory the state of the timing observation

operation cache (fast/slow)

* Analyzed possible states of the TLB block + used TLB three-step simulator and reduction rules derive
all the effective vulnerabillities

« Thereare43 possiblecachetiming attack types

Arm Research Summit 2019, Austin, TX 15
© Jakub Szefer 2019



TLB Timing Attacks

Attack Vulnerability Type
Our model considers 10 states for each step Strategy
Aa or Va TLB Prime Ag (slow)
+ Probe Aa (slow)
Aaalias or Vaalias V., (fast)
AgorV, TLB V, (fast)
Internal Va (fast)
Ainv or Vinv Collision Vg (fast)
Vg (fast)
Vu V iig V., (fast
% TLB Evict Vu (slow)
+ Time Vi (slow) New
Total 103 = 1000 combinations TLB Evict Ad Glow) attacks not
. . + Probe Ag (slow) considered
» Apply three-step simulator and reduction TLB Prime Vg (low prior to
. HHT Ti ” our work
rules to eliminate non-vulnerabilities i e .
agug . a (tast
W e consequently found 24 vulnerabilities A ()
. TLB Flush A (fast)
« 16 new vulnerabilities + Reload A (o)
* 8 vulnerabilities map to existing attacks Agatias Aq ()
Vaalias Aa (fast)
TLB Vi (slow)
(1) TLBBleed. Ben Gras et al. "Translation Leak-aside Versiog of Vi (slow)
Buffer: Defeating Cache Side-channel Protections with Bernstein’s V4 (slow)
TLB Attacks” USENIX Security Symposium, 2018. Attack V, (slow)
(2) Double Page Fault Attack. Ralf Hund et al. "Practical : : -
timing side channel attacks against kernel space ASLR" Arm Research Summit 2019, Austin, TX, 16

S&P, 2013. © Jakub Szefer 2019



Towards Security Benchmarks & Summary
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Towards Security Benchmarks

Deng, S., Xiong, W., Szefer, J., “A Benchmark Suite for Evaluating Caches’Vulnerability to Timing Attacks”, Technical Report

« The theoretical three-step model can be used to design security benchmarks
for caches (and TLBs and other cache-like structures) and create security benchmark suite

» Levels of complexity The three-step model
1. Theoretical attack analysis
2. Benchmarks and test code Benchmark derived from three-step model

3. Actual security attacks

Overly complex for purposeof
showing vulnerability

Towards design of benchmarks

« Convert three-step patterns into code snippets

Run code on actual hardware or simulator

Derive timing of the last step

Use Welch's t-test to check if distribution of timing for different values of u can be distinguished

The number of three-steps that have distinguishable timing can be a security score
 Smaller is better, means more secure cache
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Preliminary Benchmarks and Results

Deng, S., Xiong, W., Szefer, J., “A Benchmark Suite for Evaluating Caches’Vulnerability to Timing Attacks”, Technical Report

* On-going research in our group looks into development of open-source benchmarks
that can generate the CTVS

- Tests that pass for
one or more CPUs
Tests that pass for

| all CPUs
glg)fLeJ;etgtSted | ‘ :::J ............. T T T T ................. T ............ T TeStS for

o O O O 1 O A N O O A individual
""""" CPUs
\ . WoSw }
Y

Arm Research Summit 2019, Austin, TX,

© Jakib Ssefer 2019 Three-steptests: 72 * 8 or 16 variants 19



Summary

« Timing attacks have a long history, but the research on attacks and defenses
IS still a very active field
* There is renewed interest (especially in cache) timing attacks due to Transient Execution Attacks

« Showed three-step model for timing attacks on caches
» Total of 72 types of possible attacks, with 43 attacks not previously considered

« Showed a three-step model for timing attacks on TLBs
« Total of 24 types of possible attacks, with 16 attacks not previously considered
« Discussed preliminary results for security benchmarks
» Allow users and designers to tests caches
» Can help compare different processor and cache configurations with a simple metric
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Thank You! ,

Related reading...

Principles of Secure Processor
Architecture Design

Jakub Szefer, Principles of Secure Processor
Architecture Design,” in Synthesis Lectures on
Computer Architecture, Morgan & Claypool
Publishers, October 2018.

https://caslab.csl.yale.edu/books/ N
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