

Getting Started with DS-MDK
Create Applications for Heterogeneous

ARM® Cortex®-A/ Cortex®-M Devices

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2016 ARM Germany GmbH

All rights reserved.

Keil
®
, µVision

®
, Cortex

®
, CoreSight™ and ULINK™ are trademarks or

registered trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft
®
 and Windows™ are trademarks or registered trademarks of Microsoft

Corporation.

PC
®
 is a registered trademark of International Business Machines Corporation.

Eclipse
®
 is a registered trademark of the Eclipse Foundation, Inc.

NOTE

We assume you are familiar with Microsoft Windows, the hardware, and the

instruction set of the Cortex-A and Cortex
®
-M processors.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started with DS-MDK 3

Preface
Thank you for using the DS-MDK Development Studio available from ARM

®
.

To provide you with the very best software tools for developing ARM based

embedded applications we design our tools to make software engineering easy

and productive. ARM also offers therefore complementary products such as the

ULINK™ debug and trace adapters and a range of evaluation boards. DS-MDK

is expandable with various third party tools, starter kits, and debug adapters.

Chapter Overview

The book starts with the installation of DS-MDK and describes the software

components along with complete workflow from starting a project up to

debugging on hardware. It contains the following chapters:

DS-MDK Introduction provides an overview about the DS-MDK, the Software

Packs, and describes the product installation along with the use of example

projects.

Eclipse IDE explains the basic concepts of the IDE and the most frequently used

perspectives.

Create Cortex-M4 Applications guides you through the process of creating and

modifying projects using CMSIS and device-related software components for the

Cortex-M microcontroller.

Create Linux Applications shows you how to create and modify applications for

the Cortex-A processor running Linux.

Debug Applications describes the process of how to connect to the target

hardware and explains debugging applications on the target.

Store Cortex-M4 Image gives further details on how to store the application

image on the target and how to run it at start up time.

4 Preface

Contents
Preface .. 3

DS-MDK Introduction .. 7
Solution for Heterogeneous Systems .. 7

DS-MDK Licensing .. 8
License Types ... 8

Installation .. 9
Software and Hardware Requirements ... 9
Install DS-MDK.. 9
Manage Software Packs .. 11
Install the Linux Image ... 12
Hardware Connection ... 13
Verify Installation using Example Projects .. 14

Documentation and Support ... 17

Eclipse IDE .. 18
Workbench .. 18
Perspectives .. 18

C/C++ Perspective .. 19
CMSIS Pack Manager Perspective ... 22
Remote System Explorer Perspective ... 23
DS-5 Debug Perspective ... 24

Create Cortex-M4 Applications ... 25
Blinky with CMSIS-RTOS RTX .. 25

Setup the Project ... 26
Select Software Components .. 28
Configure CMSIS-RTOS RTX Kernel ... 29
Create the Source Code Files .. 30
Adapt the Scatter File ... 32
Build the Cortex-M4 Image .. 33

Create Linux Applications ... 34
Setup the Project ... 34
Build the Application Image ... 35

Debug Applications ... 36
Preparing the Terminal Views .. 37
Debug Cortex-M4 Application ... 39

Stop in U-Boot .. 39
Configure CMSIS DS-5 Debugger ... 40
Run Cortex-M4 Application ... 42

Getting Started with DS-MDK 5

Debug Linux Application ... 42
Setup RSE Connection ... 43
Boot Linux .. 43
Configure DS-5 Debugger .. 44
Run Linux Application ... 46

Store Cortex-M4 Image .. 47
Create a Cortex-M4 BIN Image File .. 47
Store Cortex-M4 BIN Image File on SD Card ... 48
Run Cortex-M4 BIN Image File from U-Boot ... 49

Index ... 50

6 Preface

 NOTE
This user’s guide describes how to create applications with the Eclipse-based

DS-MDK IDE and Debugger for ARM Cortex-A/Cortex-M based NXP i.MX 6

and 7 series.

Refer to the Getting Started with MDK user’s guide for information how to

create projects for ARM Cortex-M microcontrollers using the µVision
®

IDE/Debugger.

Getting Started with DS-MDK 7

DS-MDK Introduction
DS-MDK combines the Eclipse-based DS-5 IDE and Debugger with CMSIS-

Pack technology and uses Software Packs to extend device support for devices

based on 32-bit ARM Cortex-A processors or heterogeneous systems based on

32-bit ARM Cortex-A and ARM Cortex-M processors.

Initially, only NXP i.MX 6 and 7 series devices are supported that combine

computing power for application-rich systems with real-time responsiveness. For

such embedded systems, the DS-5 Debugger gives visibility to multi-processor

execution and allows optimization of the overall software architecture.

Solution for Heterogeneous Systems

Heterogeneous systems usually consist of a powerful ARM Cortex-A class

application processor and a deterministic ARM Cortex-M based microcontroller.

These systems combine the best of both worlds: the Cortex-A class processor can

run a feature-rich operating system such as Linux and enables the user to program

complex applications with sophisticated human-machine interfaces (HMI). The

Cortex-M class controller offers low I/O latency, superior power efficiency and a

fast system start-up time for embedded systems.

Usually, both processors have access to a set of communication peripherals and

shared memory. The biggest challenge with heterogeneous systems is the

synchronization and inter-processor communication.

DS-MDK offers a complete software development solution for such systems:

 It allows managing Cortex-A Linux and Cortex-M RTOS projects in the

same development environment.

8 DS-MDK Introduction

 It fully supports the Cortex Microcontroller Software Interface Standard

(CMSIS) development flow for efficient Cortex-M programming. Software

Packs may be added any time to DS-MDK making new device support and

middleware updates independent from the toolchain. They contain device

support, CMSIS libraries, middleware, board support, code templates, and

example projects. The IDE manages the provided software components that

are available for the application as building blocks.

 The DS-MDK Debugger offers full visibility for multicore software

development.

DS-MDK Licensing
DS-MDK is part of the Keil MDK-Professional Edition and the product requires

a valid license for MDK-Professional Edition.

License Types

The following licenses types are available:

Single-User License (Node-Locked) grants the right to use the product by one

developer on two computers at the same time.

Floating-User License or FlexLM License grants the right to use the product on

several computers by a number of developers at the same time.

For further details, refer to the Licensing User’s Guide at

www.keil.com/support/man/docs/license.

http://www.keil.com/mdk5/cmsis/
http://www.keil.com/mdk5/editions/pro
http://www.keil.com/support/man/docs/license

Getting Started with DS-MDK 9

Installation

Software and Hardware Requirements

DS-MDK has the following minimum hardware and software requirements:

 A PC running a Microsoft Windows (32-bit or 64-bit) operating system

 Dual-Core Processor with > 2 GHz

 4 GB RAM and 8 GB hard-disk space

 1280 x 800 or higher screen resolution

Install MDK

Download MDK from www.keil.com/download - Product Downloads and run

the installer. It also adds the Software Packs for ARM CMSIS and MDK

Middleware.

Follow the instructions on

www.keil.com/support/man/docs/license/license_sul_install.htm to activate a

MDK-Professional license, which is required for DS-MDK.

Install DS-MDK

Download DS-MDK from www.keil.com/mdk5/ds-mdk/install and run the

installer. Having finished the installation, start DS-MDK by clicking on Eclipse

for DS-MDK in the Start menu (Windows 10: All apps ARM DS-MDK

Eclipse for DS-MDK).

When starting the product the first time, you will be presented with a window

showing MDK installation detected in your system:

If required, change the installation destination.

http://www.keil.com/download
http://www.keil.com/support/man/docs/license/license_sul_install.htm
http://www.keil.com/mdk5/ds-mdk/install

10 DS-MDK Introduction

Now, you need to specify a directory for your workspace (the area where your

projects will be stored). For most users, the default suggested directory is the best

option.

The Eclipse-based IDE opens in the C/C++ Perspective:

NOTE

Refer to chapter Eclipse IDE on page 18 for more information on Eclipse

workbench concepts.

Getting Started with DS-MDK 11

Manage Software Packs

Use the CMSIS Pack Manager perspective for managing Software Packs on the

local computer.

Open this perspective using Window Open Perspective CMSIS Pack

Manager. You should now install the Software Pack related to your target device

or evaluation board.

NOTE

Currently, only Software Packs for the NXP i.MX 6 and 7 series are qualified for

DS-MDK.

The Console window shows information about the Internet connection and the

installation progress.

TIP: The device database at www.keil.com/dd2 lists all available devices and

provides download access to the related Software Packs. If the Pack

Manager cannot access the Internet, you can manually install Software

Packs using the Import existing packs icon or by double-click on

*.PACK files.

http://www.keil.com/dd2

12 DS-MDK Introduction

Install the Linux Image

Currently, DS-MDK supports the following development board:

 NXP i.MX 7 SABRE development board: MCIMX7SABRE

For this development board, a pre-configured Linux image with DS-MDK

specific debug settings is available. Please download the zipped image file here:

www.keil.com/mdk5/ds-mdk/imx7reference

All steps to create a Linux image for the MX7DSABRESD board are explained in

the documentation. Please refer to the Freescale Yocto Project User's Guide

and the i.MX Linux User's Guide. The above website also links to these

documents and explains the changes that are required for DS-MDK debugging

using ULINKpro.

Copy the Linux Image to an SD-Card

Once you have downloaded the zipped Linux Kernel image, you need unzip it

before you can flash it onto an SD-Card. Windows users can use the open source

tool Win32 Disk Imager from http://win32diskimager.sourceforge.net/.

Install and run the tool. To write the image to the memory card, specify the

location of the image file, select the Device letter of the SD card and press the

Write button:

http://www.keil.com/mdk5/ds-mdk/imx7reference
http://win32diskimager.sourceforge.net/

Getting Started with DS-MDK 13

Hardware Connection

i.MX 7 SABRE Board

 Insert the SD-Card with the Linux image into the slot labelled SD1 BOOT.

 Connect the ULINKpro debug adapter using the 10-pin ribbon cable to

J12 JTAG.

 Connect your computer using a Micro-USB cable to the USB connector

labelled DEBUG UART. Your Windows PC will automatically detect a dual

USB serial port component and will install the required drivers.

 Connect the 5V power supply to J1.

14 DS-MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a Software Pack for your

device, you can verify your installation using one of the examples provided in the

Software Pack.

Remote Processor Messaging Protocol Example

The i.MX 7 Device Family Pack contains two example projects that show how

the two processors communicate with each other using the remote processor

messaging protocol (RPMSG) via a TTY serial device. The TTY device is

installed on the Linux system using a Linux kernel module (imx_rpmsg_tty.ko).

The Linux Application TTY runs on the Cortex-A7 processor and writes a

message to the TTY device. This message is shown in the terminal of the RPMSG

TTY RTX application running on the Cortex-M4 processor. This application

responds on the TTY device, which is read by the Linux application and shown in

its console.

Getting Started with DS-MDK 15

Copy the RPMSG TTY RTX Example Project

Click Copy next to the RPMSG TTY RTX example. A new window opens

asking you to verify the selected example project:

CMSIS Pack Manager copies the example into your workspace and switches

automatically to the C/C++ perspective:

 In the CMSIS Pack Manager perspective, select the Examples tab. Use

filters in the toolbar to narrow the list of examples.

16 DS-MDK Introduction

Build the Application

Build the project from the context menu in the Project Explorer:

The Console window shows information about the build process:

Getting Started with DS-MDK 17

Copy and Build the Linux Application TTY

Switch back to the CMSIS Pack Manager perspective and copy the

Linux Application TTY example project to your workspace.

Build the project from the context menu in the Project Explorer. The Console

should show an error-free build:

The chapter Debug Applications on page 36 explains how to debug both

applications using the DS-5 Debugger.

Documentation and Support
DS-MDK provides online manuals and context-sensitive help. The Help menu

opens the main help system that includes the CMSIS C/C++ Development User’s

Guide, the ARM DS-MDK Documentation, the RSE User Guide, and other

reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation

and explain dialog options and settings.

If you have suggestions or you have discovered an issue with the software, please

report them to us. Support and information channels are accessible at

www.keil.com/support.

http://www.keil.com/support

18 Eclipse IDE

Eclipse IDE
DS-MDK uses Eclipse for DS-5, an Integrated Development Environment (IDE)

that combines the Eclipse IDE from the Eclipse Foundation with the compilation

and debug technology of the ARM tools.

You can use Eclipse for DS-5 as a project manager to create, build, debug,

monitor, and manage projects for ARM targets. It uses a single folder called a

workspace to store files and folders related to specific projects.

Users can extend its abilities by installing plug-ins written for the Eclipse

platform, such as the CMSIS Pack Manager and Remote System Explorer,

included in DS-MDK.

Workbench
The workbench is the main development environment where you can manage

individual projects, associated sub-folders, and source files.

Each workbench window links to one workspace. If you want to use different

workspaces at the same time, you can launch several workbench windows and

link each one to a different workspace.

Perspectives
A workbench contains multiple perspectives. Each perspective contains an initial

set and layout of views. It aims at accomplishing a specific type of task, such as

project creation and build, debugging, and Pack management. While working

with DS-MDK, you will switch perspectives frequently. It is always possible to

change a perspective layout and to add new views to it.

DS-MDK uses mainly these perspectives:

 C/C++ Perspective

 CMSIS Pack Manager Perspective

 Remote System Explorer Perspective

 DS-5 Debug Perspective

Getting Started with DS-MDK 19

C/C++ Perspective

This perspective is designed for working with C/C++ projects. By default, it

consists of an editor area and views for project management, tasks, properties,

and a console for messages.

The editor area of the C/C++ perspective in DS-MDK includes the Manage Run-

Time Environment window that lets you select software components, target

devices, and Software Packs for the current project.

It also features a graphical editor for files that have CMSIS Configuration Wizard

annotations.

Project Explorer Manage Run-Time EnvironmentDependency Check Console

For more information, refer to the C/C++ Development User’s Guide and the

CMSIS C/C++ Development User’s Guide available from the Eclipse help

system (Help Help Contents).

The C/C++ perspective contains views that are tailored for specific needs.

20 Eclipse IDE

AXF File Viewer

An AXF file is the executable image generated by the ARM linker that contains

object code and debug information. Open it from the Project Explorer to inspect

the contents of the image.

CMSIS Configuration Wizard

Files containing configuration annotations may be modified using a graphical

editor. Right-click on a file in the Project Explorer and select Open With

CMSIS Configuration Wizard. Verify and adapt the contents directly in the

graphical representation of the text file.

Getting Started with DS-MDK 21

Scatter File Viewer

Scatter files (*.sct) are used to specify the memory map of an image to the linker.

The Scatter File Viewer lets you inspect this text file in a graphical

representation. Edit the file contents using the filename.sct tab (refer to Adapt

the Scatter File on page 32).

22 Eclipse IDE

CMSIS Pack Manager Perspective

The Pack Manager perspective offers the following functionality:

 Install or update Software Packs.

 List devices and boards that are supported by Software Packs.

 List example projects that can be copied into the Eclipse workspace.

To open this perspective, use the icon and select CMSIS Pack Manager

Device Database Available Packs/Examples Pack Properties

For more information, refer to the CMSIS C/C++ Development User’s Guide

available from the Eclipse help system (Help Help Contents).

Getting Started with DS-MDK 23

Remote System Explorer Perspective

The Remote System Explorer (RSE) is a workbench perspective that allows you

to connect and work with a variety of remote systems. With predefined plug-ins,

you can look at remote file systems, transfer files between hosts, do remote

search, execute commands and work with processes.

File/System Properties Source Code EditorRemote Systems Remote System Details

For more information, refer to the RSE User Guide in the Eclipse help system

(Help Help Contents).

24 Eclipse IDE

DS-5 Debug Perspective

Using DS-5 Debugger, you can debug bare-metal, RTOS, and Linux applications

with comprehensive and intuitive views, including synchronized source and

disassembly, call stack, memory, registers, expressions, variables, threads,

breakpoints, and trace.

VariablesTarget ConnectionDebug Control DisassemblySource Code Editor

For more information, refer to the ARM DS-5 Debugger Documentation in the

ARM DS-MDK Documentation available from the Eclipse help system (Help

Help Contents).

Getting Started with DS-MDK 25

Create Cortex-M4 Applications
This chapter guides you through the steps required to create and modify projects

for the Cortex-M target in a heterogeneous system. The tutorial creates a project

called Blinky using the real-time operating system CMSIS-RTOS RTX.

Blinky with CMSIS-RTOS RTX
The section explains the creation of the project using the following steps:

 Setup the Project: create a project and select the microcontroller device

along with the relevant CMSIS components.

 Select Software Components: choose the required software components for

the application.

 Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.

 Create the Source Code Files: add and create the application files.

 Build the Application Image: compile and link the application.

For the Blinky project, you will create and modify the main.c source file which

contains the main() function that initializes the RTOS kernel, the peripherals, and

starts thread execution. In addition, you will configure the system clock and the

CMSIS-RTOS RTX.

26 Create Cortex-M4 Applications

Setup the Project

From the Eclipse menu bar, choose File New C Project:

Select CMSIS RTE C/C++ Project, enter a project name (for example Blinky)

and click Next. In the following window, you can select to create a default main.c

file. Do not use this option. We will add a main.c template file later from a

Software Pack, so click again Next.

Getting Started with DS-MDK 27

In the following step, select your target device:

Select the NXP i.MX 7 Series i.MX Dual MCIMX7D:Cortex-M4

device and click Finish. The C/C++ Perspective will open and show the current

project:

28 Create Cortex-M4 Applications

Select Software Components

For the Blinky project based on CMSIS-RTOS RTX, you need to select the

following components:

 CMSIS:RTOS (API):Keil RTX.

 Device:i.MX7D HAL:CCM

 Device:i.MX7D HAL:RDC

 Device:i.MX7D HAL:UART

 Compiler:I/O:STDERR configured as variant User

 Compiler:I/O:STDIN configured as variant User

 Compiler:I/O:STDOUT configured as variant User

 Board Support:iMX7D SABRE Board:HW INIT

 Board Support:iMX7D SABRE Board:User I/O Redirect

Use the Resolve button to add other required components automatically. Finally,

save your selection:

NOTE

Saving the RTE configuration triggers a project update and the selected software

components become instantly visible in the Project Explorer.

Getting Started with DS-MDK 29

Configure CMSIS-RTOS RTX Kernel

In the project, expand the group RTE:CMSIS, right-click on the file

RTX_Conf_CM.c, and select Open With CMSIS Configuration Wizard.

Change the following settings:

 Default Thread stack size [bytes] 512

 Main Thread stack size [bytes] 512

 RTOS Kernel Timer input clock frequency [Hz] 240000000

Save the file.

NOTE

If you have opened a file with the CMSIS Configuration Wizard once, your choice

is stored and the file will be opened in this view automatically next time.

30 Create Cortex-M4 Applications

Create the Source Code Files

Add your application code using pre-configured User Code Templates containing

routines that resemble the functionality of the software component. Right-click on

the project and select New Files from CMSIS Template.

Expand the software component CMSIS and select the template CMSIS-RTOS

'main' function. Click Finish. Add application specific code to the file main.c:

/*---

 * CMSIS-RTOS 'main' function template

 ---/

#define osObjectsPublic // define objects in main module

#include "osObjects.h" // RTOS object definitions

#ifdef _RTE_

 #include "RTE_Components.h" // Component selection

#endif

#ifdef RTE_CMSIS_RTOS // when RTE component CMSIS RTOS is used

 #include "cmsis_os.h" // CMSIS RTOS header file

#endif

#include "system_iMX7D_M4.h"

#include "retarget_io.h"

#include "board.h"

#include <stdio.h>

Getting Started with DS-MDK 31

osThreadId tid_threadA; /* Thread id of thread A */

/*---

 * Thread A

 ---/

void threadA (void const *argument) {

 volatile int a = 0;

 for (;;) {

 osDelay(750);

 printf("Blinky threadA: Hello World!\n");

 }

}

osThreadDef(threadA, osPriorityNormal, 1, 0);

/*

 * main: initialize and start the system

 */

int main (void) {

 /* Board specific RDC settings */

 BOARD_RdcInit();

 /* Board specific clock settings */

 BOARD_ClockInit();

 SystemCoreClockUpdate();

 InitRetargetIOUSART();

 tid_threadA = osThreadCreate(osThread(threadA), NULL);

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelInitialize (); // initialize CMSIS-RTOS

#endif

 /* Initialize device HAL here */

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelStart (); // start thread execution

#endif

 /* Infinite loop */

 while (1)

 {

 /* Add application code here */

 osDelay(1000);

 printf("Blinky main loop: Hello World!\n");

 // initialize peripherals here

 // create 'thread' functions that start executing,

 // example: tid_name = osThreadCreate (osThread(name), NULL);

 osKernelStart (); // start thread execution

 }

}

32 Create Cortex-M4 Applications

Adapt the Scatter File

On the i.MX 7 devices, several types of memory are available. For deterministic,

real-time behavior, the Cortex-M4 provides local Tightly Coupled Memory

(TCM), which provides low-latency access. Multiple on-chip RAM areas

(OCRAM) are available, which are larger, but not as fast.

The following table shows the memories and their load addresses for the different

processors:

Region Size Cortex-A7 Cortex-M4 (Code Bus)

OCRAM 128KB 0x00900000-0x0091FFFF 0x00900000-0x0091FFFF

TCMU 32KB 0x00800000-0x00807FFF

TCML 32KB 0x007F8000-0x007FFFFF 0x1FFF8000-0x1FFFFFFF

OCRAM_S 32KB 0x00180000-0x00187FFF
0x00000000-0x00007FFF/
0x00180000-0x00187FFF

By default, the scatter file template uses the start address 0x0 for the load region

command. To put the Cortex-M4 code into the TCM, change the address of the

load region to 0x1FFF8000:

; ***

; ** Scatter-Loading Description File generated by RTE CMSIS Plug-in **

; ***

LR_IROM1 0x1FFF8000 0x00008000 { ; load region size_region

 ER_IROM1 0x1FFF8000 0x00008000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 }

 RW_IRAM1 0x20000000 0x00008000 {

 .ANY (+RW +ZI)

 }

}

Getting Started with DS-MDK 33

Build the Cortex-M4 Image

Right-click on the project name and select Build Project to build the application.

This step compiles and links all related source files. The Console shows

information about the build process. An error-free build displays program size

information:

Debug Cortex-M4 Application on page 37 guides you through the required

steps to connect your evaluation board to the workstation and to debug the

application on the target hardware.

34 Create Linux Applications

Create Linux Applications
This chapter guides you through the steps required to create and modify projects

for an ARM Cortex-A class device running Linux:

 Setup the Project: create a project.

 Build the Application Image: compile and link the application.

Setup the Project
From the Eclipse menu bar, choose File New C Project. In the upcoming

window, select the Hello World ANCI C Project:

Enter a project name (for example Hello_World) and make sure that the GCC

[...] (built-in) toolchain is selected before clicking Finish.

Getting Started with DS-MDK 35

The C/C++ Perspective will open and show the current project:

Build the Application Image
Right-click on the project name and select Build Project to build the application.

This step compiles and links all related source files. The Console shows

information about the build process

The chapter Debug Linux Application on page 42 guides you through the

required steps to connect your evaluation board to the workstation and to

download the application to the target hardware.

36 Debug Applications

Debug Applications
The DS-5 Debugger can verify all software applications that execute on a

heterogeneous computer system. Complete system visibility is enabled using

multiple simultaneous debug connections:

 The Cortex-M application is debugged using a ULINKpro debug unit (refer

to www.keil.com/ulink for more information). Users can analyze the

microcontroller application using RTOS aware-debugging and peripheral

views.

 The Cortex-A Linux kernel is also debugged using a ULINKpro debug unit.

The debugger lists kernel threads and processes.

 The Cortex-A Linux application is debugged via gdbserver. The debugger

supports multi-threaded application debugging and shows pending

breakpoints on loadable modules and shared libraries.

http://www.keil.com/ulink
https://en.wikipedia.org/wiki/Gdbserver

Getting Started with DS-MDK 37

Preparing the Terminal Views
Many applications use a serial connection to display messages. To be able to

view these messages, use a Terminal window that shows data coming from serial

COM ports.

The i.MX 7 SABRE development board contains a dual USB serial port device

that offers two independent COM ports. Connect the board to your computer and

Windows will install the drivers that will add two new USB Serial Ports to your

system. Check the exact numbers in the Windows Device Manager (to open it,

type “device manager” in the Windows search bar):

The smaller number is the COM port of the Cortex-A processor, while the larger

number is the COM port of the Cortex-M processor. To open a Terminal view, go

to Window Show View Other… Select Terminal Terminal and click

OK.

Open the settings dialog from the toolbar of the Terminal 1 window:

Change the settings to the following:

 View Title: Terminal Linux

 Connection Type: Serial

 Port: Use the first of the new COM ports

 Baud Rate: 115200

38 Debug Applications

Click OK. Press the RST button on the development board to observe the boot

process in the Terminal window. Send any keyboard key to the terminal window

to interrupt the boot process:

NOTE

You must halt the boot loader at this point to be able to launch the Cortex-M4

debug session. Before starting to debug, copy and build the Linux application.

Add another Terminal view to display the output of the Cortex-M4 processor.

Simply use the drop-down selector next to the New Terminal Connection in

Current View… icon and select New terminal View:

Select the larger COM port number and leave the other settings as they are. Name

the Terminal view Terminal M4.

Getting Started with DS-MDK 39

Debug Cortex-M4 Application
This section explains how to debug the microcontroller application running on the

Cortex-M4. If you are debugging the Blinky application from the previous

chapter, execute the following steps using that project. Here, we will continue

with the RPMSG_TTY_RTX_M4 project from the Verify Installation using

Example Project chapter.

Stop in U-Boot

To be able to connect to the target, you need to stop U-Boot before it is actually

loading the Linux kernel. Restart/reset the device and observe the bootloader

output on the Terminal Linux. Press any key before the autoboot countdown

expires:

40 Debug Applications

Configure CMSIS DS-5 Debugger

Launch the DS-5 Debugger using the Cortex-M4 project context menu.

Right-click the RPMSG_TTY_RTX_M4 project and select Debug As

CMSIS DS-5 Debugger:

Connection

Verify the Connection Settings and ensure that ULINKpro is correctly detected.

If in doubt, use Browse… to list available debug adapters.

Click on Target Configuration… to setup the Debug and Trace Services Layer

(DTSL).

Getting Started with DS-MDK 41

 On the Cortex-A7 tab, disable all trace options to avoid buffer overflows.

 On the Cortex-M4 tab, Enable Cortex-M4 core trace.

OS Awareness

In the OS Awareness tab chose the real-time operating system used in your

application using the drop-down menu.

To start debugging, click Debug.

NOTE

The error message “Failed to launch debug server” most likely indicates that an

incorrect ULINKpro connection address is selected.

42 Debug Applications

Run Cortex-M4 Application

Starting the debugger, changes to the DS-5 Debug perspective.

The application loads and runs until main. To start the Cortex-M4 application

click Run in the Debug Control view.

Observe the output of the application in the Terminal M4 window.

NOTE

You can add another Terminal view to the debug perspective by simply opening it

using Window Show View Terminal.

Debug Linux Application
This section explains how to debug the Linux application running on the

Cortex-A7. If you are debugging the Hello_World application from the previous

chapter, execute the following steps using that project. Here, we will continue

with the Linux Application TTY project from the Verify Installation using

Example Project chapter.

For Linux application debugging, the DS-5 Debugger supports connections to the

target using gdbserver.

Before connecting, you must:

 Set up the target with Linux installed and booted. Refer to Install the Linux

Image on page 12.

 Obtain the target IP address or name for the connection between the debugger

and the debug hardware adapter. If the target is in your local subnet, click

Browse and select your target.

Next, you should set up a Remote Systems Explorer (RSE) connection to the

target to download the application onto the target’s file system.

Getting Started with DS-MDK 43

Setup RSE Connection

Go to Window Open

Perspective Other..., then select

Remote System Explorer. Create a

new connection using the button.

Select SSH Only and click Next.

RSE is using Ethernet to

communicate with the target, thus

you need to enter the target's IP

address into the Host Name field.

Enter a meaningful name in the

Connection name box:

Click Finish. Your connection shows up in the

Remote Systems window:

Boot Linux

NOTE

If you are debugging a microcontroller application simultaneously, you need to

run the Cortex-M4 application, otherwise the Linux Terminal will not be

accessible and you will not be able to boot Linux.

In the Terminal Linux enter “boot” to start the Linux system:

Once the Kernel is running, log in as root (no password required).

44 Debug Applications

Configure DS-5 Debugger

Right-click on the project Linux Application TTY and select Debug As Debug

Configurations… . In the Debug Configurations window, select DS-5 Debugger

and then press the icon to create a new debug configuration. Name it GDB

Debug and select in the Connection tab Linux Application Debug

Application Debug Connections via gdbserver Download and debug

application. The RSE connection from the previous step shows up:

Getting Started with DS-MDK 45

On the Files tab, in Target Configuration, select the workspace build target for

Application on host to download. Select an existing directory on the target file

system, e.g. /home/root/tmp as the Target download directory.

Select an existing directory on the target file system, e.g. /home/root/tmp as

the Target working directory (use the same directory as for Target download

directory).

On the Debugger tab, under Run Control select Debug from symbol “main”.

Click Debug.

46 Debug Applications

Run Linux Application

In the Terminal Linux, load the kernel module that communicates with the

Cortex-M4 application using the following command:

root@imv7dsabresd:~# modprobe -v imx_rpmsg_tty

The kernel module should be loaded as shown below:

insmod /lib/modules/4.1.15-

1.1.0+ga4d2a08/kernel/drivers/rpmsg/imx_rpmsg_tty.ko

imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x0!

Install rpmsg tty driver!

Now you can run the Linux application by clicking the Continue button. The

App Console shows the application’s messages:

Similarly, the Terminal M4 shows the output of the microcontroller application:

NOTE

You can add another Terminal view to the debug perspective by simply opening it

using Window Show View Terminal.

Getting Started with DS-MDK 47

Store Cortex-M4 Image
To store the Cortex-M4 Image for execution at start up use the following steps:

1. Create BIN image file using the fromelf utility application.

2. Store this BIN image on SD card in the boot partition

3. Setup the U-Boot environment to start-up the BIN image file.

Create a Cortex-M4 BIN Image File

Right-click the project and select Properties C/C++ Build Settings. In the

the Build Steps enter under Post-build steps the Command:

fromelf --bin --output "Blinky.bin" "Blinky.axf"

NOTE

This example shows the steps for the Blinky application from section Blinky with

CMSIS-RTOS RTX on page 22.

Click OK and rebuild the project to get the BIN file generated.

48 Store Cortex-M4 Image

Store Cortex-M4 BIN Image File on SD Card

The SD Card has two partitions:

 The Linux file system partition.

 The FAT32 boot partition.

List them using the fdisk command:

~# fdisk –l

…

Device Boot Start End Sectors Size Id Type

/dev/mmcblk0p1 8192 24575 16384 8M c W95 FAT32 (LBA)

/dev/mmcblk0p2 24576 1236991 1212416 592M 83 Linux

To execute the binary Cortex-M4 image at system startup, it must be stored in the

FAT32 boot partition using the following steps:

1. Create a sub-directory on the Linux file system, for example:

~# mkdir /media/sd0

2. Mount the Linux file system partition for access with RSE.

~# mount –t vfat /dev/mmcblk0p1 /media/sd0

3. Use RSE to copy the binary image file from your workspace to the

/media/sd0 directory.

4. Unmount the partition to ensure that the file is written correctly:

~# umount /media/sd0

5. Reboot the system and halt in U-Boot.

Getting Started with DS-MDK 49

Run Cortex-M4 BIN Image File from U-Boot

At this point, the Cortex-M4 BIN image file is stored in the boot partition.

Use the setenv command at the U-Boot prompt to change the U-Boot setup the

new image file:

=> setenv m4image Blinky.bin; save

Verify the boot setup using the printenv command:

=> printenv

…

loadm4image=fatload mmc ${mmcdev}:${mmcpart} 0x7F8000 ${m4image}

m4boot=run loadm4image; bootaux 0x7F8000

m4image=Blinky.bin

Run the m4boot process to start the Blinky application:

=> run m4boot

NOTE

For more information refer to the U-Boot Command Line Interface in the U-Boot

user's manual (www.denx.de/wiki/DULG/UBoot).

http://www.denx.de/wiki/DULG/UBoot

50 Index

Index
A
Applications

Add Source Code 31

Blinky with CMSIS-RTOS RTX 25

Build ... 33

Build M4 Image 33

Create ... 25

Create BIN File 47

Create Source Files 30

Customize RTOS 29

Debug ... 36

Run from U-Boot 49

Select Software Components 28

Setup the Project 26

Store BIN File 48

C
Console ... 16

D
Debug

OS Awareness 41

Device Database .. 11

Documentation .. 17

DS-MDK

Install .. 9

Installation Requirements 9

Introduction .. 7

License Types ... 8

Licensing .. 8

E
Eclipse

IDE ... 18

Perspectives .. 18

Workbench ... 18

Example Project

Install .. 14

F
Flash Programmig

Scatter File ... 32

I
i.MX7 SABRE

Hardware Connection 13

L
Linux

Create Image .. 12

Install Image ... 12

Linux Applications

Build Application Image 35

Development .. 34

Project Set Up 34

P
Perspective

C/C++ ... 19

CMSIS Pack Manager 22

DS-5 Debug.. 24

Remote System Explorer 23

R
Remote System Explorer........................... 43

S
Software Packs

Install manually 11

Manage ... 11

T
Terminal View .. 37

	Preface
	Chapter Overview

	DS-MDK Introduction
	Solution for Heterogeneous Systems
	DS-MDK Licensing
	License Types

	Installation
	Software and Hardware Requirements
	Install DS-MDK
	Manage Software Packs
	Install the Linux Image
	Copy the Linux Image to an SD-Card

	Hardware Connection
	i.MX 7 SABRE Board

	Verify Installation using Example Projects
	Remote Processor Messaging Protocol Example
	Copy the RPMSG TTY RTX Example Project
	Build the Application
	Copy and Build the Linux Application TTY

	Documentation and Support

	Eclipse IDE
	Workbench
	Perspectives
	C/C++ Perspective
	AXF File Viewer
	CMSIS Configuration Wizard
	Scatter File Viewer

	CMSIS Pack Manager Perspective
	Remote System Explorer Perspective
	DS-5 Debug Perspective

	Create Cortex-M4 Applications
	Blinky with CMSIS-RTOS RTX
	Setup the Project
	Select Software Components
	Configure CMSIS-RTOS RTX Kernel
	Create the Source Code Files
	Adapt the Scatter File
	Build the Cortex-M4 Image

	Create Linux Applications
	Setup the Project
	Build the Application Image

	Debug Applications
	Preparing the Terminal Views
	Debug Cortex-M4 Application
	Stop in U-Boot
	Configure CMSIS DS-5 Debugger
	Connection
	OS Awareness

	Run Cortex-M4 Application

	Debug Linux Application
	Setup RSE Connection
	Boot Linux
	Configure DS-5 Debugger
	Run Linux Application

	Store Cortex-M4 Image
	Create a Cortex-M4 BIN Image File
	Store Cortex-M4 BIN Image File on SD Card
	Run Cortex-M4 BIN Image File from U-Boot

	Index

